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1. Introduction and Project Overview 
The Open Grid Computing Environments (OGCE) project develops components and services 

that enable gateways to be built out of reusable parts.  This extended abstract overviews our 
primary components and describes significant new efforts since the work described in [1].   In 
previous work, the major thrust of the OGCE has been to develop Java programming abstractions 
for the Grid and reusable portlet components. These are packaged for simple, reproducible builds 
using Apache Maven. Our current work focuses on extending this to a more comprehensive 
approach to science gateways.  The portlet-based download is still actively developed and 
packaged.  Additionally, we have added several new project components.  The complete list of 
components is summarized below: 

 OGCE Portal: this is a portlet component-based portal that provides a simple out-of-the-
box science gateway with basic Grid functionality (Web clients to Globus GRAM, 
GridFTP, MyProxy, GPIR, and Condor).  

 The OGCE Workflow Suite: this consists of both services and client components that are 
derived from the LEAD workflow tools.  

 OGCE Axis Services: These are packaged, standalone, Apache Axis 2-based Web 
services that provide Grid information.   

 Cyberaide Javascript Libraries: these are client libraries that can be used to build 
JavaScript clients to Grid and other services. 

 GTLAB: These are client tag libraries that can be used by developers to build portlets, 
Google gadgets, and similar components to Grid and other Web services.  GTLAB 
includes clients to OGCE Axis Services.  

 Open Social Gadgets and Containers:  We are developing gadget and containers as the 
successor to portlet-based components.   

Developers can use all of these, or they can pick and choose desired tools. All code is open 
source and available via academic license.  We also have various incubator projects that may 
graduate to full components.  We now discuss the major components.   

2. OGCE Workflow Suite 
The workflow suite consists of two services and two clients.  XRegistry is a service for storing 

information about other services.  GFAC is a factory service that is useful for wrapping 
applications (binaries) as Web Services.  GFAC can be used to generate both persistent and 
transient services. XRegistry is used to publish and discover these services.  Actual workflows 
are graphically composed and executed using XBaya. XBaya is implemented as a Java Web 
Start application that can be launched from the OGCE portal.  Finally, expert users can interact 
with the GFAC service to deploy new services through the GFAC portlet. 

Both XBaya and the GFAC portlets are undergoing significant revisions.  We are decoupling 
the workflow orchestration parts of XBaya from the graphical composer. The new orchestration 
engine is an extension of the Apache Orchestration Director Engine project.  GFAC portlets are 
also being rewritten using Java Server Faces. By using the Apache portlet bridge, we can make 
these components available as portlets.  Additionally, they can also be used to build standalone 



web interfaces.  Finally, the constituent beans that power Java Server Faces can be used in Java 
Swing interfaces. 

The OGCE Workflow Suite tools were originally developed as part of the Linked Environment 
for Atmospheric Modeling (LEAD) project.  The OGCE removes LEAD-specific features and 
streamlines the packaging.  The workflow suite is currently being used by BioVLAB (a 
bioinformatics portal) and GridChem (a computational chemistry gateway).  

3. Gadgets and Open Social Containers  
Google gadgets are becoming increasingly popular way for delivering customized Web 

content through components.  The design concepts of portlets and gadgets are very different. 
Portlet frameworks achieve web content aggregation on the server side, while gadget frameworks 
enable client-side aggregation following the Web 2.0 paradigm. A gadget can be regarded as a 
miniature web application and can define its content and control logic in client-side JavaScript 
and HTML. In this way it has less dependence on its container than a portlet. 

A standardized gadget framework is necessary for development and deployment of gadgets. 
The Google-led OpenSocial [2] consortium defines a framework that standardizes the practices of 
gadget and social-networking sites, enabling web developers to write gadgets that can run in any 
OpenSocial compliant container. Many social networking sites have adopted the OpenSocial 
framework and open their containers to developers. For example, an OpenSocial gadget can be 
easily added into the iGoogle sandbox [3]. Moreover, the Apache Shindig [4] incubator project 
provides a reference implementation of OpenSocial container for PHP and Java. 

The OGCE has undertaken a pilot project to test the feasibility of using the Open Social 
framework for science gateways.  We have developed a set of gadgets for both Open Life 
Science Gateway (OLSG) [5] and the Social Informatics Data Grid (SIDGrid) [6]. OLSG is a 
computational portal that integrates a group of bioinformatics applications and data collections. 
SIDGrid provides cyber-infrastructure to help social and behavioral scientists collect and annotate 
data, collaborate and share data, and analyze and mine large data repositories. 

The OLSG includes three gadgets: ClustalW, BLAST, and JobHistory, which can be loaded in 
iGoogle or any compatible container. Both BLAST and ClustalW are very commonly used 
sequence alignment tools in bioinformatics. Through these two gadgets, users can post DNA or 
protein sequences and run the OLSG’s alignment services. The JobHistory gadget allows users 
to check the status of their computing tasks and retrieve the result reports from the finished tasks.  

Open Social gadgets are associated with OAuth [7], an emerging standard for Web security. 
To support OAuth in our gadgets, we have developed an OAuth provider that consists of a group 
of Java Servlets. By using OAuth tokens, an OpenSocial container and our science gateway build 
up their mutual trust so that the science gateway can authorize requests from the container to 
access the restricted data and services.    

Based on our initial experiments, we conclude that Open Social and related standards like 
OAuth are a suitable platform for building science gateways. Code originally developed for the 
OLSG and SidGrid have been contributed back to the OGCE, and we are examining ways to 
generalize these contributions for new gateways. 

4. OGCE Axis Services 
A science gateway must go beyond user interface components and programming layers to 

also provide portal services that maintain and deliver persistence information. The OGCE Axis 
Services component is a self-contained build that currently includes the Resource Discovery and 
Resource Prediction Services, described below.  The packaging is general, however, and can be 
extended to include other Axis 2 services.  The OGCE’s Grid Portal Information Repository 
service is currently being repackaged to be included in this release bundle. Web clients to these 
services are available from the OGCE’s GTLAB sub-project. 

Resource Prediction Service: Large, complex scientific workflows characteristically have 
parallel computations, distributed data transfer and management, and soft real-time constraints. 
However, the computational grids on which these workflows may run have disparate and 
heterogeneous systems and software and few guarantees of performance and reliability. This 
necessitates new approaches to scheduling complex scientific workflows on computational grids. 
The Resource Prediction Service determines the optimal resources for running a scientific 



application on a computational grid like the TeraGrid. An optimal resource is one that minimizes 
the total expected time to completion of the application, which is the sum of the data transfer time, 
the batch-queue wait time and the compute time as described below. 

Data transfer time: Workflow execution usually involves moving large amounts of data 
between workflow steps, which takes a significant amount of time [8]. Hence, we consider the 
data-transfer time while calculating the total expected time to completion for an application.  

Compute time: Compute time can be obtained from the performance models of the 
application, which could be as simple as estimates of execution times of the application on 
different resources. Since grid resources are heterogeneous, the same application may have 
significantly different execution times on different resources.  

Batch-queue wait time: Batch-queue systems like PBS and LSF are used to submit jobs to 
most grid resources. An application may have to wait for a significant amount of time on a queue 
before it starts executing. We incorporate the batch-queue prediction service [9] for estimates of 
batch-queue wait times. 

Resource Discovery Service: The TeraGrid Resource Discovery Service is a tool designed 
to provide user-specific compute, storage and visualization listings to science gateways.  It was 
created to fill the need of many gateways that were otherwise unable to quickly discover which 
resources a user could access.  The service essentially aggregates two distinct functions: 
discovery and monitoring.  It first looks up the resources to which the user has access in the 
TeraGrid Central Database and then prunes the list of unavailable resources found by querying 
Inca (http://inca.sdsc.edu/). 

For instances where the service is not used within the context of the TeraGrid, configuration 
options are available to use either GPIR (http://www.gridport.net/services/gpir/) or a static listing 
as the discovery mechanism.  Further, in the event Inca is not available, the service bypasses the 
pruning stage, returning the full list of user-accessible resources. The Resource Discovery 
Service is currently in production and used by the File Manager within the TeraGrid User Portal 
(http://portal.teragrid.org). The service works out of the box with the OGCE file manager portlet. 

5. Cyberaide JavaScript Grid Clients 
In previous OGCE and related work, we developed programming abstractions for the Grid 

within the Java CoG Kit [10]. Given the popularity of Perl, PHP- and Ruby-based Web 
frameworks, Open Social, Facebook, client-side mash-ups, and JavaScript improvements 
generally, we saw the opportunity to provide client libraries to Grid and related tools using 
JavaScript.  This is the Cyberaide component of OGCE.  

Design: We have 
designed our framework 
as a layered architecture 
(Figure 1). The 
architecture contains a 
Web client providing 
access to basic and 
advanced Grid 
functionality, as well as 
the necessary 
components to deploy 
them in a secure Web 
server. To keep the 
footprint of the library 
small, most of the 
functionalities are 
executed on a secure 
mediator service, 
described below.  

The Web client 
provides high-level application programming interfaces (API) to the Grid, which include important 
functionalities such as authentication, file transfer, job management, and workflow management. 

Figure 1 Cyberaide’s layered architecture. 



Based on the API a portal to Teragrid is constructed providing components to access simple Grid 
functionalities through graphical user interfaces from inside a web browser. Grid developers can 
utilize the API to build domain-specific Grid portals or scientific gateways. 

We are conducting all interactions to the backend Grid or cyberinfrastructure through an 
agent service and the mediator service. The mediator service is responsible for communicating 
with Grid services through underlying Grid middleware such as the Java CoG Kit, Globus toolkit, 
and even SSH. The agent service is an intermediate component that handles all communications 
between the web client and the mediator service. The agent service acts both as a service 
provider to the web client and as a service consumer of the mediator service. The agent service 
forwards the action requests to the mediator service, which ultimately sends requests to the Grid 
services. The results come back from the Grid through the mediator to the agent, which in turn 
forwards the information back to the client.  

The reason why we need an agent service is that, first we have to host the JavaScript files, 
CSS files and other resources in some web container, and according to the same-origin policy for 
JavaScript we need to put the web service that the JavaScript calls in the same web container. 
Second, by separating the real application logic and putting it into the mediator service, it is 
possible to host the services on different machines, which increases security and scalability.  
Finally, this simplifies mashing-up with other third party web services and web resources. 

6. Further Information 
The OGCE website is http://www.collab-ogce.org.  News announcements are available from 

the OGCE RSS/Atom feed, http://collab-ogce.blogspot.com/feeds/posts/default.   The 
SourceForge project page is http://sourceforge.net/projects/ogce and the SVN code repository 
can be viewed at http://ogce.svn.sourceforge.net/viewvc/ogce/. Releasable versions of the code 
are tagged with version numbers and form an SVN branch. Packaged versions of tagged major 
components are downloadable directly from SVN.  We schedule two major releases per year, to 
coincide with TeraGrid (June) and Supercomputing (November) conferences. 
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