
1

An OGSA-based Quality of Service Framework
Rashid Al-Ali, 1,2 Kaizar Amin, 1,3 Gregor von Laszewski,1,∗

Omer Rana2 and David Walker2
1 Argonne National Laboratory, U.S.A.

2 Cardiff University, UK.
3 University of North Texas, U.S.A.

∗ Corresponding Author: gregor@mcs.anl.gov

CONTENTS

I Introduction 1

II Related Work 2

III The Proposed QoS Framework 3
III-A Requirements . 3
III-B Grid Quality of Service Management. 4

IV QoS Grid Service 5

V QoS Service Registry 6

VI QoS Allocation Manager 7
VI-A DSRT Resource Manager. 7
VI-B Network Resource Manager. 7

VII QoS Policy Service 8

VIII QoS Reservation Manager 8
VIII-A Reservation Definition. 8
VIII-B Admission Control. 9
VIII-C Reservation Features. .10

IX Implementation Scenario 10

X Conclusion and Future Work 11

References 12

Primary Contact:
Gregor von Laszewski

Argonne National Laboratory
9700 S. Cass Ave, Bldg. 221

Argonne, IL 60439, U.S.A.
phone: 630 252 0472

fax: 630 252 1997
email: gregor@mcs.anl.gov

gregor@mcs.anl.gov

1

An OGSA-based Quality of Service Framework
Rashid Al-Ali, 1,2 Kaizar Amin, 1,3 Gregor von Laszewski,1,∗

Omer Rana2 and David Walker2
1 Argonne National Laboratory, U.S.A.

2 Cardiff University, UK.
3 University of North Texas, U.S.A.

∗ Corresponding Author: gregor@mcs.anl.gov

Abstract— Grid computing provides a robust paradigm to

aggregate disparate resources in a secure and controlled envi-

ronment. Grid architectures require an underpinning Quality of

Service (QoS) support in order to manage complex computation-

and data-intensive applications. However, QoS guarantees in the

Grid context have not been given the importance they merit.

In order to enhance the functionality offered by computational

Grids, we overlay the Grid framework with an advanced QoS

architecture, called G-QoSM. The G-QoSM framework provides

a new service-oriented QoS management model that leverages

from the Open Grid Service Architecture (OGSA) and has

a number of interesting features: 1) Grid service discovery

based on QoS attributes, 2) policy-based admission control for

advance reservation support, and 3) Grid service execution with

QoS constraints. This paper discusses the different components

of the G-QoSM framework and presents an initial prototype

implementation.

I. I NTRODUCTION

Grid computing [1], [2] has traditionally focused on large-

scale sharing of distributed resources, sophisticated applica-

tions, and the achievement of high performance. The Grid

architecture integrates diverse network environments with

widely varying resource and security characteristics into vir-

tual organizations (VO). Computational Grids offer a high end

environment that can be exploited by advanced scientific and

commercial applications.

Soft Quality of Service (QoS) assurances are made by

Grid environments by the virtue of their establishment. Grid

services are hosted on specialized “high-end” resources in-

cluding expensive scientific instruments, clusters, and data

storage systems. High connectivity is maintained between re-

sources via dedicated high-speed networks. A well-established

resource administration facilitates constant resource connec-

tivity, resource monitoring, and fault tolerance. Hence, some

preliminary level of QoS is provided by the committed mem-

bers of the VO based on their pre-agreed Grid policy and

their dedication in the overall collaboration. Nevertheless,

the complexities involved in several critical Grid applications

make it imperative to providehard and guaranteedQoS

assurances beyond that provided by the basic Grid infras-

tructure. Considering the increasing sophistication of Grid

applications and new hardware under development [3] such

provisions become an inherent requirement within the Grid

architecture. This implies a need for a QoS management entity

that facilitates a negotiation mechanism, where the clients can

select the appropriate resources with QoS constraints that suit

their needs.

Motivated by the need to overlay an advanced QoS frame-

work on existing Grid architectures allowing them to support

complex QoS requirements, we propose a QoS management

framework, called asG-QoSM. Supporting the recent standard-

ization efforts of the Global Grid Forum [4], the G-QoSM

framework is based compatible with the latest Open Grid

Services Architecture (OGSA) specification. The G-QoSM

framework presented in this paper has a number of important

features: 1) introduction of a ‘QoS brokering service’ as a

Grid service, 2) introduction of a ‘policy service’ as a Grid

2

service and 3) introduction of a generic resource ‘reservation

manager’, which has the following highlights:

• support for advance and immediate reservation,

• support for single and collective resource reservations

(co-reservation),

• accommodation of arbitrary resource types, for example,

compute, network and disk, and

• scalability and and flexibility through an object-oriented

that is uses underlying resource characteristics at run-

time.

The paper is structured as follows. In SectionII we provide

an overview of related research in the area of resource reser-

vation to support QoS needs. In SectionIII-A we outline the

general requirements of the Grid QoS model, and present the

OGSA-based G-QoSM framework with reservation support.

In SectionVIII-A the reservation is defined, and we present

a reservation admission control mechanism and reservation

features. In SectionIX implementation status is discussed, and

prototype implementation screen shots are shown. A summary

of future work concludes our paper.

II. RELATED WORK

Immediate and advance reservation is considered in a wide

variety of systems mostly in networking, communication,

and distributed applications including distributed multi media

applications (DMM). Hence it is of considerable interest to

the Grid community.

• In the context of Grid computing, GARA [5] is a QoS

framework that provides programmers a convenient ac-

cess to end-to-end QoS. It provides advance reservations

with uniform treatment to various types of resources such

as network, compute, and disk. GARA’s reservation is

a promise that the client/application who initiated the

reservation will receive a specific level of service quality

from the resource manager. GARA also provides reser-

vation application program interface (API) to manipulate

reservation requests, such as,create, modify, bind and

cancel.

• NAFUR [6] describes the design and implementation of a

QoS negotiation system with advance reservation support

in the context of DMM applications. NAFUR aims to

compute the QoS that can be supported at the time the

service request is made, and at certain carefully-chosen,

later times. For example, if the requested multimedia

service with the desired QoS cannot be supported at the

time the service request is made, the proposed approach

allows the computation of the earliest time the user can

start the multimedia service with the desired QoS.

• In [7] a resource broker (RB) model in the context

of middleware for DMM application is proposed. The

proposed RB has the following design goals: 1) advance

and immediate reservation, 2) a new admission control

scheme based on using a timely adaptive state tree

(TAST) and 3) the RB processes brokerage requests for

reservation, modifications, allocation and release. The

new admission control based on TAST is used to make

advance reservation decisions.

• In [8] advance reservation is formalized in the context

of networking systems and the fundamental problem of

admission control associated with resource reservation

is introduced. Based on the authors literature review it

is concluded that none of the previous approaches is

sufficiently flexible to cover all potential needs of all

users. The proposed solution to this fundamental problem

is to separate the issue into a technical and a policy

part supported by a specifying a generic reservation

service description and a corresponding policy layer. This

combination improves the flexibility of resource advance

reservation compared to the other approaches.

3

None of the research efforts mentioned above address advance

reservation in the context of service-oriented architecture, as

in our approach. In general, resource reservation is not widely

explored in service-oriented Grids. Nevertheless, the GGF

Grid Resource Agreement and Allocation Protocol (GRAAP)

Working Group, has produced a ‘state of the art’ document,

which lays down properties for resource reservation in Grids

[9]. We envision that our reservation model can be used to

support the reservation properties outlined by the GRAAP-

WG. The features that distinguish our work from existing QoS

management approaches are that the

• generic QoS management service is not coupled to any

specific resource type, or even limited to resource quan-

tity;

• the object-oriented design and the abstraction approach

gives the proposed service the ability to integrate with any

brokerage system that supports web service interaction;

• dynamic information gathering and management, such as,

resource characteristics and policy information improves

scalability; and

• usage policy frameworks for resource

providers/administrators and users to enable a fine-

grained request specification.

In addition to the projects mentioned above, a general

negotiation model called Service Negotiation and Acquisi-

tion Protocol (SNAP) is introduced in [10], which proposes

a resource management model for negotiating resources in

distributed systems. SNAP defines three types of SLAs that co-

ordinate management across a desired resource set, and can,

together, be used to describe a complex service requirement in

a distributed system environment. Further,the resource inter-

actions are mapped to well-defined platform-independent Ser-

vice Level Agreements (SLAs) present the SNAP protocol to

manage resources across different administrative domains via

three types of SLAs: task SLA (TSLA), resource SLA (RSLA)

and bind SLA (BSLA). The TSLA describes the task and the

RSLA describes the resources needed to accomplish the task in

the TSLA. The BSLA associates the resources from the RSLA

and the application ‘task’ in the TSLA. The SNAP protocol

necessitates the existence of resource management entity that

can provide promises on resource capability; for example,

RSLA. Therefore, our reservation model can encapsulate such

a requirement and implement the RSLA negotiation.

III. T HE PROPOSEDQOS FRAMEWORK

In this section we introduce the proposed Grid QoS Man-

agement framework. We outline general requirements for the

framework, and then we provide discussion on QoS manage-

ment and the proposed system.

A. Requirements

The proposed framework must adhere to certain important

requirements:

a) Service Discovery:The system should be able to

discover services based on QoS attributes. These attributes

are a) quantitative and b) qualitative. For example, quanti-

tative attributes include computation, networking and storage

requirements, while qualitative attributes include the degree

of service reputation and service licensing cost. To support

service discovery based on these attributes, a discovery mech-

anism needs to be employed within the proposed framework.

b) Resource Advance Reservation:The system should

support mechanisms for advance, immediate, or ‘on demand’

resource reservation. Advance reservation is particularly im-

portant when dealing with scarce resources, as is often the case

with high performance and high end scientific applications in

Grids.

c) Reservation Policy:The system should support a

mechanism which facilitates Grid resource owners enforcing

their policies governing when, how, and who can use their

4

resource, while decoupling reservation and policy entities, in

order to improve reservation flexibility. [8].

d) Agreement Protocol:The system should assure the

clients of their advance reservation status, and the resource

quality they expect during the service session. Such assurance

can be contained in an agreement protocol, such as Service

Level Agreements (SLAs).

e) Security: The system should prevent malicious users

penetrating, or altering the data repositories that holds infor-

mation about reservations, policies and agreement protocols. A

proper security infrastructure is required, such as Public Key

Infrastructure (PKI).

f) Simple: The system should have a simple design

that requires minimal overheads in terms of computation,

infrastructure, storage, and message complexity.

g) Scalability: The system should be scalable to large

numbers of entities, as the Grid is a global scale infrastructure.

B. Grid Quality of Service Management

Fig. 1. QoS Management Phases.

Grid Quality of Service Management (G-QoSM) is a new

approach to supporting Quality of Service (QoS) management

in computational Grids, in the context of Open Grid Service

Architecture (OGSA). QoS management includes a range of

activities, from resource selection, allocation, and resource

release; activities applied in the course of a QoS session.

A QoS session includes three main phases: i) the establish-

ment phase, ii) the active phase, and iii) the clearing phase

[11]. These phases include a number of QoS functions as

depicted in Figure1. In QoS-oriented architectures, during

the ‘establishment phase’, a client’s application states the

desired service and QoS specification. The QoS broker then

undertakes a service discovery, based on the specified QoS

properties, and negotiates an agreement offer for the client’s

application. During the ‘active phase’, additional activities,

including QoS monitoring, adaptation, accounting and pos-

sibly re-negotiation, may take place. The ‘clearing phase’ is

responsible to terminate QoS session, either through resource

reservation expiration, agreement violation or service comple-

tion, and resources are freed for use by other clients.

Quality of service management has been explored in a

number of contexts, particularly for computer networks [12],

multimedia applications [13] and Grid computing [5]. Regard-

less of the context, a QoS management system should address

the following needs:

• Specifying QoS requirements.

• Mapping QoS requirements to resource capabilities.

• Negotiating QoS with resource owners - where a require-

ment cannot be exactly met.

• Establishing service level agreements (SLAs) with

clients.

• Reserving and allocating resources.

• Monitoring parameters associated with a QoS session.

• Adapting to varying resource quality characteristics.

• Terminating QoS sessions.

The Grid QoS Management (G-QoSM) [14] framework

aims to operate in service-oriented architectures. It provides

three main functions: 1) support for resource and service dis-

covery based on QoS properties, 2) support for providing QoS

guarantees at middleware and network levels, and establishing

5

Service Level Agreements (SLAs) to enforce these guarantees,

and 3) providing QoS adaptation for the allocated resources.

The G-QoSM delivers three types of QoS levels:Guaranteed,

Controlled Load and Best Effort QoS. At the ‘guaranteed

level’, constraints, related to the QoS parameters of the client,

need to exactly match the service provision. ‘Controlled load’

is similar to the ‘guaranteed’ level, with the exception that

less stringent parameter constraints are defined, and the notion

of range-based QoS attributes is used along with range-based

SLAs. At the ‘best effort’ QoS level the resource manager

has full control in choosing the QoS level without constraints,

corresponding to the default case when no QoS requirements

are specified.

The Grid QoS Management (G-QoSM) [14] framework

aims to operate in service-oriented architectures, and to pro-

vide three main functions: 1) support for resource and service

discovery based on QoS properties, 2) support for providing

QoS guarantees at middleware and network levels, and es-

tablishing Service Level Agreements (SLAs) to enforce these

guarantees, and 3) providing QoS adaptation for the allocated

resources. The G-QoSM delivers three types of QoS levels:

Guaranteed, Controlled Load and Best Effort QoS. At the

’guaranteed level’, constraints, related to the QoS parameters

of the client, need to exactly match the service provision.

’Controlled load’ is similar to the ’guaranteed’ level, with the

exception that less stringent parameter constraints are defined,

and the notion of range-based QoS attributes is used along with

range-based SLAs. At the ’best effort’ QoS level the resource

manager has full control in choosing the QoS level without

constraints, corresponding to the default case when no QoS

requirements are specified.

The G-QoSM is an ongoing project, previously investigated

and implemented in the context of Globus toolkit (GT) 2.0,

[14] [15] using GARA framework to provide QoS support for

‘compute’ resources. However, with the emergence of Service-

Oriented Grids, and Open Grid Service Architecture (OGSA)

[16] it is necessary to introduce new features to the G-QoSM,

to make it OGSA-enabled and GT3 compliant. In this new G-

QoSM architecture GARA is not utilized, and is replaced by

a new reservation manager, policy service, allocation manager

and a newly-developed Java API for a Dynamic Soft Real

Time (DSRT) scheduler [17]. The new features in the OGSA-

enabled G-QoSM are:

• Introduction of a ‘QoS brokering service’ as a Grid

service.

• Introduction of a new generic resource ‘reservation man-

ager’.

• Introduction of a new ‘policy service’ as a Grid service.

• Introduction of a framework that is OGSA-enabled and

can be instantiated in the context of GT3.

Fig. 2. Framework Architecture.

Figure2 shows the new G-QoSM OGSA-enabled architec-

ture. The main components are: QoS Grid service, an extended

version of the Universal Description Discovery and Integration

(UDDIe), resource reservation manager, resource allocation

manager and policy Grid service.

IV. QOS GRID SERVICE

QoS Grid Service (QGS) is the focal point of this architec-

ture and exists in every domain, with a domain characterized

6

by an IP subnet or Globus site. The QGS interacts with the

client’s application, the QoS selection Service, the reservation

manager, and the policy Grid service to support:

h) Interaction with Client’s Application:To primarily

capture the service request with QoS constraints, and to negoti-

ate a QoS agreement SLA interaction with client’s application

is needed. This negotiation can be summarized as attempting

to find the ‘best match’ service, based on given properties

and priority levels, for example, one might request that cost

has a higher priority than service reliability, and the matching

process should comply with such a requirement. Once the

best service match is found, and corresponding resources

are reserved, an agreement offer is proposed to the client’s

application. If the proposed agreement is approved, it becomes

a commitment, and the QGS regards this agreement as a fixed

guarantee. Otherwise resources are released and no agreement

takes place.

i) Interaction with the QoS Selection Service:To support

basic concept queries a QoS selection service is provided with

QoS constraints similar to the one supplied by the client’s

application. It’s main function is to provide information and

the decision for selecting the best service. Normally, the

selection service replies with a list of service matches, which

necessitates the QGS selecting one of the returned services.

To make the best selection, the client’s application should

associate an importance level value to each required QoS

attribute in the initial service request. We adapted a selection

algorithm based on a Weighted Average (WA) concept, taking

into account the proportional value of each QoS attribute,

using the importance level supplied by the user in the ‘service

request’, rather than each attribute being treated equally. The

‘importance level’ associates a level of importance or priority,

such as High (H), Medium (M) and Low (L), to each QoS

attribute, with this importance level mapped to a numerical

value (real number). The algorithm computes the WA for every

returned service and selects the service with the highest WA.

j) Interaction with Reservation Manager:After selecting

a Grid service the functional requirements, required in support

of the reservation, are extracted and formulated as resource

specifications. These resource specifications are then submitted

to the reservation manager for resource reservation, and a

reservation ‘handle’ is returned in the case of a successful

reservation. This reservation handle can be later used to claim,

or manipulate, the reservation.

k) Interaction with Policy Grid Service:Interaction with

the policy grid service enables the QGS to capture policy infor-

mation necessary to validate the service request. For example,

to discover if there is any limitation on resource utilization per

service, or the class of service requested. The QGS validates

the service request by applying the rules obtained from the

Policy Grid Service.

V. QOS SERVICE REGISTRY

UDDIe [18] forms the service registry system in the context

of the G-QoSM framework – Figure2 shows where the

UDDIe integrates with the rest of the framework components.

It is used primarily as a registry to publish QoS attributes

of services, and subsequently to search for services based

on QoS attributes. The publication process, as per the Open

Grid Service Architecture (OGSA) specifications, requires

that service providers supply two separate WSDL documents,

namely, service interface and implementation documents that

describe the syntax and semantics for accessing the service.

Current OGSA specification does not specify a QoS structure

to be included in the services’ WSDL documents. Every

service in our framework has two interfaces: functional and

management interfaces. The functional interface describes how

the given service could be accessed, whereas the management

interface describes attributes related to QoS and performance

characteristics associated with the service. We incorporate the

7

QoS properties, such as the resources needed to execute the

Grid service and service cost, etc., in the service management

interface. With this extension to the WSDL document, the

service provider would be able to describe their services in

terms of QoS properties. In order for this extension to be

recognized by a registry system such as UDDI and hence be

searched, the UDDI registry needs to be extended to recognize

these additional attributes. We design and implement 3 search

capabilities by extending UDDI: service properties, service

leasing and range-based search. These properties together can

be used to search for stored services based on their properties

– rather than their keys orTModels – as undertaken in

a standard UDDI implementation. Documents stored within

the registry also have a lease associated with them, and an

event manager to support these leases has been implemented

in UDDIe. In this way, the authors are able to search for

documents which match a given range of QoS attributes for

supporting various classes of QoS. More detailed discussion

on the UDDIe enhancement can be found in [18].

VI. QOS ALLOCATION MANAGER

The Allocation Manager’s primary role is to interact with

underlying resource managers for resource allocation and de-

allocation, and to inquire about the status of the resources. It

has interfaces with various resource managers employed in this

framework, namely, the Dynamic Soft Real Time Scheduler

(DSRT) [17] and a Network Resource Manager (NRM). It

associates the execution of Grid services with a previously-

negotiated SLA agreement, which process, of associating Grid

services with SLAs, is beyond the scope of this paper. The

Allocation Manager further interacts with adaptive services to

enforce adaptation strategies, with more details on adaptation

to be found in [15].

Fig. 3. G-QoSM and DSRT Integration.

A. DSRT Resource Manager

The DSRT [17] is a user-level soft real-time scheduler,

based on the changing priority mechanism supported by Unix

and Linux operating systems. The highest fixed priority is

reserved for the DSRT and the real-time process admitted

by the DSRT can then run under the DSRT scheduling

mechanism. The real-time process can thus be scheduled to

utilize a specific CPU percentage. Therefore, the compute QoS

supported by the DSRT can be specified in terms of CPU

percentage; for example, a real-time process might request

the allocation of 40% of the CPU. Figure3 shows the DSRT

resource manager integrated with the new G-QoSM.

B. Network Resource Manager

The Network Resource Manager (NRM) is conceptually a

Differentiated Services (Diffserv) Bandwidth Broker (BB) (a

concept described in [19]), and manages network QoS param-

eters within a given domain, based on agreed SLAs. The NRM

is also responsible for managing inter-domain communication,

with NRMs in neighboring domains, to coordinate SLAs

across domain boundaries. The NRM may communicate with

local monitoring tools to determine the state of the network

and its current configuration. Figure4 depicts a NRM managed

Diffserv domain.

8

Fig. 4. G-QoSM and NRM Integration.

VII. Q OS POLICY SERVICE

Policy Service is a Grid service aiming to provide dynamic

information about the domain-specific resources’ characteris-

tics and the domain’s policy concerning when, what and who is

authorized to use resources. This policy service relies heavily

on the existence of a policy repository, such as, the ‘policy

controller’ in our framework. Resource owners include in the

policy repository domain-specific rules; for example, resource

capacity allowed to be utilized with user authentication, time

of the day and class of service. These rules are utilized by

the policy service manager to provide information on resource

characteristics and domain policies. Having a separate policy

manager as a Grid service allows the following advantages:

• The ability for resource owners to update their policy

repository without interfering with other broker services.

• The resource owner may delegate a remote ‘super’ policy

service to act as the policy controller of their resources.

Similarly, a policy service might control more than a

single administrative domain.

• Decoupling the policy service from other broker services,

allows the ability to dynamically change resource usage

policy and system scalability.

VIII. Q OS RESERVATION MANAGER

Reservation support plays a major role in QoS-oriented

architecture. In a shared resource environment, such as Grids,

QoS brokers can provide promises on delivering certain re-

source quality to their clients, if, and only if, a reservation

mechanism exists. A reservation can be viewed as a promise

from the resource broker to clients on expected quality. Ad-

vance resource reservation is defined as:a possibly limited or

restricted delegation of a particular resource capability over

a defined time interval, obtained by the requester from the

resource owner through a negotiation process[9]. As pointed

out earlier, resource reservation can be categorized into: (a)

Advance reservation and (b) Immediate or ‘on demand’ reser-

vation, and can be for a specified duration, or indefinite. In the

proposed reservation manager, we support advance/immediate

reservation for a specified duration. Indefinite reservation is

undesirable as it introduces blockages, which may result in a

waste of unused resources. An important feature of this reser-

vation approach is support for the co-reservation of various

resources in service Grids.

In this section we further discuss the formal definition of

reservation, admission control and outline reservation features.

A. Reservation Definition

We define a reservation model for collective Grid resources,

with as few restrictions as possible, to increase the flexibility

of the admission control. The fundamental problem with

advance reservation, as discussed in literature [8], is that when

an advance reservation is granted, the time from when the

reservation is submitted until the start time, is called ‘hold-

back time’, and to utilize, or grant, reservations during hold-

back time is a complex problem. The problem arises when

clients request immediate reservation for an indefinite period,

which may, obviously, overrun a previously-granted advance

reservation. A number of solutions are proposed to solve this

9

problem; for example, all reservations, including immediate

reservation, must be specified within a time frame (i.e. indef-

inite reservation is not supported); another solution proposes

to partition resources for immediate reservation, and advance

reservation with specified durations. In this model we opt for

the first proposal; that all reservations must be accompanied

by duration specifications. We consider this a valid assumption

as we deal with high performance resources, and application

domains, like scientific experiments or simulations, means

there is prior knowledge of the need for such resources, and

no ad-hoc requests for simple resources.

We formally define reservationR in terms of the following

(5) parameters:

• ts : reservation start time

• te : reservation end time

• cl : reservation class of service

• ri : each resourcei has a resource type. Such types can

be “compute”, “network”, and “disk”,

• c(r, t) : is a function that returns the capacity of resource

r at time t.

With these notation one can express reservation request

R(ts, te, cl, {(r1, c(r1)), .., (rn, c(rn))}) as a co-reservation

for n resources, with start timets and end timete, using QoS

reservation classcl on ri with the associated capacitiesc(ri).

We also introduce in this definition the concept of pre-emption

priority, which has been explored in the context of networking

and communication service [8]. The pre-emption priority is

that when the reservation is not in effect, either before or after

the reservation period, the job, or service that makes use of

the reserved resource is not turned down or eliminated, but is

rather assigned a low priority value, which means switching

its status from ‘guaranteed’ to a ‘best effort’ type of service. In

practice to support this concept the underlying resource man-

ager should be a priority-based system, such as the Dynamic

Soft Real Time (DSRT) scheduler [17]. This feature is very

useful in protecting applications when reservations expired.

B. Admission Control

Admission control is the process of granting/denying reser-

vation requests based on a number of factors, such as, the

actual load of the specified resource, the policy that governs

who, how and when reservation for resource usage should be

granted. To perform an admission control process an admission

control mechanism must be employed. We formally describe

our admission control mechanism as a ‘Boolean’ function that

returnstrue or false for a reservation requestR at time t.

true means the reservation can be granted for the given time

t with the resource specifications, andfalse means otherwise.

To further define the admission control function algorithm, we

first define the notion of resource loadL at time t:

L(rj , t) =
g(t)∑
i=1

c(rj , t)

whereg(t) is the number of granted reservations for timet

andc(rj , t) is the amount of capacity reserved on the resource

type j at time t.

We also need to define resource total capacity as the max-

imum capacity the underlying resource can provide; formally

max(ri) is the maximum capacity that the resourcei can

provide.

With the above basic primitives, we can now define the

algorithm for the admission control function.

Algorithm 1. Admission Control Function

1 Input: reservation R(ts, te, cl, {(r1, c(r1)), .. , (rn, c(rn))})
2 Output: boolean
3 for i = 1 to n
4 for t = ts to te
5 if c(ri, t) > (max(ri) − L(ri, t)) then
6 return false
7 end if
8 end for
9 end for

10 return true

10

C. Reservation Features

As the reservation manager presented in this work operates

in a Open Grid Service Infrastructure (OGSI), the service has

a number of ‘operations’ can be used by other components.

These operations are implemented as an API with a set of

primitives, briefly described as:

• reserve: is invoked by sending a reservation tupleR,

which will reply with a ‘reject reservation’, if the reserva-

tion cannot be granted. Otherwise it returns a reservation

‘handle’, a reference for the newly-made reservation

request.

• isAvailable: where one might be interested in checking

the status of some resource prior to placing the actual

reservation; this operation supports such a request and

returns a Boolean result accordingly.

• nextAvailable: is an interesting operation as it can be

used for the purpose of ‘counter-proposals’. A brokering

service can use this if the user’s request for reservation

cannot be granted, rather than replying with a Yes/No

type answer as is the case with most reservation systems,

the operation can reply with a ‘No’ answer and a counter-

proposal for the next availability.

• extend: can modify a previously-made reservation by

extending it for a specified duration.

• find: finds a previously-made reservation, and replies with

all details about the reservation.

• cancel:cancels a previously-made reservation.

With this set of reservation operations on the reservation

manager a higher level brokering service, or agent, can make

use of this manager to provide immediate reservations, and

reservations in advance, and also manipulate these reserva-

tions.

Fig. 5. Current Implementation Architecture.

Fig. 6. A UML Sequence Diagram for the QoS Agreement Negotiation.

IX. I MPLEMENTATION SCENARIO

The implementation test-bed is based on the following

technologies: Globus Toolkit 3.0, Linux Red-Hat 9.0, JSDK

1.4.2, Dynamic Soft Real Time (DSRT) schedule, Java CoG

Kit 1.0 [20], OGCE component tools, UDDIe and Tomcat

4.1 application server. Figure5 shows the implementation

architecture.

In this scenario a user application uses the Java CoG Kit

tools to invoke the QoS Grid Service (QGS) to negotiate a

Service Level Agreement (SLA) to execute the desired Grid

service. The SLA is generated as a result of a negotiation

process takes place during the ‘Establishment phase’. Further,

11

Fig. 7. A User interface screenshot, showing the user entered a ‘ser-
vice request’ and the QGS rplied with a service SLA offer.

a number of components are involved in the negotiation,

Figure 6 is a UML interaction sequence diagram shows the

interacting between the various components. Figure7 is a

screen shot of the user application GUI with the required

parameters, in the upper half of the screenshot, to start the

negotiation. The service request contains QoS constraints,

stated by the user application, such as the maximum budget,

the lowest service reputation, networking requirements, and

the associated importance level or priority level for each QoS

attribute. Once the request is submitted to the QGS, the QGS

carries out the discovery process by contacting the UDDIe

servlet for similar services with the QoS specified. The QGS

then implements a selection algorithm to select the best match

based on the user’s quality preference (importance/priority)

stated in the service request. After the selection process, the

QGS contacts the policy service to validate the request. When

the request is validated, a reservation manager is contacted to

co-reserve the required resources, with the reservation manager

contacting the policy service to obtain resource configura-

tions and reservation policies. Having selected a service and

reserved the required resources, the QGS proposes a SLA

offer for the user application and expects an agree/reject reply

within a pre-defined time frame. Figure7, the lower half of

the screenshot, shows the proposed SLA offer. If the user

application accepts the offer then the SLA is stored in the

SLA repository and becomes a commitment, and subsequently

the user application can claim this Grid service with the

reservation parameters, stated in the SLA, by contacting an

execution service with the given SLA-ID, which execution

service is beyond the scope of this paper. Otherwise, if the user

application rejects the offer, or time elapses without reply from

the user, the SLA offer and the associated resource reservation

is canceled. The user application can repeat this process a

number of times, with altering QoS parameters to demonstrate

negotiation process.

X. CONCLUSION AND FUTURE WORK

In this paper, we propose a QoS service model in service-

oriented Grids comprising a brokering service and a number of

supporting modules, including policy service, reservation man-

ager, allocation manager, and QoS-aware UDDIe. Throughout

this paper we describe the individual components of our

framework and outline their patterns of interaction. We also

discuss an OGSA compliant prototype implementation for our

G-QoSM architecture.

The important features of our approach are: the QoS man-

ager is a Grid service and dynamically interacts with a reserva-

tion and policy service modules, which makes it possible for

resource owners to update/modify their policies during run-

time; and the reservation is abstracted as a generic service for

co-reservation support, which makes it very suitable for dis-

tributed computing, such as Grids. This abstraction allows the

reservation service to operate with any underlying resources,

12

without previous knowledge of the resource characteristics,

with the association of resource characteristics taking place

during run-time by querying the policy service. This novel

feature demonstrates scalability - highly desirable in Grid

infrastructure.

As a future topic, we plan to investigate in new approaches

for ‘Grid Execution service’ that is binding to Grid services

based on previously negotiated QoS agreements SLAs. Inves-

tigate further in applying QoS techniques, during QoS active

session, to enforce the agreed upon SLAs elements. These

QoS techniques comprising QoS monitoring, re-negotiation

and adaptation. It is also planned to integrate this framework

with a particular scientific application domain, namely, using

Grid computing for analysis of nanoscale structures, utilizing

the newly developed experiment technique called position-

resolved diffraction, as part of Argonne National Laboratory’s

advanced analytical electron microscope [21].

ACKNOWLEDGMENT

This work was supported by the Mathematical, Informa-

tion, and Computational Science Division subprogram of the

Office of Advanced Scientific Computing Research, Office of

Science, U.S. Department of Energy, under Contract W-31-

109-Eng-38. DARPA, DOE, and NSF support Globus Project

research and development. The Java CoG Kit Project is

supported by DOE SciDAC and NSF Alliance.

REFERENCES

[1] G. von Laszewski, G. Pieper, and P. Wagstrom, “Gestalt of the

Grid,” in Performance Evaluation and Characterization of Parallel and

Distributed Computing Tools, ser. Series on Parallel and Distributed

Computing. Wiley, 2003, (to be published). [Online]. Available:

http://www.mcs.anl.gov/∼gregor/papers/vonLaszewski--gestalt.pdf

[2] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:

Enabling Scalable Virtual Organizations,”International Journal of

Supercomputing Applications, vol. 15, no. 3, 2002. [Online]. Available:

http://www.globus.org/research/papers/anatomy.pdf

[3] “TeraGrid,” Web Page, 2001. [Online]. Available:http://www.teragrid.

org/

[4] “The Global Grid Forum Web Page,” Web Page. [Online]. Available:

http://www.gridforum.org

[5] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy,

“A distributed resource management architecture that supports advance

reservation and co-allocation,” inProceedings of the International Work-

shop on Quality of Service, vol. 13, no. 5, 1999, pp. 27–36.

[6] A. Hafid, G. Bochmann, and R. Dssouli, “A quality of service ne-

gotiation approach with future reservation (nafur): A detailed study,”

Computer Networks and ISDN, vol. 30, no. 8, 1998.

[7] K. Kim and K. Nahrstedt, “A resource broker model with integrated

reservation scheme,” inIEEE International Conference on Multimedia

and Expo (ICME2000), 2000.

[8] M. Karsten, N. Berier, L. Wolf, and R. Steinmetz, “A policy-based ser-

vice specification for resource reservation in advance,” inInternational

Conference on Computer Communications (ICCC’99), 1999.

[9] J. MacLaren, “Advance reservations: State of the Art,”

GGF GRAAP-WG, See Web Site at: http://www.fz-

juelich.de/zam/RD/coop/ggf/graap/graap-wg.html, Last visited: August

2003.

[10] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke,

“SNAP: A Protocol for Negotiating Service Level Agreements and

Coordinating Resource Management in Distributed Systems,” inPro-

ceedings of the 8th Workshop on Job Scheduling Strategies for Parallel

Processing, 2002.

[11] A. Hafid and G.Bochmann, “Quality of service adaptation in distributed

multimedia applications,”ACM Springer-Verlag Multimedia Systems

Journal, vol. 6, no. 5, pp. 299–315, 1998.

[12] A. Oguzet al., “The mobiware toolkit: Programmable support for adap-

tive mobile networking,” IEEE Pesronal Communications Magazine,

Special Issue on Adapting to Network and Client Variability, vol. 5,

no. 4, 1998.

[13] G. Bochmann and A. Hafid, “Some principles for quality of service

management,” Universite de Montreal, Tech. Rep., 1996.

[14] R. Al-Ali, O. Rana, D. Walker, S. Jha, and S. Sohail, “G-QoSM: Grid

Service Discovery using QoS Properties,”Computing and Informatics

Journal, Special Issue on Grid Computing, vol. 21, no. 4, pp. 363–382,

2002.

[15] R. Al-Ali, A. Hafid, O. Rana, and D. Walker, “Qos adaptation in service-

oriented grids,” inProceedings of the 1st International Workshop on

Middleware for Grid Computing (MGC2003) at ACM/IFIP/USENIX

Middleware 2003, Rio de Janeiro, Brazil, 2003.

[16] I. Foster, C. Kesselman,et al., “The physiology of the grid:an open

grid services architecture for distributed systems integration,” Argonne

National Laboratory, Chicago, Tech. Rep., January 2002.

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gestalt.pdf
http://www.globus.org/research/papers/anatomy.pdf
http://www.teragrid.org/
http://www.teragrid.org/
http://www.gridforum.org

13

[17] H. Chu and K. Nahrstedt, “A cpu service classes for multimedia

applications,” inIEEE Multimedia Systems ’99, 1999.

[18] A. ShaikhAli, O. Rana, R. Al-Ali, and D. Walker, “UDDIe: An extended

registry for web services,” inProceedings of Workshop on Service

Oriented Computing: Models, Architectures and Applications at SAINT

2003, IEEE CS Press, Orlando FL, USA, 2003, pp. 85–90.

[19] B. Teitelbaum, S. Hares, L. Dunn, R. Neilson, R. Narayan, and F. Reich-

meyer, “Internet2 qbone: Building a testbed for differentiated services,”

IEEE Networks, 1999.

[20] G. von Laszewski, I. Foster, J. Gawor, and P. Lane, “A Java Commodity

Grid Kit,” Concurrency and Computation: Practice and Experience,

vol. 13, no. 8-9, pp. 643–662, 2001. [Online]. Available:http:

//www.mcs.anl.gov/∼gregor/papers/vonLaszewski--cog-cpe-final.pdf

[21] N. Zaluzec, “Anl tpm/aaem collaboratory,” See Web Site at:

http://tpm.amc.anl.gov/.

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-cpe-final.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-cpe-final.pdf

	Introduction
	Related Work
	The Proposed QoS Framework
	Requirements
	Grid Quality of Service Management

	QoS Grid Service
	QoS Service Registry
	QoS Allocation Manager
	DSRT Resource Manager
	Network Resource Manager

	QoS Policy Service
	QoS Reservation Manager
	Reservation Definition
	Admission Control
	Reservation Features

	Implementation Scenario
	Conclusion and Future Work
	References

