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Abstract— Virtual machines offer various advantages such as
easy configuration, management, development and deployment of
computing resources for cyberinfrastructures. Recent advances
of employing virtual machines for Grid computing can help Grid
communities to solve research issues, for example, QoS provision
and computing environment customization. The heterogeneous
virtualization implementations, however, bring challenges for
employing virtual machine as computing resources to build Grid
infrastructures. The work proposed in this paper focuses on
building a Web service based virtual machine provider for Grid
infrastructures. The Grid Virtualization Engine (GVE) creates
an abstract layer between users and underlying virtualization
technologies. It implements a scalable distributed architecture in
a hierarchical flavor.

The GVE Site Service provides Web service interfaces for
users to operate virtual machines, thereafter building Grid
infrastructures. The underlying GVE Agent Service talks with
different virtualization products inside the computing center and
provides virtual machine resources to the GVE Site Service.

The GVE is designed and implemented with the state of the
arts of distributed computing technologies: Web service and
Grid standards. The GVE is evaluated with CMS benchmark,
a high energy physics application from CERN. In addition to
the GVE design and implementation, this paper also uses a
real example to illustrate how to apply the GVE to build an
e-Science infrastructure at runtime. By providing experiments,
tests and a use scenario , we show the GVE is an efficient and
lightweight middleware for building grid infrastructures with
virtual machines.

Index Terms— Grid computing, virtual machine, virtual com-
puting environment

I. INTRODUCTION

GRIDComputing technology [9], [10] offers
practical solutions for parallel and dis-

tributed computing. It can provide reliable, collaborative and
secure access to remote computational resources as well as
distributed data and scientific instruments. Although great
advances have been made in the field of Grid computing,
users still expect to meet some difficulties when employing
Grid resources:

• Qualities of Service (QoS) of resource provision and
performance isolation: A Computational Grid is a highly
dynamic environment in that resource capacities and
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access interfaces may change from time to time. Grid
applications often compete for shared resources, thus
preventing any QoS guarantee of resource provisions.

• Customized runtime environment for Grid applications:
In general, Grid applications demand customized exe-
cution environments such as operating system, software
packages & libraries, and network configurations. Some
requirements of these runtime configurations need ad-
ministration privileges, which are normally impossible to
obtain in a Grid environment.

A virtual machine is a computing platform that creates a
virtualized layer between the computing hardware and the
application. Employing virtual machines as computing envi-
ronments for Grid applications can address challenges above.
In general, Grid users might benefit from the virtualization
techniques in the following aspects:

• On demand creation and customization: Users can create
a customized virtual machine, which provides customized
resource allocation for users, e.g., operating system,
memory, storage, etc.

• Performance isolation: Virtual machines can guarantee
the performance for users and applications. Users of vir-
tual machines can expect dedicated computing environ-
ments, which are hard to find in multiple-user computing
servers.

• Legacy software support: Customized virtual machines
which are compatible with legacy binary applications
can be created. Users from specific application domains
would find them very desirable and promising since some
legacy libraries can be supported.

• Easy management: Users in general can only access
computing servers with restricted user privileges. It is
thus difficult to process the work such as compilation,
installation, and configuration of desirable computing en-
vironment for users. Virtual machines on the contrary, can
offer users with the “root” access of the allocated virtual
machine. Therefore application domains can manage their
environments in their own interests.

Virtual machine based Grid systems are characterized by
some special features, which bring research challenges for
deploying, monitoring and operating the system:

• Site autonomy: In a virtual machine based Grid system,
the host resources, which run a Virtual Machine Mon-
itor (VMM) and support multiple virtual machines, are
commonly owned and controlled by different institutes
or organizations at different sites. Users may expect to
meet different resource management policies during the
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creation and manipulation of virtual machines.
• Hierarchy: A virtual machine based Grid system is hier-

archical in nature. It contains several levels: Grid level,
virtual machine level, host resource level and the user
access point, i.e., a Grid portal.

• Heterogeneity: A virtual machine based Grid system
includes heterogeneous host resources, various virtual
machine technologies (e.g., Xen, VMWare) as well as
multiple programming interfaces.

• Large scale distribution: Computing centers and data
centers frequently build Grid infrastructures across ge-
ographically distributed sites.

To ease the deployment of virtual machine based Grid
infrastructures, it is important to represent virtual machine
profile in an industry standardized format, simplify the ac-
cess to virtual machines provided by computer centers with
standard and uniformed access interfaces, and build a ser-
vice infrastructure that can provide virtual machines from
multiple computer centers. We design and implement the
Grid Virtualization Engine (GVE) to fulfill the foregoing
objectives. The GVE is light weight distributed middleware,
which enables users to operate virtual machines and provides
virtual distributed environments across distributed computing
centers. The GVE implements a Web service based abstract
layer and can manage a set of virtual machines provided by
heterogeneous VMMs located in distributed compute centers.
Information provided for a virtual machine uses the standard-
ized GLUE Schema [29]. This paper presents performance
evaluation of GVE with the Compact Muon Solenoid (CMS)
benchmark [24], a high energy physics application from CERN
(European Organization for Nuclear Research). A real use
scenario, involving the on-demand creation of an e-Science
infrastructure, is discussed in this paper to demonstrate the
GVE usage.

The rest of the paper is organized as follows. Related work
is investigated in Section II. Section III defines the model
of virtual machine based Grid system, in which the GVE
is developed and deployed. Section IV describes the GVE
architecture. In Section V, GVE use cases are discussed. This
is followed by a description of the GVE implementation in
Section VI. In Section VII and Section VIII, the GVE is tested
with some experiments and is quantitively evaluated with the
CMS benchmark. We present in Section IX a sample use
scenario of the GVE – building an e-Science infrastructure
with distributed virtual machines enabled by the GVE. The
paper concludes in Section X with a brief summary and future
work.

II. RELATED WORK

A Virtual Machine (VM) is a software artifact that executes
other software in the same manner as the machine for which
the software is developed and executed [21]. Virtual Machine
Monitor (VMM) is a software that supports multiple virtual
machines on the same resource. Typical VMMs or hypervisors
include Xen VMM [2], VMware server/ESX server [37], and
User Mode Linux [35].

Recently, the parallel and distributed computing research
community has shown interest in virtual machines and virtual

computing environments. Some research work focuses on de-
ploying computing systems or testbeds with virtual machines,
for example, virtualization of batch queueing system [3],
GridBuilder [4], using virtual machine as Grid gateway [5],
multi-site MPI platform with Xen virtual machine [26]. Xen
Grid Engine [6] follows an approach to create dynamic virtual
cluster partitions using para-virtualization techniques. The
work presented in [11], [19] builds virtual clusters and virtu-
alized distributed infrastructures. OpenNebula [34] is an open
source virtual infrastructure engine that enables the dynamic
deployment and re-placement of groups of interconnected
virtual machines.

These systems, however, are deployed in a small scale
area network, for example, a cluster system or a computer
site. Our work aims to work in a large scale distributed
Grid infrastructure, which contains multiple computer centers
and spans across multiple administrative domains. The GVE
implementation solves a number of research issues, such
as scalability, extensibility and multi-domain administration,
which do not exist in a cluster or a LAN environment.

The Globus alliance recently implemented the concept of a
virtual workspace and Nimbus [36], [12], which allows a Grid
client to define computing requirements, manage computing
environments, and deploy computing environments on a Grid.
The implementation is based on Globus Toolkit version 4 and
it only supports Xen VMM. Our implementation of GVE
is developed with standard Web service technologies, such
as XML, SOAP and HTTP, and it can support both Xen
and VMware virtual machine. Web service technologies have
various advantages over the Globus Toolkit implementation,
for example, scalability, interoperability, legacy application
support, and underlying platform independence. Therefore, our
implementation gains more advantages by adopting standard
Web service technologies.

The In-VIGO [1] project aims to build virtualization mid-
dleware. In-VIGO provides a distributed environment where
multiple application instances can coexist in virtual or physical
resources such that clients are unaware of the complexity
inherent to Grid computing. Amazon Elastic Compute Cloud
(Amazon EC2) [27] is a Web service that provides resizable
compute capacity with virtual machines. It is designed to make
web-scale computing easier for developers. Eucalyptus [28] is
a software infrastructure for implementing “cloud computing”
on clusters.

Systems like In-VIGO, Amazon EC2 and Eucalyptus em-
ploy Web service technologies and virtual machine operations
in a large scale distributed environments. However, they do
not aim to work on existing production Grid infrastructures
and framework. Furthermore, there are still no reports of
successful large scale scientific applications, e.g. high energy
physics, deployed on these systems. Our implementation of
GVE works on existing Grid infrastructures and adopts current
Grid computing model. Killer applications of Grid computing,
for example, CMS benchmark, is deployed and executed on
Grid infrastructures with the help of GVE.

We present our work, a complete and integrated solution
to build Grid infrastructures with virtual machines using the
GVE: system model, system design & implementation and
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performance evaluation. In detail, compared with related work,
the unique contribution of this paper includes:

• Defines a hierarchical virtual machine based Grid system
model,

• Builds a scalable and efficient GVE service that can
provide virtual machine resources to Grid system based
on popular VMMs, e.g., Xen and VMware,

• Makes a performance evaluation on GVE and virtual
machines with a non-trival application – the CMS bench-
mark [24], which is a killer application for productional
Grid computing from the Worldwide LHC Computing
Grid (WLCG) project [16] at CERN, and

• Provides our experience of employing virtual machine re-
sources for Grid infrastructures by building an e-Science
infrastructure on demand.
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Fig. 1. Virtual machine based Grid system model

III. THE VIRTUAL MACHINE BASED GRID SYSTEM

The GVE is a software layer between various virtualization
implementations, computing centers and Grid users. Users can
require and employ virtual machines via the access interface
of GVE. The GVE talks with underlying computing centers
and VMMs for virtual machine operations. Computer centers
can also provide virtual machines to form Grid infrastructures.
The employed virtualization technology may differ from one
computing center to another (i.e VMWare and XEN technolo-
gies). The GVE thus provides a standard and uniform access
to virtual computing resources.

We propose a system model to describe a distributed, hi-
erarchical, heterogeneous virtual machine based Grid system,
which contains distributed Computer Sites (Computer Centers)
interconnected by network (see also Figure 1).

Each Computer Site logically consists of the following
levels:

• The Computer Site provides an access service which
allows remote users to access resources of the computer
center. The access service can be offered by existing Grid

middleware, a portal, Web services, or any functionalities
that support remote steering. The GVE service is devel-
oped and integrated in this level.

• In the middle level, virtual machines are backed by
host resources. These virtual machines form virtualized
distributed environments. GVE service operates on virtual
machines in this level.

• The fabric level contains various host resources or
servers, which are installed with virtual machine hypervi-
sors. Host resources offer multiple virtual machines. The
GVE Agent Service is implemented in this level with aids
of VMM APIs and SDKs.

IV. ARCHITECTURE OF GRID VIRTUALIZATION ENGINE

A. Overview

The GVE provides functionalities for users to access virtual
machines and virtual environments supported by distributed
computing centers. The GVE is designed in distributed and
hierarchical flavors with standard Web service interface. Cur-
rent implementation of the GVE can work on popular VMMs,
for instance, Xen server, VMware server, and VMware ESX
server. The GVE is designed to work on the target Grid system
model which is defined above. As shown in Figure 2, a GVE
contains the following components: GVE Site Service, GVE
Agent Service, and Virtual Machine Disk Database.

In order to operate virtual machines, the GVE Site Ser-
vice, which resides on the access point of a Computer Site,
communicates with GVE Agents on host resources. GVE
Agents are responsible for accepting requirements from GVE
Site service, organizing the requirements and passing the
requirements to proper underlying VMMs with corresponding
APIs, commands, and messages. The underlying hosts and
VMMs then receive virtual machine operation requirements
and carry out virtual machine operations. The user information
service/database and registry service/database are used for user
access control on the site level and host level respectively. The
VM image database provides virtual machine image templates
for new virtual machine creation.

B. GVE Site Service

The GVE Site Service works on a computer center’s access
point. It manages host resources inside the center by commu-
nicating with the GVE Agent Services that run on the host
resources. Users who want to build Grid Computing System
(GCS) with distributed virtual machines can access multiple
GVE Site Services for virtual machine manipulations.

During the deployment process, or at runtime, an adminis-
trator must explicitly define which GVE agents are connected
to the GVE Site Service. A GVE Site Service needs at least
one GVE Agent to be operational.

The GVE Site Service includes three main components: the
GVE Web Service, the User Information Service and the User
Information Database.

• GVE Web Service: The GVE Web Service itself is the
component which is responsible of the business logic of
the GVE Site Service. It decides the Agent Service to
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Fig. 2. Architecture of Grid Virtualization Engine

which virtual machine requests should be sent and defines
the policies of resource allocation. For the latter purpose,
it needs the User Information Service which provides the
access to data stored in the User Information Database.

• User Information Service: In order to be consistent, the
GVE Site Service has to store data that may be concur-
rently used by other components in the GVE. The state
of execution of an asynchronous operation, for example,
is often queried by the user. At the same time, it might be
updated by internal methods of the GVE Web Service. It
is therefore important for the GVE system to store such
data in a way that will guarantee the consistence of the
data manipulation. The User Information Service make
an inventory of the data that the GVE Site Service needs
to store, create the User Information Database, where the
inventoried data will be persisted, and create an interface
that provides methods to store and manage data stored in
the User Information Database.

• User Information Database: The User Information
Database records the management policies and account-
ing information of virtual machine usage. The GVE then
can check whether the resource quota of the user has been
reached before new resources are allocated. The GVE can
also control how long a resource has been granted to a
user. The user must release the requested resource before
a pre-defined deadline, or the GVE will block the access
to that resource.

C. GVE Agent Service

The GVE Agent Service is a Web Service which runs on
the host resource. It receives operation commands from the
GVE Site Service and talks with the specific VMM that is
installed on the host resource. Thus the GVE Agent Service is
virtualization technology dependent. In other words, for each
type of VMM, a corresponding GVE Agent Service should be

implemented. Heterogeneous VMMs are therefore transparent
to the GVE Site Service. All tasks related to the management
of virtual machines are delegated to the GVE Agent Services.

The GVE Agent Service knows how to call management
functions of the underlying VMMs. All GVE Agent Services
implement the same Web Service interface. Figure 2 illustrates
the architecture of the GVE. In this deployment, a VMM is
managed by a GVE Agent Service. A GVE Agent Service can
provide virtual machines from the underlying VMMs to a GVE
Site Service, clone a virtual machine, manage the states of
the virtual machines, run scripts/commands/applications inside
virtual machines and copy files to/from virtual machines.

The Registry Service in the GVE Agent has the similar
functionalities with the User Information Service in the GVE
Site Service. It provides the following functions to access the
Registry Database, which stores the state of virtual machines,
the GVE Site information, the state of the virtual machine
request and management.

D. Virtual machine disk database

The Virtual Machine Disk Database may not be directly
implemented by the GVE developer. It stores the data which
are needed for virtual machine creation and management. For
example, it contains virtual machine disk image templates that
are used to create new virtual machines. This database is VMM
dependent and should be developed accordingly to the VMM
data models.
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Fig. 3. Use case of Grid Virtualization Engine

V. USE CASES OF THE GVE
The main function of GVE is to provide virtual machines to

build a Grid Computing System (GCS). In the words, a GCS is
a client of the the GVE. In the following description, a GCS,
client of the GVE, user of the GVE are used interchangeably
to identify the same role in the system. The use cases of the
GVE are shown in Figure 3.

There are several actors of GVE use cases. The Grid
Computing System (GCS) is the main actor of GVE use cases.
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It is the one who requests virtual machine at runtime to build
Grid infrastructures. The User Information Database is the
actor which performs identity checks and resource allocation
control. The GVE administrator is another actor of GVE use
cases. The administrator may change GVE internal settings.

From the viewpoint of a GVE client, there are mainly
three use cases, in which a client can be directly involved,
namely: requesting a new virtual machine or an existing one,
managing a virtual machine, and releasing a virtual machine.
The following sections describe use cases of GVE in detail.

A. Request a virtual machine

The GVE system provides virtual machines on-demand
based on the requirements of the user. When a GVE user
gives the profile of the virtual machine he requires, the GVE
returns an existing free virtual machine or creates a new virtual
machine to fulfill the user requirement. In case that a GVE
user specifies an existing virtual machine by giving the unique
identifier of the virtual machine, the GVE tries to start the
virtual machine, initializes the virtual machine profile, and
returns the virtual machine information to the user.

The actors of this use case are the GCS and the User
Information Database. The pre-conditions of this use case are
the user is registered to the GVE and the user has provided the
search criteria for the requested virtual machine. After this use
case successfully ends, a started virtual machine is assigned
to the user. Otherwise, the request for a new virtual machine
is rejected.

B. Manage a virtual machine

The GVE provides users with functions to manage the
virtual machines that they have acquired, for instances, start,
stop, suspend, resume, and migrate virtual machines. The
actors of this use case are the GCS and the User Information
Database. This use case requires either the GCS has acquired
a virtual machine or the GCS has provided details about the
virtual machine to be managed. When the GCS sends a request
of managing virtual machines, this use case is triggered. After
this use case finishes successfully the GCS receives a message
notifying the success of the operation. Otherwise the GCS
receives a message notifying the failure of the operation.

C. Release a virtual machines

When a GVE user has finished a computational task on
the virtual machine and does not need it anymore, the user
releases a virtual machine. In case that the allocated time
for virtual machine usage has passed, the GVE will stop the
usage of the virtual machine. The actors of this use case
are the GCS and the User Information Database. Before this
use case is triggered, the GCS should provide details about
an acquired virtual machine. After this use case finishes, the
virtual machine is stopped and its profile is changed.

D. Compute allocable resources

Resources allocable to a GVE user should not exceed the
predefined resource quota for the user. This use case is to

compute resources for user’s allocation. Each time a user
requests a new virtual machine, the total amount of resources
that are allocated to the user at that time is computed to check
whether it exceeds the quota for the user. The actor of this use
case is the GCS. This use case demands information of the
user information and the virtual machine profile. If this use
case successfully ends, the GVE has permissions to allocate
one resource with the given profile to the user. Otherwise the
resource quota for the user has been reached then the GVE
does not have the permission to allocate resources with the
given profile to the user.

E. Check identities

The GVE identifies all users before they can perform any
operation on the GVE. The identity is also needed to know
whom a virtual machine belongs to and how many resources
a user can acquire. The actor of this use case is the User
Information Database. This use case requires that the user has
appropriate proof of his identity. This use case’s successful
execution means the user is verified. Otherwise the user is not
approved.

F. Manage the GVE

The correct setup of the GVE requires some pre-
configurations by an administrator. As a GVE is a distributed
application, the administrator identifies all components that
build a new GVE and connect them together. The Administra-
tor also manages the identity of the different entities that use
the GVE. This use case includes registering or unregistering of
a Virtualization Agent and registering or unregistering a user.

VI. IMPLEMENTATION OF GRID VIRTUALIZATION ENGINE

Currently the first version of the GVE is released. In the
implementation, various technologies are used. JAX-WS [15]
provides tools and libraries to generate clients and server arti-
facts for Web services. JAXB [8] is used to bind specific XML
schema to Java classes. Hibernate framework [30] provides
libraries for object relational mapping and transaction security.
Apache Tomcat [14] serves as a Java Servlet Container.
VMware server, VMware ESX server and Xen server are used
as VMMs.

Generally, the implementation of a GVE takes four steps.
The first step is to define the services provided by describing
them using WSDL (Web Service Description Language). Then
Java interfaces and Web Service artifacts are generated using
JAXB. The third step is to create a database and a Java
interface to access and manage the database via the aid of
Hibernate framework. For the GVE Site Service, the User
Information Database is created. It is the place where the
user information and the virtual machine information is stored.
The User Information Service is implemented to provide an
interface to access and manage the User Information Database.
Finally the Java interfaces and classes are implemented accord-
ing to their functions and roles with VMM APIs.
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A. Virtual machine profile: extended GLUE schema

Various types of resources which are shared on computa-
tional Grids should be described in a precise and systematic
manner. The Grid resources are thus able to be discovered for
subsequent management or use. The GLUE (Grid Laboratory
Uniform Environment) schema [29] represents an abstract
model for Grid resources and mappings to concrete schemas
that can be used by information services within Grids. The
GLUE schema is widely used in production Grid such as
EGEE [7], OSG [33] and TeraGrid [18]. We decide to
use GLUE schema to describe virtual machine information.
Current GLUE schema, however, does not contains virtual
machine definitions. Therefore the GLUE schema has been
extended in the GVE implementation accordingly to support
virtual machines for the use of Grid computing. A Virtual-
Machine class is created by inheriting the Host class in the
GLUE schema. Attributes and operations are extended in the
VirtualMachine classes to represent virtual machine concepts.
Each Host is associated with multiple FCHBA classes and the
StoragePool classes.

B. GVE Site Service implementation

1) Implementation of the User Information Service & User
Information Database: The User Information Database stores
management information about users and virtual machines
associated. The User Information Service is a Web service
used by the GVE Site Service to access and to manage the
data stored in the User Information Database.

The User Information Database is defined with the data en-
tities of Agent services, virtual machines and user information.
The Hibernate object-relational mapping library for the Java
language [30] provides a framework for mapping an object-
oriented domain model to a traditional relational database. The
Hibernate framework is thus used here to build a database and
its connection from the GVE Site Service.

2) Definition of the GVE Site Service interface: The oper-
ations of GVE Site Service are defined and implemented in
asynchronous style as they are time-consuming. The GVE Site
Service defines various Web Service portTypes in the WSDL
file, for example, virtual machine request, virtual machine
release, and virtual machine management.

These operations normally take several parameters, such as,
virtual machine profile defined in extended GLUE schema,
and virtual machine management operations: start, shutdown,
suspend, migrate virtual machines.

In the implementation of GVE, an internal data structure
Job is defined, which means a virtual machine request or a
virtual machine management operation. The Job is executed
asynchronously, and the user has to query for the state of the
operation until it is terminated. The JobState is the object
returned to GVE clients when they query for the state of the
execution of an operation (Job) they have started.

3) Implementation of the GVE Site Service: JAXB allows
Java developers to map Java classes to XML representations,
or vice versa. After defining all the operations in WSDL file
of GVE Site Service in section VI-B.2, the implementation

skeletons can be automatically mapped from WSDL file to
Java classes via the help of JAXB.

There are several important operations of GVE Site Service.
The RequestVirtualMachine is an asynchronous operation.
The GVE identifies the user and controls the request pa-
rameters. Then it creates a new JobState object that will
be returned to the client. Before the JobState is returned
to the user, the GVE starts a thread which performs the
Job of RequestVirtualMachine and stores the result in the
User Information Database. The user receives the returned
message containing the state of the request and the unique
identifier of the Job being executed. Then the user will query
for the JobState until it receives a message indicating either
an occurred error or a successful termination of the Job.
After that the user gets the result using the operation of
GetRequestVirtualMachineResult. Errors will occur if the
user cannot be identified, authenticated, or authorized to get
the result. The ManagementVirtualMachine operations are
implemented in similar flavors.

C. Implementation of the GVE Agent Service

The GVE Agent Service is built in processes similar with
the GVE Site Service. The Agent Web service implements the
following operations: reserve a virtual machine, acquire and
release a virtual machine, copy files to/from a virtual machine,
run scripts/commands/applications in a virtual machine, clone
a virtual machine, find a virtual machine or a virtual machine
disk image template, and manage the virtual machine opera-
tions such as start, shutdown, suspend and migrate a virtual
machine.

These operations are implemented with underlying Virtual
Machine Monitor APIs, e.g., VMware and Xen center. The
following description takes the VMware ESX server as an
example.

1) Introduction to VMware ESX server: The VMware In-
frastructure SDK [37] allows developers to build Web Service
based applications to control ESX Server hosts and virtual
machines running on those hosts. The SDK provides a Java
client to the Web Service interface. The client is based on the
JAX-RPC Web Service technology.

The ESX Server implements the concepts of Virtual Ma-
chine Disk Database using the concept of the Datacenter
object. A Datacenter object groups virtual machines and
host resources under a high-level organizational construct
that represents a management unit. Virtual machines from a
Datacenter are stored in data stores which are part of the
Datacenter. The Registry Service is able to query the Virtual
Machine Disk Database (the Datacenter) for virtual machines
in order to keep synchronized with the Registry Database,
which saves the GVE related state of the virtual machines.

2) Implementation of Registry Service and Disk Database
access: The implementation of the Registry Service involves
the following steps. The data structures are defined firstly.
The interface of the Registry Service is then defined in the
WSDL file, which contains the portTypes such as create,
update, delete and search for the data structures inventoried in
the first step. The interface is termed as DataProvider. The
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third step is the implementation of the DataProvider. Finally,
the Registry Database tables are generated at runtime by the
Hibernate framework.

3) Implementation of GVE Agent Service: The ESXDriver
class is the access point to the VMware ESX Server APIs. It
provides various methods for virtual machine manipulations,
for example start, stop, restart, suspend and resume virtual
machines.

VMware Infrastructure SDK does not provide APIs that can
be used to run a command/application/script in a virtual
machine or to copy a file from/to a virtual machine. This
issue is solved by deploying an extra Web Service component
in the virtual machine which is accessed by GVE Agents to
perform the required tasks. The software component is named
as InstallService. To create a client of the InstallService, the
JAXB tool is used to generate a Web Service client from
the WSDL of the InstallService. Then a Java archive (jar)
file containing the generated client classes is created. The
generated classes are then imported by the ESXAgent.

To implement the functions of copy a file from/to a virtual
machine or execute a command/application/script in the
virtual machine, the GVE Agent service just invokes the
corresponding methods from the InstallService client.

VII. PERFORMANCE EVALUATION WITH SYSTEM
EXPERIMENTS

This section discusses some performance characteristics of
GVE with some experiments to show that GVE only brings
tolerable overheads for remotely running virtual machines.

A. Testbed

This experiments are carried out on the Steinbuch Centre
for Computing (SCC) testbed. The testbed contains two parts:
computer servers in IWR/FZK and a compute cluster in
RZ/UKA. There are 16 IBM bladecenters at the Institute for
Scientific Computing (IWR) of Research Center Karlsruhe
(FZK). Computer servers at IWR/FZK are organized with
VMware Infrastructure and can provide VMware virtual ma-
chines. The compute cluster in the Computing Center (RZ)
at the University Karlsruhe (UKA) consists 1 head node and
12 worker nodes, all of which are installed with Xen servers.
The head node backs 8 virtual machines, which offer various
cluster/Grid functionalities, e.g., file server, monitor server and
Grid portal. Each worker node provides 1 virtual machine,
which is used to execute Grid jobs. The communication
between IWR/FZK and RZ/UKA is established by a high
performance netowrking, whose peak performance can reach
600 MB/Second.

B. Experiments and discussion

The first experiment is to test how much overhead that the
GVE introduces for a virtual machine operation, for example,
start a virtual machine. We measure the time form when a
user issues a command to to start a virtual machine to the
time when the virtual machine instance is available for use.

We use the Condor virtual machine images from NSF
funded Grid Appliance (http://www.grid-appliance.org/). The

experimented virtual machine image is configured with 100
GB hard disk and 512 MB RAM. Figure 4 shows the time for
virtual machine instance startup at various scenarios: start one
instance of virtual machine both locally and with the GVE,
simultaneously start 2, 4 and 8 instances of virtual machine
with GVE respectively.

We can see that the GVE does not introduce much overhead
in term of virtual machine startup. In Figure 4 when 8 tiny
Linux virtual machine instances are started simultaneously, the
max overhead of starting time is around 17%.
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Fig. 4. GVE instance start overhead

Another experiment measures the communication overhead
between virtual machines. The GVE does not provide virtual
network solutions. The virtual machine that is managed by
GVE uses native virtual network solutions provided by Xen
server or VMware ESX server. Normally a virtual machine
uses a virtual network interface and is assigned with an IP
address. We run a MPI ping-pong program between virtual
machines to test the network performance. To make a compar-
ison, MPI ping-pong program is executed on real machines.
The VMM used in this experiment is VMware ESX server
3.5. In Figure 5, we can see that the throughputs between
virtual machines can reach around 90% of those between real
machines when message sizes are big enough.
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VIII. PERFORMANCE EVALUATION WITH CMS
BENCHMARK

This section discusses virtual machine performance by using
a high energy physics benchmark – the CMS benchmark. This
test shows the performance of a compute intensive application
in distributed virtual machines.

A. CMS computing software

The Worldwide LHC Computing Grid (WLCG) is a global
collaboration which involves more than 140 computing centres
in 33 countries in the world. The WLCG project is to build and
maintain a high performance computing infrastructure for the
high energy physics experiments of the Large Hadron Collider
(LHC) at CERN. The CMS is one the biggest high energy
physics experiments in LHC. It uses a general-purpose detector
to investigate a wide range of physics, which includes the
search for the Higgs boson, extra dimensions, and particles
that can make up dark matter.

CMS software contains CMKIN, OSCAR, ORCA, Pythia
and ROOT modules. The CMKIN [23] software package
provides a common interface between physics event generators
and CMS detector simulation. It offers a standard way to
interface kinematics generators with CMS detector simulation.
OSCAR [17] simulates for CMS analysis and reconstruction.
OSCAR creates SimHits which represents the information
and finally stores RawParticles, SimTracks, SimVertices and
SimHits in POOL data files. ORCA [22] is a framework for
reconstruction and is intended to be used for final detector
optimizations, trigger studies or global detector performance
evaluation. ORCA-digitization simulates the response of the
readout electronics, which are the events simulated with OS-
CAR. CMS events are digitized and reconstructed with the cor-
responding ORCA applications: writeAllDigis and writeDST.

To make full performance evaluation of virtual machines,
this paper also includes several ROOT [24] based tests and
the Monte Carlo generator Pythia [24] in the benchmark.

B. Test organization

The CMS benchmark test are executed in the testbed
discussed at SectionVII-A. CMS benchmark is executed on
virtual machines with 64-Bit processors, which support both
32-Bit and 64-Bit operating system. CMS benchmark is a
legacy application that demands various software libraries.
Therefore, we are interested in migrating pre-compiled 32-
Bit CMS benchmark to 32-Bit and 64-Bit operating systems.
The test is organized in the following modes [38], [39]:

• Legacy mode
The 64-Bit architecture is installed with 32-Bit operating
system and 32-Bit application runs in the 32-Bit operating
system.

• Compatibility mode
The 64-Bit architecture is installed with 64-Bit operating
system and 32-Bit application runs in the 64-Bit operating
system.

• Full 64-Bit mode
The 64-Bit architecture is installed with 64-Bit operating

system. Legacy applications are recompiled with 64-Bit
libraries and run on the 64-Bit systems.

In the test, we run CMS benchmarks in legacy mode, compat-
ibility mode and full 64-Bit mode to evaluate the performance
of distributed virtual machines. Table I shows the available
operational modes for CMS tasks in the test.

TABLE I
OPERATIONAL MODE FOR CMS OO BENCHMARK

CMS Legacy Compatibility Full 64-Bit
benchmark mode mode mode
OSCAR Yes Yes No
ORCA-digi Yes Yes No
ORCA-dst Yes Yes No
Root Yes Yes Yes
Pythia Yes Yes Yes

C. Test results
Table II and Table III show the performance of CMS

benchmark in terms of Event/Second. In Table II , only one
copy of CMS benchmark runs on the virtual machines. In
Table III, two copies of CMS benchmarks run simultaneously.
Average values of the test results are obtained from two copies.
The reason of simultaneous running of two copies is to make
full use of dual cores of AMD opteron 250. Each test is
executed 15 times.

TABLE II
CMS OO BENCHMARK ON VIRTUAL AMD OPTERON 250

Legacy mode Compatibility mode
OSCAR 0.0880 0.0897
ORCA-Digi 0.135 0.119
ORCA-Dst 0.974 0.931

TABLE III
CMS OO BENCHMARK ON VIRTUAL AMD OPTERON 250 (2 COPIES)

Legacy mode Compatibility mode
OSCAR 0.0892 0.0911
ORCA-Digi 0.137 0.118
ORCA-Dst 0.984 0.934

Table IV shows test results of the ROOT benchmark. We get
the test results from one copy ROOT benchmark and average
values of two simultaneously running copies. The test results
are in term of ROOT marks.

TABLE IV
ROOT BENCHMARK ON VIRTUAL AMD OPTERON 250

Legacy Compatibility Full 64-bit
mode mode mode

1 copy 945.0 864.2 1227.4
2 copies (av.) 959.8 830.1 1196.1

Table V shows the test results of the Pythia benchmark,
which processes 10000 SUSY Events. Test results are obtained
from one copy of Pythia benchmark and average values of two
simultaneously running copies. The test results are in terms of
Event/Second.
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TABLE V
PYTHIA BENCHMARK ON VIRTUAL AMD OPTERON 250

Legacy Compatibility Full 64-bit
mode mode mode

1 copy 105.30 103.96 121.38
2 copies (av.) 105.76 113.23 121.28

D. Performance evaluation

Performance evaluation with CMS benchmark on virtual
machines is performed by comparing the test results on virtual
machines (Table II – Table V) with those on real machines.
Test results on real machines are reported in CMS internal
reports [38], [39]. Table VI shows the results of running one
copy of CMS benchmark on real AMD opteron 250.

TABLE VI
CMS BENCHMARK ON AMD OPTERON 250

CMS Legacy Compatibility Full 64-bit
benchmark mode mode mode
OSCAR 0.1186 0.1154 N/A
ORCA-digi 0.1562 0.1300 N/A
ORCA-DST N/A 1.039 N/A
ROOT stress 957.6 898.3 1402.6
Pythia 121.3 120.8 146.9

Figure 6 – Figure 10 show the comparisons of OSCAR,
ORCA-digi, ORCA-dst, ROOT and Pythia test results between
virtual machines and real machines. In general, virtual ma-
chines can attain 70%-95% performance of real machines.
ROOT benchmark achieves good performance on virtual ma-
chines, since ROOT stress is an I/O intensive application. The
OSCAR benchmark is a computationally intensive application
and it reach lower performance than the ROOT benchmark.

Comparison on different modes is also tested. It can be
concluded that legacy mode and compatibility mode achieve
almost the same performance. Full 64-bit mode can achieve the
best performance among the three modes. It is rather obvious
because in the full 64-bit mode, 64-bit applications receive
access to the full physical memory range and also allowed
access to the new General Purpose Registers (GPRs) as well
as the expanded GPRs in 64-bit processors.

E. Discussion

IX. BUILD A VIRTUAL E-SCIENCE INFRASTRUCTURE AT
RUNTIME: A SAMPLE USE SCENARIO

This section discusses a sample use scenario of the GVE
service – build a virtual e-Scientific infrastructure enabled by
the GVE.

The GridSAM [25] is a standard Job Submission and
Monitoring Web Service that provides a common interface to a
variety of DRMs (Distributed Resource Managements), which
is developed with widely accepted and standardized Web
Service specifications and related technologies. ActiveBPEL
engine [32] is declared as a modeling, monitoring and ex-
ecution environment for scientific workflows based on the
Business Process Execution Language (BPEL) [31]. A typical
e-Science infrastructure [32] that involves BPEL (both the
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Fig. 8. ORCA-dst test results

BPEL script and BPEL runtime) and GridSAM [25] is as
follows:

• use BPEL Designer to design a BPEL process that
interacts with GridSAM’s job submission service port
and job monitoring service port; produce the deployment
archive by BPEL Designer at the end of the modeling;
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Fig. 9. Pythia test results
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Fig. 10. ROOT test results

• deploy the process onto ActiveBPEL, which is hosted
in OMII Server container; from the BPEL Designer
construct the request message that triggers the BPEL
process;

• once got started, ActiveBPEL submits a pre-defined job in
JSDL to GridSAM; GridSAM translates the JSDL script
to whatever works for the underneath resource manager
and sends the job to the underlying Grid computers;

• ActiveBPEL polls the job status through GridSAM’s
monitoring interface until the job is completed eventually.

A. System integration with Grid Virtualization Service

Virtual machines are employed as computing resources
for workflow execution. ActiveBPEL engine dynamically in-
vokes the GVE Service to request virtual machines with the
GridSAM pre-installation, then organize the application in
workflow and submit the workflow to virtual machines via
GridSAM. The integrated workflow system includes the fol-
lowing components: workflow service, proxy service and Grid-
SAM service. The workflow service contains a Web service
as interface, which can be invoked by workflow client. The
ActiveBPEL acts as a workflow engine. It invokes Grid Vir-
tualization Service to request virtual machines with GridSAM

installation, then executes workflow jobs on virtual machines
via GridSAM interface. A proxy service is implemented as an
interface between the ActiveBPEL engine and the GridSAM
service. GridSAM job submission and monitoring services are
installed in the virtual machines, via which the ActiveBPEL
engine submits jobs to virtual machines.
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Fig. 11. Service composition of workflow system

B. GridSAM proxy service: proxy for ActiveBPEL to call
GridSAM service

The ActiveBPEL engine cannot dynamically invoke Grid-
SAM Web service due to two reasons. Firstly as virtual
machines are requested dynamically, GridSAM Web services
that are installed on virtual machines only can be identified at
runtime. When the ActiveBPEL engine organizes a workflow,
the endpoints of Web services are not yet returned because the
Virtualization Service is not yet invoked by the ActiveBPEL
engine. The second reason is that he GridSAM Web service
is secured using WS-Security, which is unfortunately not
supported by current release of ActiveBPEL engine.

A proxy service is developed in this work to overcome
the above challenges. The access to the GridSAM proxy Web
service is not secured using WS-security, therefore allowing
non-secure interaction with ActiveBPEL. Instead of involving
the GridSAM Web service directly, the Active BPEL engine
invokes the GVE service and gets a set of endpoints of
GridSAM Web services at runtime. It then invokes the proxy
service and passes the endpoint of GridSAM Web services to
be invoked as parameters. The proxy service thereafter invokes
the GridSAM Web service.

C. Organize the e-Science infrastructure on demand
There are four Web services involved in the e-Science

infrastructure: the ActiveBPEL engine, the Grid Virtualization
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Service, the proxy service, and the GridSAM Web service.

!"#$%&'

(!)*$'+,-.'

''''-%/#%$' 01-' ,2345'6$2*#!$' 02#78(9'

:'

;'

<'
='

>'

?'

@'

A'

B'

:C'

::'

:;'

:<'

Fig. 12. The execution process of the workflow services

The execution process of these services is shown in Fig-
ure 12:

1 The workflow client submits a workflow to the Ac-
tiveBPEL workflow engine;

2 The ActiveBPEL workflow engine requires virtual ma-
chines from the Virtualization Service;

3 The Virtualization Service returns virtual machine pro-
files with GridSAM installation;

4 The ActiveBPEL engine resolves the GridSAM endpoints
from the returned virtual machine profiles;

5 The ActiveBPEL engine submits workflow tasks to the
proxy service with GridSAM endpoints as job parame-
ters;

6 The proxy service submits tasks to GridSAM services;
7 The GridSAM service returns job status to the proxy

service;
8 The proxy service returns job status to the ActiveBPEL

engine service;
9 The ActiveBPEL engine service calls the WaitToJobCom-

plete operation of the proxy service to monitor the job;
10 the proxy service calls the getJobStatus operation of

GridSAM service to get the job status;
11 GridSAM service returns job status to the proxy service;
12 The proxy service returns job status to the ActiveBPEL

engine service;
13 The ActiveBPEL engine service returns results to the

client when the workflow execution finishes.

X. CONCLUSION AND FUTURE WORK

In this paper we present the work of Grid Virtual Engine
(GVE). GVE is a software layer which resides between users
and various Virtual Machine implementations. GVE provides a
standard Web service interface for users to manipulate virtual

machine resources in the wide-area distributed environment,
thereafter to build a Grid computing infrastructure.

The Grid Virtualization Engine distinguishes itself from
related work [1], [19], [20] in that:

• The GVE is designed and implemented in modularity.
System components are wrapped with standard Web
service interfaces. The modular design philosophy brings
advantages such as scalability, availability and interoper-
ability to the system.

• The GVE is designed and implemented in the hierarchical
flavor. The higher level service, the GVE Site Service,
provides a general interface, which is virtual machine
technology independent. The GVE Site Service runs as a
client of the GVE Agent Service. The low level service,
the GVE Agent Service, handles virtual machine specific
implementations. The GVE Agent Service can be plugged
in the system at runtime and serve for multiple GVE
Site Services simultaneously. The hierarchical design
pattern makes the system more scalable to incorporate
new virtual machine technologies.

This paper shows the performance evaluation and sample
usage of the GVE. Test results justify the design and imple-
mentation of the GVE.

The first version of GVE has been released and tested across
multiple computer centers. GVE will be further developed
and deployed in the large scale testbed, for example, pan-
Germany D-Grid [13] testbed for various Grid applications.
In detail, the future work of GVE includes, for example,
development of industrial security control mechanism for the
GVE, accommodation of more virtual machine technologies,
e.g., Xen enterprize server and KVM, and moving the GVE
work into the Cloud computing context, thus enabling to
provide configurable computing platforms from productional
Grid infrastructures.
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