
Grid-based Asynchronous Migration of Execution Context in Java Virtual Machines
Gregor von Laszewski,

�
Kazuyuki Shudo,

�
Yoichi Muraoka

�
�
ArgonneNationalLaboratory, 9700S.CassAve.,Argonne,IL, U.S.A.,gregor@mcs.anl.gov�

Schoolof ScienceandEngineering,WasedaUniversity, 3-4-1Okubo,Shinjuku-ku,Tokyo 169–8555,Japan,
{shudoh,muraoka}@muraoka.info.waseda.ac.jp

14 April 2000

Contents

1 Introduction 1

2 The Thread Migration System MOBA 2
2.1 MOBA SystemComponents . 2
2.2 ProgrammingInterface . 3
2.3 Implementation. 3
2.4 Organizationof theMigration Facilities . 4
2.5 DesignIssuesof ThreadMigration in JVMs . 4

3 Moba/G Service Requirements 6
3.1 Grid-basedRegistrationService . 7
3.2 Grid-basedInstallationService . 8
3.3 Grid-basedStartupService . 8
3.4 AuthenticationandAuthorizationService . 8
3.5 SecureCommunicationService. 9
3.6 TechnicalIssues. 9

4 Performance Evaluation 9

5 Conclusion 10

1

Grid-basedAsynchronousMigrationof ExecutionContext in Java
Virtual Machines

Gregor vonLaszewski
�
, KazuyukiShudo

�
, Yoichi Muraoka

�

�
ArgonneNationalLaboratory, 9700S.CassAve.,Argonne,IL, U.S.A.,gregor@mcs.anl.gov

�
Schoolof ScienceandEngineering,WasedaUniversity, 3-4-1Okubo,Shinjuku-ku,Tokyo 169–8555,Japan,

{shudoh,muraoka}@muraoka.info.waseda.ac.jp

May 18,2000

Abstract

Previous researchefforts for building threadmigration
systemshave concentratedon thedevelopmentof frame-
works dealingwith a small local environmentcontrolled
by a singleuser. ComputationalGridsprovide theoppor-
tunity to utilize a large-scaleenvironmentcontrolledover
different organizationalboundaries.Using this classof
large-scalecomputationalresourcesaspartof athreadmi-
grationsystemprovidesasignificantchallengepreviously
notaddressedby thiscommunity. In thispaperwepresent
a framework that integratesGrid servicesto enhancethe
functionality of a threadmigration system. To accom-
modatefutureGrid services,thedesignof theframework
is bothflexible andextensible.Currently, our threadmi-
grationsystemcontainsGrid servicesfor authentication,
registration,lookup,andautomaticsoftwareinstallation.
In the context of distributed applicationsexecutedon a
Grid-basedinfrastructure,theasynchronousmigrationof
anexecutioncontext canhelpsolve problemssuchasre-
moteexecution,load balancing,andthe developmentof
mobileagents.Ourprototypeis basedonthemigrationof
Java threads,allowing asynchronousand heterogeneous
migrationof theexecutioncontext of therunningcode.
Keywords: threadmigration,Grid.

1 Introduction

Emerging national-scaleComputationalGrid infrastruc-
turesaredeploying advancedservicesbeyondthosetaken

for grantedin today’s Internet,for example,authentica-
tion, remoteaccessto computers,resourcemanagement,
anddirectoryservices.The availability of theseservices
representsbothanopportunityanda challengeanoppor-
tunity becausethey enableaccessto remoteresourcesin
new ways,a challenge:becausethe developerof thread
migration systemsmay needto addressimplementation
issuesor evenmodify existing systemsdesigns.Thesci-
entific problem-solvinginfrastructureof the twenty-first
centurywill supportthecoordinateduseof numerousdis-
tributedheterogeneouscomponents,including advanced
networks, computers,storagedevices, display devices,
and scientific instruments. The term The Grid is often
usedto refer to this emerging infrastructure[5]. NASA’s
Information Power Grid and the NCSA Alliance’s Na-
tional TechnologyGrid are two contemporaryprojects
prototypingGrid systems;bothbuild on a rangeof tech-
nologies,includingmany providedby theGlobusproject.
Globusis ametacomputingtoolkit thatprovidesbasicser-
vicesfor security, job submission,information,andcom-
munication.

The availability of a nationalGrid provides the abil-
ity to exploit this infrastructurewith the next generation
of parallelprograms.Suchprogramswill includemobile
codeasanessentialtool for allowing suchaccessenabled
throughmobileagents. Mobile agentsareprogramsthat
canmigratebetweenhostsin a network (or Grid), in or-
der to find placesof their own choosing. An essential
part for developingmobile agentsystemsis to save the
stateof the running programbeforeit is transportedto

1

thenew host,andrestored,allowing theprogramto con-
tinuewhereit left off. Mobile-agentsystemsdiffer from
process-migrationsystemsin that theagentsmove when
they choose,typically througha go statement,whereasin
a process-migrationsystemthesystemdecideswhenand
whereto move the runningprocess(typically to balance
CPUload)[9].

In an Internet-basedenvironmentmobile agentspro-
videaneffectivechoicefor many applicationsasoutlined
in [11]. Furthermore,this appliesalsoto Grid-basedap-
plications.

Advantagesincludeimprovementsin latency andband-
width of client-server applicationsandreductionin vul-
nerability to network disconnection. Although not all
Grid applicationswill needmobileagents,many otherap-
plicationswill find mobileagentsaneffective implemen-
tationtechniquefor all or partof their tasks.

Themigrationsystemweintroducein thispaperis able
to supportmobileagentsaswell asprocess-migrationsys-
tems,makingit an idealcandidatefor applicationsusing
migrationbasedon the applicationaswell assystemre-
quirements.

Therestof thepaperis structuredasfollows. In thefirst
partwe introducethethreadmigrationsystemMOBA. In
thesecondpartwe describetheextensionsthatallow the
threadmigrationsystemto beusedin a Grid-basedenvi-
ronment.In the third partwe presentinitial performance
resultswith the MOBA system. We concludethe paper
with a summaryof lessonslearnedanda look at future
activities.

2 The Thread Migration System
MOBA

This paperdescribesthe developmentof a Grid-based
threadmigrationsystem.We basedour prototypesystem
onthethreadmigrationsystemMOBA, althoughmany of
the servicesneededto implementsucha framework can
beusedby otherimplementations.

ThenameMOBA is derivedfrom MOBile Agents,since
this systemwasinitially appliedto thecontext of mobile
agents[17][22][14][15]. Nevertheless,MOBA can also
be applied to other computerscience–relatedproblems
suchas the remoteexecutionof jobs [4][8][3]. The ad-

vantagesof MOBA arethreefold:

1. Support for asynchronous migration. Threadmi-
grationcanbe carriedout without the awarenessof
the running code. Thus, migration allows entities
outsidethemigratingthreadto initiatethemigration.
Examplesfor theuseof asynchronousmigrationare
global job schedulersthat attemptto balanceloads
amongmachines. The programdeveloperhas the
clearadvantagethatminimal changesto theoriginal
threadedcodearenecessaryto includesophisticated
migrationstrategies.

2. Support for heterogeneous migration. Threadmi-
gration in our systemis allowed betweenMOBA
processesexecutedon platformswith different op-
eratingsystems.This featuremakes it very attrac-
tivefor usein aGrid-basedenvironment,whichis by
naturebuilt out of a largenumberof heterogeneous
computingcomponents.

3. Support for the execution of native code as part of
the migrating thread. While consideringa thread
migrationsystemfor Grid-basedenvironments,it is
advantageousto enabletheexecutionof native code
aspartof theoverall strategy to supporta largeand
expensive codebase,suchasin scientificprogram-
ming environments.MOBA will, in thenearfuture,
providethiscapability. For moreinformationon this
subjectwe refertheinterestedreaderto [17].

2.1 MOBA System Components

MOBA is basedonasetof componentsthatareillustrated
in Figure1. Next, we explain thefunctionalityof thevar-
iouscomponents:

Place. Threadsare createdand executedin the MOBA
placecomponent.Here they receive externalmes-
sagesto move or decideon their own to move to
a different placecomponent. A MOBA placeac-
cessesa set of MOBA systemcomponents,such
as manager, shared-memory, registry, and security.
Eachcomponenthasa uniquefunctionality within
theMOBA framework.

2

Scheduler

MOBA
Threads

MOBA Place

Scheduler

Security

Shared
Memory

Registry

Manager

MOBA
Threads

MOBA Place

Scheduler

Security

Shared
Memory

Registry

Manager

U
se

r

S
ys

te
m

MOBA Central Server

Security

Shared
Memory

Registry

Manager

.

.

.

.

Figure1: TheMOBA systemcomponentsincludeMOBA placesanda MOBA centralserver. Eachcomponenthasa
setof subcomponentsthatallow threadmigrationbetweenMOBA places.

Manager. A singlepointof controlis usedto providethe
controlof startupandshutdown of thevariouscom-
ponentprocesses.Themanagerallowstheuserto get
andsettheenvironmentfor therespectiveprocesses.

Shared Memory: This componentsharesthe data be-
tweenthreads.

Registry: The registry maintains necessary
information—both static and dynamic—about
all the MOBA componentsand the system re-
sources.This informationincludestheOSnameand
version,installedsoftware, machineattributes,and
theloadon themachines.

Security: The security componentprovides network-
transparentprogramminginterfacesfor accesscon-
trol to all theMOBA components.

Scheduler: A MOBA placehasaccessto user-defined
componentsthat handlethe executionandschedul-
ing of threads.The schedulingstrategy canbe pro-
videdthroughacustompolicy developedby theuser.

2.2 Programming Interface

We have designedthe programminginterfaceto MOBA
on the principle of simplicity. One advantagein using
MOBA is theavailability of a user-friendly programming
interface. For example, with only one statement,the
programmercan instructa threadto migrate; thus,only

a few changesto the original codeare necessaryin or-
der to augmentan existent thread-basedcodeto include
threadmigration. To enablemovability of a thread,we
instantiatea threadby usingtheMobaThread classin-
steadof the normal Java Thread class. Specifically,
theMobaThread classincludesamethod,calledgoTo,
that allows the migration of a thread to anotherma-
chine. In contrastto othermobileagentsystemsfor Java
[10][12][6], programmersusingMOBA canenablethread
migrationwith minorcodemodifications.

An importantfeatureof MOBA is thatmigrationcanbe
orderednot only by the migrantbut alsoby entitiesout-
sidethe migrant. Suchentitiesincludeeven threadsthat
arerunningin thecontext of anotheruser. In thiscase,the
statementto migrateis includednot in themigrant’scode
but in thethreadthat requeststhemove into its own exe-
cutioncontext. To distinguishthis actionfrom thegoTo,
we haveprovidedthemethodmoveTo.

2.3 Implementation

MOBA is basedon a specializedversionof theJava Just-
In-Time (JIT) interpreter. It is implementedasa plug-in
to theJava Virtual Machine(JVM) providedby SunMi-
crosystems.Although MOBA is mostly written in Java,
a smallsetof C functionsenablesefficient accessto per-
form reflectionandto obtainthreadinformationsuchas
the stackframeswithin the virtual machine. Currently,
the systemis supportedon operatingsystemson which
the Sun’s JDK 1.1.x is ported. A port of MOBA based
onJDK 1.2.xis currentlyunderinvestigation.Oursystem

3

allowsheterogeneousmigration[19] by handlingtheexe-
cutioncontext in JVM ratherthanon a particularproces-
soror in anoperatingsystem.Thus,threadsin oursystem
canmigratebetweenJVMson differentplatforms.

2.4 Organization of the Migration Facilities

To facilitate migration within our system,we designed
MOBA as a layeredarchitecture. The migration facili-
ties of MOBA include introspection,objectmarshaling,
threadexternalization,and thread migration. Each of
thesefacilities is supportedand accessedthrough a li-
brary. The relationshipanddependency of themigration
facilities aredepictedin Figure2. The introspectionli-
braryprovidesthesamefunctionasthe reflectionlibrary
that is part of the standardlibrary of Java. Similarly,
objectmarshalingprovidesthe function of serialization,
andthreadexternalizationtranslatesastateof therunning
threadto abytestream.

Thestepsto translatea threadto abytestreamaresum-
marizedin Figure3. In thefirst step,theattributesof the
threadare translated. Suchattributesinclude the name
of the threadandthreadpriority. In the secondstep,all
objectsthatarereachablefrom thethreadobjectaremar-
shaled.Objectsthatareboundto file descriptorsor other
local resourcesareexcludedfrom amigration.In thefinal
step,the executioncontext is serialized.Sincea context
consistsof contentsof stackframesgeneratedby a chain
of methodinvocations,theexternalizerfollows thechain
from older framesto newer onesandserializesthe con-
tentsof the frames.A frameis locatedon the stackin a
JVM andcontainsthestateof acallingmethod.Thestate
consistsof aprogramcounter, operandsto themethod,lo-
cal variables,andelementson thestack,eachof which is
serializedin machine-independentform.

Togetherthefacilitiesfor externalizingthreadsandper-
formingthreadmigrationenabledusto designthecompo-
nentsnecessaryfor theMOBA systemandto enhancethe
JIT compilerin orderto allow asynchronousmigration.

2.5 Design Issues of Thread Migration in
JVMs

In designingour threadmigrationsystem,we facedsev-
eralchallenges.Herewe focuson five.

User Application

Thread
Migration

Thread
Externalization

Introspection

Java Virtual Machine

Object
Marshalling

Moba

C

Figure2: Organizationof MOBA threadmigrationfacili-
tiesandtheir dependencies.

Step 2:
 Serialize Reachable objects
 from the thread

Thread

Class and method name
PC to return (in offset)
Operand stack top
Last-executed PC
Local variables
Stack

order

name, priority

Step 3: Serialize Stack Frames

Step 1: Serialize Attributes

Figure3: Procedureto externalizea thread.

4

Nonpreemptive Scheduling. In orderto enablethemi-
gration of the execution context, the migratory thread
mustbe suspendedat a migration safepoint. Suchmi-
gration safe points are definedwithin the executionof
the JVM whenever it is in a consistentstate. Further-
more,asynchronousmigrationwithin theMOBA system
requiresnonpreemptiveschedulingof Javathreadsto pre-
ventthreadsfrom beingsuspendedatanot-safepoint. De-
pendingontheunderlying(preemptiveor nonpreemptive)
threadschedulingsystemusedin the JVM, MOBA sup-
portseitherasynchronousor cooperative migration(that
is, themigratorythreaddeterminesitself thedestination).
Theavailability of greenthreadswill allow usto provide
asynchronousmigration.

Native Code Support. Most JVMs have a JIT runtime
compilerthat translatesbytecodeto theprocessorsnative
codeat runtime. To enableheterogeneousmigration, a
machine-independentrepresentationof executioncontext
is required. Unfortunately, most existing JIT compilers
do not preserve a programcounteron bytecodewhich is
neededto reacha migration safepoint. Only the pro-
gramcounterof thenativecodeexecutioncanbeobtained
by an existing JIT compiler. Fortunately, Sun’s HotSpot
VM [18] allows the executioncontext on bytecodeto be
capturedduringtheexecutionof thegeneratednativecode
sincecapturingthe programcounteron bytecodeis also
usedfor its dynamicdeoptimization.

Wearedevelopinganenhancedversionof theJIT com-
piler that checks,during the executionof native code,a
flag indicatingwhethertherequestfor capturingthecon-
text canbeperformed.This polling mayhave somecost
in termsof performance,but we expectany decreasein
performanceto besmall.

Selective Migration. In the most primitive migration
systemall objectsreachablefrom the threadobject are
marshaledandreplicatedon thedestinationof themigra-
tion. This approachmay causeproblemsrelatedto lim-
itations occuringduring the accessof systemresources
asdocumentedin [17]. Selective migrationmay be able
to overcometheseproblems,but the implementationis
challengingbecausewe must develop an algorithm de-
terminingthe objectsto be transferred.Additionally, the
migrationsystemmustcooperatewith adistributedobject

system,enablingremotereferenceandremoteoperation.
Specifically, sincethemigratedthreadmustallow access
to theremainingobjectswithin thedistributedobjectsys-
tem,it mustbetightly integratedwithin theJVM. It must
allow the interchangeof a local referencesanda remote
referencesto supportremotearray access,field access,
transparentreplacementof a local objectwith a remote
object,andso forth. Sinceno distributedobjectsystem
implementedin Java (for example,Java RMI, Voyager,
HORB, andmany implementationsof CORBA) satisfies
theserequirements,we have developeda distributedob-
ject systemsupportedby theJIT compilershuJIT[16] to
provide thesecapabilities.

Marshaling Objects Tied to the Local Resource. A
commonproblemin objectmigrationsystemsis how to
maintainobjectsthathavesomerelationto resourcesspe-
cific to, say, a machine.SinceMOBA doesnot allow to
accessobjectsthat residein a remotemachinedirectly, it
mustcopy or migratetheobjectsto the MOBA placeis-
suingtherequest.Objectsthatdependon local resources
(sucha file andsocket descriptors)arenot movedwithin
MOBA, but remainat theoriginal fixedlocation[8][13].

Types of Values on the JVM Stack. In orderto migrate
anobjectfrom onemachineto another, it is importantto
determinethe type of the local objectvariables. Unfor-
tunately, Sun’s JVM doesnot provide a type stackoper-
ating in parallel to the valuestack,suchas the Sumatra
interpreter[1]. Local variablesandoperandsof thecalled
methodstayonthestack.Thevaluesmaybe32-bitor 64-
bit immediatevaluesor referencesto objects.It is difficult
to distinguishthetypesonly by their values.

With aJVM likeSun’s,wehaveeitherto infer thetype
from the value or to determinethe type by a dataflow
analysisthat tracesthe bytecodeof the method(like a
bytecodeverifier). Sincetracing bytecodeto determine
typesis computationallyexpensive, we developeda ver-
sion of MOBA that infers the type from the value. Nev-
ertheless,we recentlydeterminedthat this capability is
not sufficient to obtaina perfectinferenceandvalidation
method.Thus,wearedevelopingamodifiedJIT compiler
thatwill providestackframemaps[2] aspartof Sun’sRe-
searchVM.

5

3 Moba/G Service Requirements

The threadmigration systemMOBA introducedin the
precedingsectionsis usedasa basisfor a Grid-enhanced
versionwhichwewill call MOBA/G. Beforewe describe
the MOBA/G systemin moredetail, we describea sim-
ple Grid-enhancedscenarioto outline our intentionsfor
a Grid-basedMOBA framework. First, we have to deter-
minea subsetof computeresourceson whichourMOBA
systemcanbe executed.To do so,we querythe Globus
MetacomputingDirectory Service(MDS) while looking
for computeresourceson which Globus and the appro-
priate Java VM versionsare installedand on which we
have anaccount.Oncewe have identifieda subsetof all
the machinesreturnedby this queryfor the executionof
the MOBA system,we transferthe necessarycodebase
to the machine(if it is not alreadyinstalledthere). Then
westarttheMOBA placesandregistereachMOBA place
within theMDS.ThecommunicationbetweentheMOBA
placesis performedin a securefashionso that only the
applicationusercandecryptthemessagesexchangedbe-
tweenthem. A load-balancingalgorithmis pluggedinto
the runningMOBA systemthatallows us to executeour
thread-basedprogramrapidly in the dynamicallymain-
tainedMOBA places. During the executionof our pro-
gram we detectthat a MOBA place is not responding.
Sincewehavedesignedourprogramwith check-pointing,
we areableto startnew MOBA placeson underutilized
resourcesandto restartthe failed threadson them. Our
MOBA applicationfinishesandderegistersfrom theGrid
environment.

To derivesuchaversion,wehavetriedto askourselves
severalquestions:

1. What existentGrid servicescanbe usedby MOBA
to enhanceis functionality?

2. What new Grid servicesare neededto provide a
Grid-basedMOBA system?

3. Are any technologicalor implementationissuespre-
ventingtheintegration?

To answerthe first two questions,we identified that the
following serviceswill be neededto enhancethe func-
tionality of MOBA in aGrid-basedenvironment:

Resource Location and Monitoring Services. A re-
sourcelocationserviceis usedto determinepossible
computenodeson which a MOBA place can be
executed. A monitoringserviceis usedto observe
the stateandstatusof the Grid environmentto help
in schedulingthe threadsin the Grid environment.
A combinationof Globus servicescan be usedto
implementthem.

Authentication and Authorization Service. The ex-
istent security componentin MOBA is basedon
a simple centralizedmaintenancebasedon user
accounts and user groups known in a typical
UNIX system. This security componentis not
strong enough to support the increasedsecurity
requirementsin a Grid-basedenvironment. The
Globus project, however, provides a sophisticated
securityinfrastructurethat canbe usedby MOBA.
Authenticationcanbe achievedwith the conceptof
public keys. This securityinfrastructurecanbeused
to augmentmany of the MOBA components,such
assharedmemoryandthescheduler.

Installation and Execution Service. Once a computa-
tional resourcehasbeendiscovered,an installation
serviceis usedto install a MOBA placeon it andto
start the MOBA services. This is a significanten-
hancementto the original MOBA architectureas it
allows the shift from a static to a dynamicpool of
resources.Our intention is to extenda component
in the Globus toolkit to meet the specialneedsof
MOBA.

Secure Communication Service. Objectsin MOBA are
exchangedover theIIOP protocol.Onepossibilityis
to usecommercialenhancementsfor the secureex-
changeof messagesbetweendifferentplaces. An-
othersolutionis to integratetheGlobussecurityin-
frastructure.TheGlobusprojecthasinitiatedan in-
dependentprojectinvestigatingthedevelopmentof a
CORBA framework usinga securityenhancedver-
sionof IIOP.

Theservicesabovecanbebasedon a setof existing Grid
servicesprovidedby theGlobusproject(compareFigure
1). For theintegrationof MOBA andGlobusweneedcon-
sideronly thoseservicesandcomponentsthatincreasethe
functionalityof MOBA within aGrid-basedenvironment.

6

Table1: The Globus servicesthat areusedto build the
MOBA/G threadmigration systemwithin a Grid-based
environment.Servicesthatarenot availablein the initial
MOBA systemareindcatedwith � .

MOBA/G Service Service Globus Compo-
nent

MOBA Place
startup

Resource
Manage-
ment

GRAM

MOBA Object
migration

Commu-
nication

GlobusIO

� Secure Com-
munication,
Authentication,
Secure compo-
nentstartup

Security GSI

MOBA registry Information MDS
� Monitoring Healthand

Status
HBM, NWS

� Remote In-
stallation, Data
Replication

Remote
Data
Access

GASS

H
ea

lth
 &

S
ta

tu
s

R
es

ou
rc

e
M

an
ag

m
en

t

C
om

m
un

ic
at

io
n

In
fo

m
at

io
n

S
ec

ur
ity

R
em

ot
e

D
at

a
A

cc
es

s

User Application

Globus JVM

Operating System

Java CoG

MOBA

Figure4: Thelayeredarchitectureof MOBA/G. TheJava
CoGKit is usedto accessthevariousGlobusServices.

Beforeweexplainin moredetailtheintegrationof each
of theservicesinto theMOBA system,we point out that
many of the servicesare accessiblein Java throughthe
JavaCoGKit. TheJavaCoGKit [20][21] notonly allows
accessto theGlobusservices,but alsoprovidesthebenefit
of usingtheJava framework asthe programmingmodel.
Thus,it is possibleto casttheservicesasJavaBenasand
to usethe sophisticatedeventandthreadmodelsasused
in theprogramsto supporttheMOBA/G implementation.
The relationshipbetweenGlobus, theJava CoGKit, and
MOBA/G is basedonalayeredarchitectureasdepictedin
Figure4.

3.1 Grid-based Registration Service

One of the problemsa Grid-basedapplicationfacesis
to identify the resourceson which the applicationis ex-
ecuted. The MetacomputingDirectory Serviceenables
Grid applicationdevelopersandusersto registertheirser-
viceswith theMDS. TheGrid-basedinformationservice
couldbeusedin severalways:

1. The existing MOBA central registry could regis-
ter its existencewithin the MDS. Thus all MOBA ser-
viceswouldstill interactwith theoriginalMOBA service.
Theadvantageof includingtheMOBA registrywithin the
MDS is thatmultipleMOBA placescouldbestartedwith
multiple MOBA registries,andeachof the placescould
easilylocatethenecessaryinformationfrom theMDS in
order to set up the communicationwith the appropriate
MOBA registry.

2. Theinformationthatis usuallycontainedwithin the
MOBA registry could be storedasLDAP objectswithin
the distributedMDS. Thus,the functionality of the orig-
inal MOBA registry couldbereplacedwith a distributed
registry basedon theMDS functionality.

3. The strategies introducedin (1) and (2) could be
mixed while registeringmultiple enhancedMOBA reg-
istries. Theseenhancedregistrieswould allow the ex-
changeof informationbetweeneachotherandthusfunc-
tion in adistributedfashion.

Which of the methodsintroducedabove is usedde-
pendsontheapplication.Applicationswith highthrough-
put demandbut few MOBA placesaresufficiently sup-
portedby the original MOBA registry. Applicationsthat
havealargenumberof MOBA placesbutdonothavehigh
demandsonthethroughputbenefitfrom atotaldistributed

7

�

��
	 �
	 �
	

��	 ��	

��
������ ��
��
����������� ����

���! "��#�� 	
	
%$&��'(� � 	 ���
) �����!����'*��� +

���!,-���.
!/0�
1 	 � ��
������ ' +

Figure5: Theorganizationaldirectorytreeof adistributed
MOBA/G systembetweentwo organizationsusingthree
computeresources(hn) for runningMOBA places.

registry in theMDS. Applicationsthat fall betweenthese
classesbenefit from a modified MOBA distributed reg-
istry.

We emphasizethat a distributed Grid-basedinforma-
tion servicemustbeableto dealin mostcaseswith orga-
nizationalboundaries(Figure5). All of the MDS-based
solutionsdiscussedaboveprovidethis nontrivial ability.

3.2 Grid-based Installation Service

In a Grid environmentwe foreseethefollowing two pos-
sibilities for the installationof MOBA: (1) MOBA and
Globusarealreadyinstalledon thesystem,andhencewe
do not have to do anything; and(2) we have to identify a
suitablemachineon which MOBA canbe installed.The
following stepsdescribesuch an automaticinstallation
process:

1. Retrievea list of all machinesthatfulfill theinstalla-
tion requirements(e.g.,Globus,JDK1.1,aparticular
OS-version,enoughmemory, accountson which the
userhasaccess,platform-supportedgreen-threads).

2. Selectasubsetof thesemachineson which to install
MOBA.

3. Usea secureGrid-enabledftp programto download
MOBA in anappropriateinstallationspace,andun-
compressthedistribution in this space.

4. ConfigureMOBA while using the provided auto-
configurescript, and completethe installationpro-
cess.

5. Testtheconfiguration,and,if successful,reportand
registertheavailability of MOBA onthemachine.

3.3 Grid-based Startup Service

OnceMOBA is installedonacomputeresourceandauser
decidesto run a MOBA placeon it, it hasto be started
togetherwith all the other MOBA servicesto enablea
MOBA system.Thefollowing stepsareperformedin or-
derto do so:

1. Obtainthe authenticationthroughthe GlobusSecu-
rity serviceto accessthe appropriatecomputere-
source.

2. List all the machineson which a usercan start a
MOBA place.

3. For eachcomputeresourcein the list, startMOBA
throughtheJavaCoGinterfaceto theGlobusremote
job startupservice.

Dependingon the way the registry serviceis run, addi-
tional stepsmaybeneededto startit or to registeranal-
readyrunningregistrywithin theMDS.

3.4 Authentication and Authorization Ser-
vice

In contrastto the existing MOBA security system,the
Grid-basedsecurityserviceis far moresophisticatedand
flexible. It is basedon GSI andallows integrationwith
public keys aswell aswith Kerberos.First, theusermust
authenticateto thesystem.Usingthis Grid-basedsingle-
sign on security serviceallows the user to gain access
to all the resourcesin the Grid without logging onto the
variousmachineson the Grid environmenton which the
userhasaccounts,with potentialdifferentusernamesand
passwords. Onceauthenticated,the usercansubmit re-
mote job requestthat are executedwith the appropriate

8

security authorizationfor the remotemachine. In this
way a usercan accessremotefiles, createthreadsin a
MOBA place,and initiate the migration of threadsbe-
tweenMOBA places.

3.5 Secure Communication Service

Thesecurecommunicationcanbeenabledwhile usingthe
GlobusIOlibrary andsendingmessagesfrom oneGlobus
machineto another. This serviceallows oneto sendany
serializableobjector simplemessage(e.g.,threadmigra-
tion, classfile transfer, andcommandsto theMOBA com-
mandinterpreter)to otherMOBA placesexecutedunder
Globus-enabledmachines.

3.6 Technical Issues

Although MOBA currently is basedon a particularver-
sionof theJVM, it is possibleto usemany of thestandard
servicesfrom within Java andthroughthe Java CoG Kit
(somecomponentsrequireJDK 1.2). Alternatively, one
can replacethe accessto Globus throughthe Java CoG
Kit with the GlobusC API calls. Sincesomethreadmi-
gration facilities within MOBA requirea small setof C
functionality, this posesno problemsfor an integration.
Furthermore,we have identifiedthat the startupand the
installationserviceareorthogonalto theoriginal MOBA
systemandcanbeusedby many otherapplicationusers.
Thuswe are designingtheseservicesindependentfrom
theactualMOBA implementation.

4 Performance Evaluation

We evaluatedtheperformanceof MOBA’smobility func-
tion by using two machinesconnectedvia oneEthernet
repeater, in a100-Mbit/secEthernet.Oneof themachines
hadanUltraSPARC–II 167MHz processor, theotherhad
anUltraSPARC–II 296MHz processor, andSunOS5 ran
onbothmachines.We usedthereferenceimplementation
of JDK 1.1.8with MOBA andusedtheproductionrelease
of JDK 1.1.7with othersystems,andwe usedinterpreter
with MOBA andtheSunJIT compilerwith othersystems
sinceMOBA cannotwork with existing JIT compilers.

Table2: Latency of a one-waymigration(msec).
No. of Roundtrips 1 10 20 50

MOBA 191.0 109.3 105.53 105.32
Voyager 292.5 57.05 44.00 37.08

Latency of Migration. We describeda simple and
lightweightmigrantwith MOBA andwith VoyagerORB
3.0 [12] . With MOBA the following pseudocodeis de-
ployedin themigratorythreads:

startTime:= getTime();
for (i = 0; i < repeat_time;i++) {
goTo thedestination;
returnto theoriginal machine;
}
time:= getTime()- startTime;

Using Voyager, we provided the following pseudocode
outsidethe migratoryobject,while usingVoyager’s mo-
bility facilities:

createa migratoryobject;
startTime:= getTime();

for (i = 0; i < repeat_time;i++) {
movetheobjectto thedestination;
movetheobjectto theoriginal machine;

}
time:= getTime()- startTime;

The migrationtimesobtainedarelisted in Table2. One
questionwe asked ourselves was whether the perfor-
manceof migrationin MOBA is comparablewith a mo-
bile agentsystemsuchasVoyagerthat doesnot support
migrationof executioncontext. WeobservedthatVoyager
shows lower latency for multiple roundtrips. Neverthe-
less,MOBA outperformsVoyagerif only oneroundtripis
performed. This is the caseeven thoughMOBA moves
the executioncontext in additionto the dataheld by the
migrant. Thus,for applicationswherethe latency of the
migrationis important,webelievethatMOBA is suitable.

Throughput. We also usedMOBA for remoteexecu-
tion, measuredthe data transfer throughput,and com-
paredit with the throughputobtainedusing two object
requestbroker (ORB)s for Java basedon RMI [23] and

9

Round trip time of remote execution

MOBA: 188n + 240

RMI: 303n + 3.57

HORB: 257n + 4.99

0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5

Transferred data size (Mbyte)

R
ou

nd
 tr

ip
 ti

m
e

(m
se

c)

MOBA
RMI
HORB

Figure6: Round-triptimeof remoteexecution.

HORB [7]. To performa simplethroughputexperiment,
wemeasuredthetime it took for aremotemethodinvoca-
tion with anargumentandno returnvalue.Theargument
wasa largearrayof 64-bit floatingpoint value:

double[] argument= new double[array_size];
remoteRef:= get theremotereference;
startTime:= getTime();
remoteRef.aMethod(argument);

finalTime:= getTime();
time:= getTime()- startTime;

In thecaseof MOBA, remoteexecutionis doneby thread
migrationemulatingremotemethodinvocation.Themi-
grant goesto the target machinewith an argumentand
return. The following codeis deployed in the migratory
thread’sself:

double[] argument= new double[array_size];
startTime:= getTime();
goTo(targetmachine);
argument= null; // this discardstheargu-

ment
goTo(original machine);
time:= getTime()- startTime;

As shown in Figure 6, when the amountof datatrans-
ferred is small, MOBA takesmore time than the ORBs
dobecauseit movestheexecutioncontext aswell asdata.
Thus,the time taken by a threadmigrationwith MOBA
is largerthanthelatency of aremoteinvocationof ORBs,

but thedatatransferthroughputis betterwith MOBA than
with theothersystems.

5 Conclusion

We havedesignedandimplementedmigrationsystemfor
Java threadsasaplug-in to anexistingJVM thatsupports
asynchronousmigrationof executioncontext. As partof
this paperwe discussedvariousissues,suchaswhether
objectsreachablefrom themigrantshouldbemoved,how
the typesof valuesin the stackcan be identified, how
compatibility with JIT compilerscan be achieved, and
how systemresourcestied to moving objectsshouldbe
handled.As a resultof this analysis,we aredesigninga
JIT compilerthat improvesour currentprototype.It will
supportasynchronousandheterogeneousmigrationwith
executionof nativecode.Theinitial stepto suchasystem
is alreadyachievedbecausewehavealreadyimplemented
a distributedobjectsystembasedon the JIT compilerto
supportselective migration. Althoughthis is anachieve-
mentby itself,wehaveenhancedourvisionto includethe
emergingGrid infrastructure.Basedon theavailability of
matureservicesprovided as part of the Grid infrastruc-
ture, we have modifiedour designto includesignificant
changesin thesystemarchitecture.Additionally, wehave
identifiedservicesthatcanbeusedby otherGrid applica-
tion developers.We feel that the integrationof a thread
migrationsystemin aGrid-basedenvironmenthashelped
us to shapefuture activities in the Grid community, as
well asto makeimprovementsin thethreadmigrationsys-
tem.

Acknowledgments

This work was supportedby the Researchfor the Fu-
ture (RFTF) program launchedby JapanSociety for
the Promotion of Science(JSPS)and funded by the
Japanesegovernment. The work performedby Gregor
von Laszewski work wassupportedby theMathematical,
Information, and ComputationalScienceDivision sub-
programof theOffice of AdvancedScientificComputing
Research,U.S.Departmentof Energy, underContractW-
31-109-Eng-38.Globusresearchanddevelopmentis sup-
portedby DARPA, DOE,andNSF.

10

References

[1] AnuragAcharya,M. Ranganathan,andJoel Saltz.
Sumatra: A languagefor resource-aware mobile
programs.In J.Vitek andC. Tschudin,editors,Mo-
bile ObjectSystems. SpringerVerlagLectureNotes
in ComputerScience,1997.

[2] Ole Agesen. GC points in a threaded en-
vironment. Technical Report SMLI TR-98-
70, Sun Microsystems, Inc., December 1998.
http://www.sun.com/research/jtech/pubs/.

[3] BozhidarDimitrov andVernonRego. Arachne:A
portablethreadssystemsupportingmigrantthreads
onheterogeneousnetwork farms.IEEETransaction
on Parallel andDistributedSystems, 9(5):459–469,
May 1998.

[4] M. Ra̧sit Eskicioğlu. DesignIssuesof ProcessMi-
grationFacilitiesin DistributedSystem.IEEETech-
nical Comitteeon Operating SystemsNewsletter,
4(2):3–13,Winter 1989. Reprintedin Scheduling
andLoadBalancingin Parallel andDistributedSys-
tems, IEEEComputerSocietyPress.

[5] I. Foster and C. Kesselman,editors. The Grid:
Blueprint for a Future ComputingInfrastructure.
MorganKaufmann,1998.

[6] General Magic, Inc. Odyssey information.
http://www.genmagic.com/technology/odyssey.html.

[7] SatoshiHirano. HORB: Distributed executionof
Javaprograms.In Proceedingsof World Wide Com-
putingandIts Applications, March1997.

[8] Eric Jul,HenryLevy, NormanHutchinson,andAn-
drew Black. Fine-GrainedMobility in theEmerald
System. ACM Transactionon ComputerSystems,
6(1):109–133,February1988.

[9] David Kotz andRobertS. Gray. Mobile agentsand
the future of the internet. ACM Operating Systems
Review, 33(3):7–13,August1999.

[10] Danny LangeandMitsuru Oshima. Programming
andDeployingJavaMobileAgentswith Aglets. Ad-
disonWesley Longman,Inc., 1998.

[11] Danny B. LangeandMitsuru Oshima. Sevengood
reasonsfor mobile agents.Communicationsof the
ACM, 42(3):88–89,March1999.

[12] ObjectSpace, Inc. Voyager.
http://www.objectspace.com/products/Voyager/.

[13] M. Ranganathan,AnuragAcharya,ShamikSharma,
andJoelSaltz.Network-awaremobileprograms.In
Proceedingsof USENIX’97, January1997.

[14] TatsuroSekiguchi,Hidehiko Masuhara,andAkinori
Yonezawa. A simpleextensionof Java languagefor
controllabletransparentmigration and its portable
implementation.In Springer LectureNotesin Com-
puterSciencefor InternationalConferenceonCoor-
dination Models and Languages(Coordination99),
1999.

[15] Tatsurou Sekiguchi. JavaGo manual, 1998.
http://web.yl.is.s.u-tokyo.ac.jp/amo/JavaGo/doc/.

[16] Kazuyuki SHUDO. shuJIT—JITcompiler for Sun
JVM/x86,1998.http://www.shudo.net/jit/.

[17] KazuyukiShudoandYoichi Muraoka.Noncoopera-
tive Migration of ExecutionContext in Java Virtual
Machines. In Proc. of the First AnnualWorkshop
on Java for High-PerformanceComputing(in con-
junction with ACM ICS’99), Rhodes,Greece,June
1999.

[18] Inc. Sun Microsystems. The Java
HotSpot performance engine architecture.
http://www.javasoft.com/products/hotspot/ whitepa-
per.html.

[19] Marvin M. Theimerand Barry Hayes. Heteroge-
neousProcessMigrationby Recompilation.In Proc.
IEEE 11th InternationalConferenceon Distributed
ComputingSystems, pages18–25,1991. Reprinted
in Schedulingand Load Balancingin Parallel and
DistributedSystems, IEEEComputerSocietyPress.

[20] Gregor von Laszewski andIan Foster. Grid Infras-
tructureto SupportSciencePortalsfor LargeScale
Instruments. In Proc. of the WorkshopDistributed
Computingon the Web (DCW), pages1–16, Ros-
tock,June1999.Universityof Rostock,Germany.

11

[21] Gregor von Laszewski, Ian Foster, Jarek Gawor,
Warren Smith, and Steve Tuecke. CoG Kits: A
BridgebetweenCommodityDistributedComputing
and High-PerformanceGrids. In ACM 2000 Java
GrandeConference, SanFrancisco,California,June
3-42000.http://www.extreme.indiana.edu/java00.

[22] JamesE. White. TelescriptTechnology: TheFoun-
dation of the Electronic Marketplace. General
Magic, Inc., 1994.

[23] Ann Wollrath,RogerRiggs,andJim Waldo. A Dis-
tributedObjectModel for the Java System. In The
SecondConferenceon Object–OrientedTechnology
andSystems(COOTS)Proceedings, pages219–231,
1996.

Biographies

Gregor von Laszewski is an assistantscientist in the
MathematicsandComputerScienceDivision at Ar-
gonneand a Fellow of the ComputationalScience
Instituteat University of Chicago. He received his
M.S. degreefrom University of Bonn, Germany, in
1989,anda Ph.D.degreein computersciencefrom
SyracuseUniversity in 1997. His researchinterests
includetheapplicationof parallelcomputingin sci-
entific applications,object-orientedsystemdesign,
and the interplay betweencommodity and "Grid"
technologies.

Kazuyuki Shudo receivedhis B.E. andM.E. degreesin
computersciencefrom WasedaUniversity, Japan,in
1996 and 1998, respectively. Since 1998, he has
beenworking as a researchassociateand is now
alsoaPh.D.degreecandidateat thesameuniversity.
His currentresearchinterestsinvolvedistributedpro-
cessingsystem,especiallyglobal computing,pro-
grammingmodelandlanguagedesign,andinforma-
tion security. He is a memberthe IEEE Computer
Society.

Yoichi Muraoka is a professorof informationandcom-
puter scienceat WasedaUniversity, Japan. He
received his B.E. degree from WasedaUniversity,
Japan,in 1965,anda Ph.D.degreein computersci-
encefrom theUniversityof Illinois in 1971.Thenhe
workedasaresearchassociateat thesameuniversity
andNipponTelegraphandTelephonePublicCorpo-
ration. Since1985,hehasbeena professorandnow
is thechief of theMediaNetwork Centerat Waseda
University. His researchinterestsinclude parallel
processingandthehuman-machineinterface.

12

Copyright Form

Conference/Book: Euro-Par2000– ParallelProcessing

Volume Editor(s): Arndt Bode,ThomasLudwig, RolandWismüller.

Title of the contribution: Grid-basedAsynchronousMigration of ExecutionContext in JavaVirtual Machines

Name and address of corresponding author (please print): Gregor von Laszewski ArgonneNationalLaboratory,
9700S.CassAve.,Argonne,IL, U.S.A.gregor@mcs.anl.gov

It is herein agreed that: The copyright to the contribution identifiedabove is transferredto Springer-VerlagBerlin
Heidelberg New York (for U.S.governmentemployees:to theextenttransferable).Thecopyright transfercovers
the exclusive right to reproduceand distribute the contribution, including reprints, translations,photographic
reproductions,microform,electronicform (offline, online),or any otherreproductionsof similar nature.

The Author may publish his/her contribution on his/her personalWeb pageprovided that he/shecreatesa
link to the above mentionedvolumeof LNCS at the Springer-Verlagserver or to the LNCS seriesHomepage
(URL: http://www.springer.de/comp/lncs/index.html) andthat togetherwith this electronicversionit is clearly
pointedout, by prominentlyadding" c

2
Springer-Verlag", that the copyright for this contribution is held by

Springer. FromthePublisher?spoint of view, it would bedesirablethat the full-text versionbemadeavailable
from the Author?sWeb pageonly after a delayof 12 monthsfollowing the publicationof the book, whereas
sucha delayis not requiredfor theabstract.

The Author may not publish his/her contribution anywhere else without the prior written permissionof
thepublisherunlessit hasbeenchangedsubstantially.

The Author warrantsthat his/hercontribution is original, except for suchexcerptsfrom copyrightedworks as
may be includedwith the permissionof the copyright holder andauthorthereof,that it containsno libelous
statements,anddoesnot infringeonany copyright, trademark,patent,statutoryright, or proprietyright of others.

The Author signs for and acceptsresponsibility for releasingthis material on behalf of any and all coau-
thors.

In return for these rights: ThePublisheragreesto publishthe identifiedcontribution at his own costandexpense.
TheAuthorsareentitledto purchasefor their personalusebookspublishedby Springer-Verlagwith a discount
of 33 1/3%off thelist price.Resaleof suchcopiesis not permitted.

The undersignedhereby gives permission to Springer-Verlag to publish the above contribution to the
abovebook.

Author’sSignature: Date:April 14,2000

Contact: Springer-VerlagHeidelberg
LNCS EditorialTiergartenstr. 17
D-69121Heidelberg Germany
FAX: +496221487588
Email: LNCS@Springer.de

13

