
1

Analysis of Virtualization Technologies for High
Performance Computing Environments

Andrew J. Younge, Robert Henschel, James T. Brown, Gregor von Laszewski, Judy Qiu, Geoffrey C. Fox
Pervasive Technology Institute, Indiana University
2729 E 10th St., Bloomington, IN 47408, U.S.A.

{ajyounge,henschel,jatbrown,gvonlasz,xqiu,gcf}@indiana.edu

Abstract—As Cloud computing emerges as a dominant
paradigm in distributed systems, it is important to fully under-
stand the underlying technologies that make Clouds possible. One
technology, and perhaps the most important, is virtualization.
Recently virtualization, through the use of hypervisors, has
become widely used and well understood by many. However,
there are a large spread of different hypervisors, each with their
own advantages and disadvantages. This manuscript provides
an in-depth analysis of some of today’s commonly accepted
virtualization technologies from feature comparison to perfor-
mance analysis, focusing on the applicability to High Performance
Computing environments using FutureGrid resources. The results
indicate virtualization sometimes introduces slight performance
impacts depending on the hypervisor type, however the benefits
of such technologies are profound and not all virtualization
technologies are equal.

I. INTRODUCTION

Cloud computing [1] is one of the most explosively expand-
ing technologies in the computing industry today. A Cloud
computing implementation typically enables users to migrate
their data and computation to a remote location with some
varying impact on system performance [2]. This provides a
number of benefits which could not otherwise be achieved.

Such benefits include:
• Scalability - Clouds are designed to deliver as much

computing power as any user needs. While in practice
the underlying infrastructure is not infinite, the cloud re-
sources are projected to ease the developer’s dependence
on any specific hardware.

• Quality of Service (QoS) - Unlike standard data cen-
ters and advanced computing resources, a well-designed
Cloud can project a much higher QoS than traditionally
possible. This is due to the lack of dependence on
specific hardware, so any physical machine failures can
be mitigated without the prerequisite user awareness.

• Customization - Within a Cloud, the user can utilize
customized tools and services to meet their needs. This
can be to utilize the latest library, toolkit, or to support
legacy code within new infrastructure.

• Cost Effectiveness - Users finds only the hardware re-
quired for each project. This reduces the risk for in-
stitutions potentially want build a scalable system, thus
providing greater flexibility, since the user is only paying
for needed infrastructure while maintaining the option to
increase services as needed in the future.

• Simplified Access Interfaces - Whether using a specific
application, a set of tools or Web services, Clouds pro-
vide access to a potentially vast amount of computing
resources in an easy and user-centric way.

While Cloud computing has been driven from the start
predominantly by the industry through Amazon [3], Google
[4] and Microsoft [5], a shift is also occurring within the
academic setting as well. Due to the many benefits, Cloud
computing is becoming immersed in the area of High Perfor-
mance Computing (HPC), specifically with the deployment of
scientific clouds [6] and virtualized clusters [7].

There are a number of underlying technologies, services,
and infrastructure-level configurations that make Cloud com-
puting possible. One of the most important technologies is vir-
tualization. Virtualization, in its simplest form, is a mechanism
to abstract the hardware and system resources from a given
Operating System. This is typically performed within a Cloud
environment across a large set of servers using a Hypervisor
or Virtual Machine Monitor (VMM), which lies in between
the hardware and the OS. From the hypervisor, one or more
virtualized OSs can be started concurrently as seen in Figure
1, leading to one of the key advantages of Cloud computing.
This, along with the advent of multi-core processors, allows
for a consolidation of resources within any data center. From
the hypervisor level, Cloud computing middleware is deployed
atop the virtualization technologies to exploit this capability
to its maximum potential while still maintaining a given QoS
and utility to users.

The rest of this manuscript is as follows: First, we look
at what virtualization is, and what current technologies cur-
rently exist within the mainstream market. Next we discuss
previous work related to virtualization and take an in-depth
look at the features provided by each hypervisor. We follow
this by outlining an experimental setup to evaluate a set of
today’s hypervisors on a novel Cloud test-bed architecture.
Then, we look at performance benchmarks which help explain
the utility of each hypervisor and the feasibility within an
HPC environment. We conclude with our final thoughts and
recommendations for using virtualization in Clouds for HPC.

II. RELATED RESEARCH

While the use of virtualization technologies has increased
dramatically in the past few years, virtualization is not specific
to the recent advent of Cloud computing. IBM originally

2

Physical Machine

Hardware

Virtual Machine Monitor (hypervisor)

Virtual Machine 0 Virtual Machine N

Simulated Hardware

Operating System

App1 App2 App3

Simulated Hardware

Operating System

App1 App2

Fig. 1. Virtual Machine Abstraction

pioneered the concept of virtualization in the 1960’s with the
M44/44X systems [8]. It has only recently been reintroduced
for general use on x86 platforms. Today there are a number of
public Clouds that offer IaaS through the use of virtualization
technologies. The Amazon Elastic Compute Cloud (EC2) [9] is
probably the most popular Cloud and is used extensively in the
IT industry to this day. Nimbus [10], [11] and Eucalyptus [12]
are popular private IaaS platforms in both the scientific and
industrial communities. Nimbus, originating from the concept
of deploying virtual workspaces on top of existing Grid infras-
tructure using Globus, has pioneered scientific Clouds since its
inception. Eucalyptus has historically focused on providing an
exact EC2 environment as a private cloud to enable users to
build an EC2-like cloud using their own internal resources.
Other scientific Cloud specific projects exist such as OpenNeb-
ula [13], In-VIGO [14], and Cluster-on-Demand [15], all of
which leverage one or more hypervisors to provide computing
infrastructure on demand. In recent history, OpenStack [16]
has also come to light from a joint collaboration between
NASA and Rackspace which also provide compute and storage
resources in the form of a Cloud.

While there are currently a number of virtualization tech-
nologies available today, the virtualization technique of choice
for most open platforms over the past 5 years has typi-
cally been the Xen hypervisor [17]. However more recently
VMWare ESX [18] 1, Oracle VirtualBox [19] and the Kernel-
based Virtual Machine (KVM) [20] are becoming more com-
monplace. As these look to be the most popular and feature-
rich of al virtualization technologies, we look to evaluate
all four to the fullest extent possible. There are however,

1Due to the restrictions in VMWare’s licensing agreement, benchmark
results are unavailable.

numerious other virtualizaton technologies also available, in-
cluding Microsoft’s Hyper-V [21], Parallels Virtuozzo [22],
QEMU [23], OpenVZ [24], Oracle VM [25], and many others.
However, these virtualization technologies have yet to seen
widespread deployment within the HPC community, at least
in their current form, so they have been placed outside the
scope of this work.

In recent history there have actually been a number of com-
parisons related to virtualization technologies and Clouds. The
first performance analysis of various hypervisors started with,
unsurprisingly, the hypervisor vendors themselves. VMWare
has happy to put out its on take on performance in [26],
as well as the original Xen article [17] which compares
Xen, XenoLinux, and VMWare across a number of SPEC
and normalized benchmarks, resulting in a conflict between
both works. From here, a number of more unbiased reports
originated, concentrating on server consolidation and web
application performance [18], [27], [28] with fruitful yet
sometimes incompatible results. A feature base survey on
virtualization technologies [29] also illustrates the wide variety
of hypervisors that currently exist. Furthermore, there has
been some investigation into the performance within HPC,
specifically with InfiniBand performance of Xen [30] and
rather recently with a detailed look at the feasibility of the
Amazon Elastic Compute cloud for HPC applications [31],
however both works concentrate only on a single deployment
rather than a true comparison of technologies.

As these underlying hypervisor and virtualization imple-
mentations have evolved rapidly in recent years along with
virtualization support directly on standard x86 hardware, it is
necessary to carefully and accurately evaluate the performance
implications of each system. Hence, we conducted an inves-
tigation of several virtualization technologies, namely Xen,
KVM, VirtualBox, and in part VMWare. Each hypervisor is
compared alongside one another with base-metal as a control
and (with the exeption of VMWare) run through a number of
High Performance benchmarking tools.

III. FEATURE COMPARISON

With the wide array of potential choices of virtualization
technologies available, its often difficult for potential users to
identify which platform is best suited for their needs. In order
to simplify this task, we provide a detailed comparison chart
between Xen 3.1, KVM from RHEL5, VirtualBox 3.2 and
VMWWare ESX in Figure 2.

The first point of investigation is the virtualization method
of each VM. Each hypervisor supports full virtualization,
which is now common practice within most x86 virtualization
deployments today. Xen, originating as a para-virtualized
VMM, still supports both types, however full virtualization
is often preferred as it does not require the manipulation of
the guest kernel in any way. From the Host and Guest CPU
lists, we see that x86 and, more specifically, x86-64/amd64
guests are all universally supported. Xen and KVM both suport
Itanium-64 architectures for full virtualization (due to both
hypervisors dependency on QEMU), and KVM also claims
support for some recent PowerPC architectures. However, we

3

!"# $%& %'()*+,-./ %&0+("
1+(+23'()*+,'4+)'.# !"# $% $% $%
5*,,63'()*+,'4+)'.# !"# !"# !"# !"#
7.8)691: x86, x86-64, IA-64 x86, x86-64,IA64,PPC x86, x86-64 x86, x86-64
;*"8)691: x86, x86-64, IA-64 x86, x86-64,IA64,PPC x86, x86-64 x86, x86-64
7.8)6<= &'()*+,-$./ &'()* Windows, Linux, UNIX 01%21'"3415,-$./
;*"8)6<= Linux, Windows, UNIX Linux, Windows, UNIX Linux, Windows, UNIX Linux, Windows, UNIX
%>2/6?6@&A23 623 7"8 623 623
9.("868*BB.()"C 9:; 9< =: ;
&"D.(E68*BB.()"C >?@ >?@ 16GB <>A@
3D Acceleration /"(BA& CDA& Open-GL 62"(BA&+,E'1"F3/
F'3"6&'G(+)'.# !"# !"# !"# !"#
F'H"#8"6 A0& A0& A0&G21%21'"3415 Proprietary

Fig. 2. A comparison chart between Xen, KVM, VirtualBox, and VMWare ESX

concern ourselves only with x86-64 features and performance,
as other architectures are out of the scope of this manuscript.
Of the x86-64 platforms, KVM is the only hypervisor to
require either Intel VT-X or AMD-V instruction sets in order
to operate. VirtualBox and VMWare have internal mechanisms
to provide full virtualization even without the virtualization
instruction sets, and Xen can default back to para-virtualized
guests.

Next, we consider the host environments for each system.
As Linux is the primary OS type of choice within HPC
deployments, its key that all hypervisors support Linux as
a guest OS, and also as a host OS. As VMWare ESX is
meant to be a virtualization-only platform, it is built upon
a specially configured Linux/UNIX proprietary OS specific to
its needs. All other hypervisors support Linux as a host OS,
with VirtualBox also supporting Windows, as it was tradi-
tionally targeted for desktop-based virtualization. However, as
each hypervisor uses VT-X or AMD-V instructions, each can
support any modern OS targeted for x86 platforms, including
all variants of Linux, Windows, and UNIX.

While most hypervisors have desirable host and guest OS
support, hardware support within a guest environment varies
drastically. Within the HPC environment, virtual CPU (vCPU)
and maximum VM memory are critical aspects to choosing
the right virtualization technology. In this case, Xen is the
first choice as it supports up to 128 vCPUs and can address
4TB of main memory in 64-bit modes, more than any other.
VirtualBox, on the other hand, supports only 32 vCPUs and
16GB of addressable RAM per guest OS, which may lead
to problems when looking to deploy it on large multicore
systems. KVM also faces an issue with the number of vCPU
supported limited to 16, recent reports indicate it is only a
soft limit [32], so deploying KVM in an SMP environment
may not be a significant hurdle. Furthermore, all hypervisors
provide some 3D acceleration support (at least for OpenGL)
and support live migration across homogeneous nodes, each
with varying levels of success.

Another vital juxtaposition of these virtualization technolo-
gies is the license agreements for its applicability within HPC

deployments. Xen, KVM, and VirtualBox are provided for free
under the GNU Public License (GPL) version 2, so they are
open to use and modification by anyone within the community,
a key feature for many potential users. While VirtualBox
is under GPL, it has recently also offered with additional
features under a more proprietary license dictated by Oracle
since its acquirement from Sun last year. VMWare, on the
other hand, is completely proprietary with an extremely limited
licensing scheme that even prevents the authors from willfully
publishing any performance benchmark data without specific
and prior approval. As such, we have neglected VMWare
form the remainder of this manuscript. Whether going with a
proprietary or open source hypervisor, support can be acquired
(usually for an additional cost) with ease from each option.

A. Usability

While side by side feature comparison may provide crucial
information about a potential user’s choice of hypervisor, that
may also be interested in its ease of installation and use. We
will take a look at each hypervisor from two user perspectives,
a systems administrator and normal VM user.

One of the first things on any system administrator’s mind
on choosing a hypervisor is the installation. For all of these
hypervisors, installation is relatively painless. For the Future-
Grid support group, KVM and VirualBox are the easiest of
the all tested hypervisors to install, as there are a number
of supported packages available and installation only requires
the addition of one or more kernel modules and the support
software. Xen, while still supported in binary form by many
Linux distributions, is actually much more complicated. This
is because Xen requires a full modification to the kernel itself,
not just a module. Loading a new kernel into the boot process
which may complicate patching and updating later in the
system’s maintenance cycle. VMWare ESX, on the other hand,
is entirely separate from most other installations. As previously
noted, ESX is actually a hypervisor and custom UNIX host
OS combined, so installation of ESX is likewise to installing
any other OS from scratch. This may be either desirable or
adverse, depending on the system administrator’s usage of the

4

systems and VMWare’s ability to provide a secure and patched
environment.

While system administrators may be concerned with instal-
lation and maintenance, VM users and Cloud developers are
more concerned with daily usage. The first thing to note about
all of such virtualiation technologies is they are supported (to
some extent) by the libvirt API [33]. Libvirt is commonly
used by many of today’s IaaS Cloud offerings, including
Nimbus, Eucalyptus, OpenNebula and OpenStack. As such,
the choice of hypervisor for Cloud developer’s is less of an
issue, so long as the hypervisor supports the features they
desire. For individual command line usage of each tool, it
varies quite a bit more. Xen does provide their own set of
tools for controlling and monitoring guests, and seem to work
relatively well but do incur a slight learning curve. KVM also
provides its own CLI interface, and while it is often considered
less cumbersome it provides less advanced features directly to
users, such as power management or quick memory adjustment
(however this is subject to personal opinion). One advantage
of KVM is each guest actually runs as a separate process
within the host OS, making it easy for a user to manage
and control the VM inside the host if KVM misbehaves.
VirtualBox, on the other hand, provides the best command
line and graphical user interface. The CLI, is especially well
featured when compared to Xen and KVM as it provides clear,
decisive and well documented commands, something most
HPC users and system administrators alike will appreciate.
VMWare provides a significantly enhanced GUI as well as
a Web-based ActiveX client interface that allows users to
easily operate the VMWare host remotely. In summary, there
is a wide variance of interfaces provided by each hypervisor,
however we recommend Cloud developers to utilize the libvirt
API whenever possible.

IV. EXPERIMENTAL DESIGN

In order to provide an unaltered and unbiased review of
these virtualization technologies for Clouds, we need to outline
a neutral testing environment. To make this possible, we have
chosen to use FutureGrid as our virtualization and cloud test-
bed.

A. The FutureGrid Project

FutureGrid (FG) [34] provides computing capabilities that
enable researchers to tackle complex research challenges re-
lated to the use and security of Grids and Clouds. These
include topics ranging from authentication, authorization,
scheduling, virtualization, middleware design, interface design
and cybersecurity, to the optimization of Grid-enabled and
cloud-enabled computational schemes for researchers in as-
tronomy, chemistry, biology, engineering, atmospheric science
and epidemiology.

The test-bed includes a geographically distributed set of
heterogeneous computing systems, a data management sys-
tem that will hold both metadata and a growing library
of software images necessary for Cloud computing, and a
dedicated network allowing isolated, secure experiments, as

seen in Figure 3. The test-bed supports virtual machine-
based environments, as well as operating systems on native
hardware for experiments aimed at minimizing overhead and
maximizing performance. The project partners are integrating
existing open-source software packages to create an easy-to-
use software environment that supports the instantiation, exe-
cution and recording of grid and cloud computing experiments.

NID10GB/s

10GB/s
10GB/s

10GB/s

10GB/s
1GB/s

Router

11 6

5

12

47

2

7

Germany

France

IU: 11 TF IBM 1024 cores
 6 TF Cray 672 cores
 5 TF SGI 512 cores
TACC: 12 TF Dell 1152 cores
UCSD: 7 TF IBM 672 cores
UC: 7 TF IBM 672 cores
PU: 4 TF Dell 384 cores
UF: 3 TF IBM 256 cores

Interet 2

TeraGrid

Fig. 3. FutureGrid Participants and Resources

One of the goals of the project is to understand the behavior
and utility of Cloud computing approaches. However, it is
not clear at this time which of these toolkits will become
the users’ choice toolkit. FG provides the ability to compare
these frameworks with each other while considering real
scientific applications [35]. Hence, researchers are be able to
measure the overhead of cloud technology by requesting linked
experiments on both virtual and bare-metal systems, providing
valuable information that help decide which infrastructure suits
their needs and also helps users that want to transition from
one environment to the other. These interests and research ob-
jectives make the FutureGrid project the perfect match for this
work. Furthermore, we expect that the results gleaned from
this manuscript will have a direct impact on the FutureGrid
deployment itself.

B. Experimental Environment

Currently, one of FutureGrid’s latest resources is the India
system, a 256 CPU IBM iDataPlex machine consisting of 1024
cores, 2048 GB of ram, and 335 TB of storage within the
Indiana University Data Center. In specific, each compute node
of India has two Intel Xeon 5570 quad core CPUs running at
2.93Ghz, 24GBs of Ram, and a QDR InfiniBand connection.
A total of four nodes were allocated directly from India for
these experiments. All were loaded with a fresh installation of
Red Hat Enterprise Linux server 5.5 x86 64 with the 2.6.18-
194.8.1.el5 kernel patched. Three of the four nodes were
installed with different hypervisors; Xen version 3.1, KVM
(build 83), and VirtualBox 3.2.10, and the forth node was left
as-is to act as a control for bare-metal native performance.

Each guest virtual machine was also built using Red Hat
EL server 5.5 running an unmodified kernel using full virtual-
ization techniques. All tests were conducted giving the guest
VM 8 cores and 16GB of ram to properly span a compute
node. Each benchmark was run a total of 20 times, with the

5

results averaged to produce consistent results, unless indicated
otherwise.

C. Benchmarking Setup

As this manuscript aims to objectively evaluate each virtual-
ization technology from a side-by-side comparison as well as
from a performance standpoint, the selection of benchmarking
applications is critical.

The performance comparison of each virtual machine is
based on two well known industry standard performance
benchmark suites; HPCC and SPEC. These two benchmark
environments are recognized for their standardized repro-
ducible results in the HPC communit, and the National Science
Foundation (NSF), Department of Energy (DOE), and DARPA
are all sponsors of the HPCC benchmarks. The following
benchmarks provide a means to stress and compare processor,
memory, inter-process communication, network, and overall
performance and throughput of a system. These benchmarks
were selected due to their importance to the HPC community
sinse they are often directly correlated with overall application
performance [36].

1) HPCC Benchmarks: The HPCC Benchmarks [37], [38]
are an industry standard for performing benchmarks for HPC
systems. The benchmarks are aimed at testing the system
on multiple levels to test their performance. It consists of 7
different tests:

• HPL - The Linpack TPP benchmark measures the floating
point rate of execution for solving a linear system of
equations. This benchmark is perhaps the most important
benchmark within HPC today, as it is the basis of
evaluation for the Top 500 list [39].

• DGEMM - Measures the floating point rate of execution
of double precision real matrix-matrix multiplication.

• STREAM - A simple synthetic benchmark program that
measures sustainable memory bandwidth (in GB/s) and
the corresponding computation rate for simple vector
kernel.

• PTRANS - Parallel matrix transpose exercises the com-
munications where pairs of processors communicate with
each other simultaneously. It is a useful test of the total
communications capacity of the network.

• RandomAccess - Measures the rate of integer random
updates of memory (GUPS).

• FFT - Measures the floating point rate of execution
of double precision complex one-dimensional Discrete
Fourier Transform (DFT).

• Communication bandwidth and latency - A set of tests to
measure latency and bandwidth of a number of simulta-
neous communication patterns; based on b eff (effective
bandwidth benchmark).

This benchmark suite uses each test to stress test the
performance on multiple aspects of the system. It also provides
reproducible results which can be verified by other vendors.
This benchmark is used to create the Top 500 list [39] which
is the list of the current top supercomputers in the world. The
results that are obtained from these benchmarks provide an
unbiased performance analysis of the hypervisors. Our results

provide insight on inter-node PingPong bandwidth, PingPong
latency, and FFT calculation performance.

2) SPEC Benchmarks: The Standard Performance Evalua-
tion Corporation (SPEC) [40], [41] is the other major standard
for evaluation of benchmarking systems. SPEC has several
different testing components that can be utilized to benchmark
a system. For our benchmarking comparison we will use the
SPEC OMP2001 because it appears to represent a vast array
of new and emerging parallel applications wile simultaniously
providing a comparison to other SPEC benchmarks. SPEC
OMP continues the SPEC tradition of giving HPC users
the most objective and representative benchmark suite for
measuring the performance of SMP (shared memory multi-
processor) systems.

• The benchmarks are adapted from SPEC CPU2000 and
contributions to its search program.

• The focus is to deliver systems performance to real
scientific and engineering applications.

• The size and runtime reflect the needs of engineers and
researchers to model large complex tasks.

• Two levels of workload characterize the performance of
medium and large sized systems.

• Tools based on the SPEC CPU2000 toolset make these
the easiest ever HPC tests to run.

• These benchmarks place heavy demands on systems and
memory.

V. PERFORMANCE COMPARISON

The goal of this manuscript is to effectively compare and
contrast the various virtualization technologies, specifically for
supporting HPC-based Clouds. The first set of results represent
the performance of HPCC benchmarks. Each benchmark was
run a total of 20 times, and the mean values taken with
error bars represented using the standard deviation over the 20
runs. The benchmarking suite was built using the Intel 11.1
compiler, uses the Intel MPI and MKL runtime libraries, all
set with defaults and no optimizations whatsoever.

We open first with High Performance Linpack (HPL), the
de-facto standard for comparing resources. In Figure 4, we can
see the comparison of Xen, KVM, and Virtual Box compared
to native bare-metal performance. First, we see that native is
capable of around 73.5 Gflops which, with no optimizations,
achieves 75% of the theoretical peak performance. Xen, KVM
and VirtualBox perform at 49.1, 51.8 and 51.3 Gflops, respec-
tively when averaged over 20 runs. However Xen, unlike KVM
and VirtualBox, has a high degree of variance between runs.
This is an interesting phenomenon for two reasons. First, this
may impact performance metrics for other HPC applications
and cause errors and delays between even pleasingly-parallel
applications and add to reducer function delays. Second, this
wide variance breaks a key component of Cloud computing
providing a specific and predefined quality of service. If
performance can sway as widely as what occurred for Linpack,
then this may have a negative impact on users.

Next, we turn to another key benchmark within the HPC
community, Fast Fourier Transforms (FFT). Unlike the syn-
thetic Linpack benchmark, FFT is a specific, purposeful

6

Fig. 4. Linpack performance

benchmark which provides results which are often regarded
as more relative to a user’s real-world application than HPL.
From Figure 5, we can see rather distinct results from what
was previously provided by HPL. Looking at Star and Single
FFT, its clear performance across all hypervisors is roughly
equal to bare-metal performance, a good indication that HPC
applications may be well suited for use on VMs. The results
for MPI FFT also show similar results, with the exception of
Xen, which has a decreased performance and high variance
as seen in the HPL benchmark. Our current hypothesis is that
there is an adverse affect of using Intel’s MPI runtime on Xen,
however the investigation is still ongoing.

Fig. 5. Fast Fourier Transform performance

Another useful benchmark illustrative of real-world per-
formance between bare-metal performance and various hy-
pervisors are the ping-pong benchmarks. These benchmarks
measure the bandwidth and latency of passing packets between
multiple CPUs. With this experiment, all ping-pong latencies
are kept within a given node, rather than over the network. This
is done to provide further insight into the CPU and memory
overhead withing each hypervisor. From Figure 6 the intranode
bandwidth performance is uncovered, with some interesting
distinctions between each hypervisor. First, Xen performs,
on average, close to native speeds, which is promising for

the hypervisor. KVM, on the other hand, shows consistent
overhead proportional to native performance across minimum,
average, and maximum bandwidth. VirtualBox, on the other
hand, performs well, in fact too well to the point that raises
alarm. While the minimum and average bandwidths are within
native performance, the maximum bandwidth reported by
VirtualBox is significantly greater than native measurements,
with a large variance. After careful examination, it appears this
is due to how VirtualBox assigns its virtual CPUs. Instead of
locking a virtual CPU to a real CPU, a switch may occur
which could benefit on the off-chance the two CPU’s in
communication between a ping-pong test could in fact be the
same physical CPU. The result would mean the ping-pong
packet would remain in cache and result in a higher perceived
bandwidth than normal. While this effect may be beneficial
for this benchmark, it may only be an illusion towards the
real performance gleaned from the VirtualBox hypervisor.

Fig. 6. Ping Pong bandwidth performance

The Bandwidth may in fact be important within the ping-
ping benchmark, but the latency between each ping-pong
is equally useful in understanding the performance impact
of each virtualization technology. From Figure 7, we see
KVM and VirtualBox have near-native performance; another
promising result towards the utility of hypervisors within HPC
systems. Xen, on the other hand, has extremely high latencies,
especially at for maximum latencies, which in turn create
a high variance within the average latency within the VM’s
performance.

Fig. 7. Ping Pong latency performance (lower is better)

7

While the HPCC benchmarks provide a comprehensive
view for many HPC applications including Linpack and FFT
using MPI, performance of intra-node SMP applications us-
ing OpenMP is also investigated. Figure 8 illustrates SPEC
OpenMP performance across the VMs we concentrate on,
as well as baseline native performance. First, we see that
the combined performance over all 11 applications executed
20 times yields the native testbed with the best performance
at a SPEC score of 34465. KVM performance comes close
with a score of 34384, which is so similar to the native
performance that most users will never notice the difference.
Xen and VirtualBox both perform notably slower with scores
of 31824 and 31695, respectively, however this is only an 8%
performance drop compared to native speeds. Further results
can be found on the SPEC website [42].

Fig. 8. Spec OpenMP performance

VI. DISCUSSION

The primary goal of this manuscript is to evaluate the
viability of virtualization within HPC. After our analysis, the
answer seems to be a resounding ”yes.” However, we also
hope to select the best virtualization technology for such an
HPC environment. In order to do this, we combine the feature
comparison along with the performance results, and evaluate
the potential impact within the FutureGrid testbed.

From a feature standpoint, most of today’s virtualization
technologies fit the bill for at least small scale deployment,
including VMWare. In short, each support Linux x86 64
platforms, use VT-X technology for full virtualization, and
support live migration. Due to VMWare’s limited and costly
licensing, it is immediately out of contention for most HPC
deployments. From a CPU and memory standpoint, Xen seems
to provide the best expandability, supporting up to 128 cpus
and 4TB of addressable RAM. So long as KVM’s vCPU
limit can be extended, it too shows promise as a feature-
full virtualization technology. One of Virtualbox’s greatest
limitations was the 16GB maximum memory allotment for
individual guest VMs, which actually limited us from giving
VMs more memory for our performance benchmarks. If this
can be fixed and Oracle does not move the product into the
proprietary market, VirtualBox may also stand a chance for
deployment in HPC environments.

!"# $%&' %()*+,-./0
1(#2,34 5 6 7
889 5 6 7
.,#:;(:*< 7 5 6
1,*"#3= 5 7 6
>2"#&? 7 6 5
9/*,-'@,*(#A 65 B C

Fig. 9. Benchmark rating summary (lower is better)

From the benchmark results previously described, the use
of hypervisors within HPC-based Cloud deployments is mixed
batch. Figure 9 summarizes the results based on a 1-3 rating,
1 being best and 3 being worst. While Linpack performance
seems to take a significant performance impact across all
hypervisors, the more practical FFT benchmarks seem to show
little impact, a notably good sign for virtualization as a whole.
The ping-pong bandwidth and latency benchmarks also seem
to support this theory, with the exception of Xen, who’s
performance continually has wide fluctuations throughout the
majority of the benchmarks. OpenMP performance through the
SPEC OMP benchmarking suite also shows promising results
for the use of hypervisors in general, with KVM taking a clear
lead by almost matching native speeds.

While Xen is typically regarded as the most widely used
hypervisor, especially within academic clouds and grids, it’s
performance has shown lack considerably when compared
to either KVM or VirtualBox. In particular, Xen’s wide and
unexplained fluctuations in performance throughout the series
of benchmarks suggests that Xen may not be the best choice
for building a lasting quality of service infrastructure upon.
From Figure 9, KVM rates the best across all performance
benchmarks, making it the optimal choice for general de-
ployment in an HPC environment. Furthermore, this work’s
illustration of the variance in performance among each bench-
mark and the applicability of each benchmark towards new
applications may make possible the ability to preemptively
classify applications for accurate prediction towards the ideal
virtualized Cloud environment. We hope to further investigate
this concept through the use of the FutureGrid experiment
management framework at a later date.

In conclusion, it is the authors’ projection that KVM is the
best overall choice for use within HPC Cloud environments.
KVM’s feature-rich experience and near-native performance
makes it a natural fit for deployment in an environment
where usability and performance are paramount. Within the
FutureGrid project specifically, we hope to deploy the KVM
hypervisor across our Cloud platforms in the near future,
as it offers clear benefits over the current Xen deployment.
Furthermore, we expect these findings to be of great im-
portance to other public and private Cloud deployments, as
system utilization, Quality of Service, operating cost, and
computational efficiency could all be improved through the
careful evaluation of underlying virtualization technologies.

8

ACKNOWLEDGMENT

This document was developed with support from the Na-
tional Science Foundation (NSF) under Grant No. 0910812 to
Indiana University for ”FutureGrid: An Experimental, High-
Performance Grid Test-bed.” Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the NSF. We would also like to personally thank Greg Pike,
Archit Kulshrestha, Fugang Wang, Javier Diaz, and the rest of
the FutureGrid team for their continued help and support.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[2] L. Wang, G. von Laszewski, A. J. Younge, X. He, M. Kunze, and
J. Tao, “Cloud Computing: a Perspective Study,” New Generation
Computing, vol. 28, pp. 63–69, Mar 2010. [Online]. Available: http:
//cyberaide.googlecode.com/svn/trunk/papers/08-lizhe-ngc/08-ngc.pdf

[3] “Amazon Elastic Compute Cloud.” [Online]. Available: http://aws.
amazon.com/ec2/

[4] E. Ciurana, Developing with Google App Engine. Springer, 2009.
[5] D. Chappell, “Introducing windows azure,” Microsoft, Inc, Tech. Rep.,

2009.
[6] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa,

“Science clouds: Early experiences in cloud computing for scientific
applications,” Cloud Computing and Applications, vol. 2008, 2008.

[7] I. Foster, T. Freeman, K. Keahy, D. Scheftner, B. Sotomayer, and
X. Zhang, “Virtual clusters for grid communities,” Cluster Computing
and the Grid, IEEE International Symposium on, vol. 0, pp. 513–520,
2006.

[8] R. Creasy, “The origin of the VM/370 time-sharing system,” IBM
Journal of Research and Development, vol. 25, no. 5, pp. 483–490,
1981.

[9] “Amazon elastic compute cloud,” [Online], http://aws.amazon.com/ec2/.
[10] K. Keahey, I. Foster, T. Freeman, and X. Zhang, “Virtual workspaces:

achieving quality of service and quality of life in the Grid,” Scientific
Programming, vol. 13, no. 4, pp. 265–275, 2005.

[11] K. Keahey, I. Foster, T. Freeman, X. Zhang, and D. Galron,
“Virtual Workspaces in the Grid,” Lecture Notes in Computer
Science, vol. 3648, pp. 421–431, 2005. [Online]. Available: http:
//workspace.globus.org/papers/VW EuroPar05.pdf

[12] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The Eucalyptus Open-source Cloud-computing
System,” Proceedings of Cloud Computing and Its Applications, 2008.

[13] J. Fontan, T. Vazquez, L. Gonzalez, R. S. Montero, and I. M. Llorente,
“OpenNEbula: The Open Source Virtual Machine Manager for Cluster
Computing,” in Open Source Grid and Cluster Software Conference,
San Francisco, CA, USA, May 2008.

[14] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul,
A. Matsunaga, M. Tsugawa, J. Zhang, M. Zhao, L. Zhu, and X. Zhu,
“From virtualized resources to virtual computing Grids: the In-VIGO
system,” Future Generation Comp. Syst., vol. 21, no. 6, pp. 896–909,
2005.

[15] J. Chase, D. Irwin, L. Grit, J. Moore, and S. Sprenkle, “Dynamic virtual
clusters in a grid site manager,” in 12th IEEE International Symposium
on High Performance Distributed Computing, 2003. Proceedings, 2003,
pp. 90–100.

[16] Rackspace, “Openstack,” WebPage, Jan 2011. [Online]. Available:
http://www.openstack.org/

[17] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of virtu-
alization,” in Proceedings of the 19th ACM Symposium on Operating
Systems Principles, New York, U. S. A., Oct. 2003, pp. 164–177.

[18] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. Shin, “Performance
evaluation of virtualization technologies for server consolidation,” HP
Laboratories, Tech. Rep., 2007.

[19] J. Watson, “Virtualbox: bits and bytes masquerading as machines,” Linux
Journal, vol. 2008, no. 166, p. 1, 2008.

[20] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
Linux virtual machine monitor,” in Proceedings of the Linux Symposium,
vol. 1, 2007, pp. 225–230.

[21] D. Leinenbach and T. Santen, “Verifying the Microsoft Hyper-V Hyper-
visor with VCC,” FM 2009: Formal Methods, pp. 806–809, 2009.

[22] I. Parallels, “An introduction to os virtualization and parallels
virtuozzo containers,” Parallels, Inc, Tech. Rep., 2010. [Online].
Available: http://www.parallels.com/r/pdf/wp/pvc/Parallels Virtuozzo
Containers WP an introduction to os EN.pdf

[23] D. Bartholomew, “Qemu: a multihost, multitarget emulator,” Linux
Journal, vol. 2006, no. 145, p. 3, 2006.

[24] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos,
G. Hamilton, M. McCabe, and J. Owens, “Quantifying the performance
isolation properties of virtualization systems,” in Proceedings of the 2007
workshop on Experimental computer science, ser. ExpCS ’07. New
York, NY, USA: ACM, 2007.

[25] Oracle, “Performance evaluation of oracle vm server virtualization
software,” Oracle, Whitepaper, 2008. [Online]. Available: http:
//www.oracle.com/us/technologies/virtualization/oraclevm/026997.pdf

[26] K. Adams and O. Agesen, “A comparison of software and hardware
techniques for x86 virtualization,” in Proceedings of the 12th interna-
tional conference on Architectural support for programming languages
and operating systems. ACM, 2006, pp. 2–13, vMware.

[27] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An
analysis of performance interference effects in virtual environments,” in
Performance Analysis of Systems & Software, 2007. ISPASS 2007. IEEE
International Symposium on. IEEE, 2007, pp. 200–209.

[28] S. Rixner, “Network virtualization: Breaking the performance barrier,”
Queue, vol. 6, no. 1, p. 36, 2008.

[29] S. Nanda and T. Chiueh, “A survey of virtualization technologies,” Tech.
Rep., 2005.

[30] A. Ranadive, M. Kesavan, A. Gavrilovska, and K. Schwan, “Per-
formance implications of virtualizing multicore cluster machines,” in
Proceedings of the 2nd workshop on System-level virtualization for high
performance computing. ACM, 2008, pp. 1–8.

[31] K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf,
H. Wasserman, and N. Wright, “Performance Analysis of High Perfor-
mance Computing Applications on the Amazon Web Services Cloud,”
in 2nd IEEE International Conference on Cloud Computing Technology
and Science. IEEE, 2010, pp. 159–168.

[32] R. Harper and K. Rister, “Kvm limits arbitrary or architectural?” IBM
Linux Technology Center, Jun 2009.

[33] M. Bolte, M. Sievers, G. Birkenheuer, O. Niehorster, and A. Brinkmann,
“Non-intrusive virtualization management using libvirt,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2010, 2010,
pp. 574 –579.

[34] “FutureGrid,” Web Page, 2009. [Online]. Available: http://www.
futuregrid.org

[35] G. von Laszewski, G. C. Fox, F. Wang, A. J. Younge,
A. Kulshrestha, and G. Pike, “Design of the FutureGrid
Experiment Management Framework,” in Proceedings of Gateway
Computing Environments 2010 at Supercomputing 2010, Nov 2010.
[Online]. Available: http://grids.ucs.indiana.edu/ptliupages/publications/
vonLaszewski-10-FG-exp-GCE10.pdf

[36] J. J. Dujmovic and I. Dujmovic, “Evolution and evaluation of spec
benchmarks,” SIGMETRICS Perform. Eval. Rev., vol. 26, no. 3, pp. 2–9,
1998.

[37] P. Luszczek, D. Bailey, J. Dongarra, J. Kepner, R. Lucas, R. Raben-
seifner, and D. Takahashi, “The HPC Challenge (HPCC) benchmark
suite,” in SC06 Conference Tutorial. Citeseer, 2006.

[38] J. Dongarra and P. Luszczek, “Reducing the time to tune parallel
dense linear algebra routines with partial execution and performance
modelling,” niversity of Tennessee Computer Science Technical Report,
Tech. Rep., 2010.

[39] J. Dongarra, H. Meuer, and E. Strohmaier, “Top 500 supercomputers,”
website, November 2008.

[40] K. Dixit, “The SPEC benchmarks,” Parallel Computing, vol. 17, no.
10-11, pp. 1195–1209, 1991.

[41] SPEC, “Standard performance evaluation corporation,” Webpage, Jan
2011. [Online]. Available: http://www.spec.org/

[42] R. Henschel and A. J. Younge, “First quarter 2011 spec omp results,”
Webpage, Mar 2011. [Online]. Available: http://www.spec.org/omp/
results/res2011q1/

http://cyberaide.googlecode.com/svn/trunk/papers/08-lizhe-ngc/08-ngc.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/08-lizhe-ngc/08-ngc.pdf
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://workspace.globus.org/papers/VW_EuroPar05.pdf
http://workspace.globus.org/papers/VW_EuroPar05.pdf
http://www.openstack.org/
http://www.parallels.com/r/pdf/wp/pvc/Parallels_Virtuozzo_Containers_WP_an_introduction_to_os_EN.pdf
http://www.parallels.com/r/pdf/wp/pvc/Parallels_Virtuozzo_Containers_WP_an_introduction_to_os_EN.pdf
http://www.oracle.com/us/technologies/virtualization/oraclevm/026997.pdf
http://www.oracle.com/us/technologies/virtualization/oraclevm/026997.pdf
http://www.futuregrid.org
http://www.futuregrid.org
http://grids.ucs.indiana.edu/ptliupages/publications/vonLaszewski-10-FG-exp-GCE10.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/vonLaszewski-10-FG-exp-GCE10.pdf
http://www.spec.org/
http://www.spec.org/omp/results/res2011q1/
http://www.spec.org/omp/results/res2011q1/

	Introduction
	Related Research
	Feature Comparison
	Usability

	Experimental Design
	The FutureGrid Project
	Experimental Environment
	Benchmarking Setup
	HPCC Benchmarks
	SPEC Benchmarks

	Performance Comparison
	Discussion
	References

