
The Java CoG Kit Experiment Manager

Gregor von Laszewski,1,2 Phillip Zimny,3,1 Tan Trieu,4,1 David Angulo5

1 Argonne National Laboratory, Argonne National Laboratory,

9700 S. Cass Ave., Argonne, IL 60440

2 University of Chicago, Computation Institute,

Research Institutes Building #402, 5640 South Ellis Ave., Chicago, IL 60637-1433

3 Loyola University Chicago, Department of Computer Science, Lewis Towers,

Suite 416, Water Tower Campus, Chicago, IL, 60611

4 Santa Clara University, Department of Computer Engineering,

500 El Camino Real, Santa Clara, CA 95053

5 DePaul University, School of Computer Science, Telecommunications, and Information Systems,

CTI 650, 243 S. Wabash, Chicago, IL 60604

Abstract

In this paper, we introduce a framework for experi-
ment management that simplifies the user’s interac-
tion with Grid environments. We have developed a
service that allows the individual scientist to manage
a large number of tasks as typically found in exper-
iment management. Our service includes the ability
to conduct application state notifications. Similar to
the definition of standard output and standard er-
ror, we have defined standard status that allows us
to conduct application status notifications. We have
tested our tool with a large number of long running
experiments, and shown its usability in practical ap-
plications such as bioinformatics.

1 Introduction

Grid computing addresses the challenge of coordi-
nating resource sharing and problem solving in dy-
namic, multi-institutional virtual organizations [1].
The analogy between the computational grid and
the power grid highlights the emphasis on virtual-
ization. A user plugs an appliance into the power
outlet and expects the delivery of power without con-
cern for the whereabouts of the power source. Just
as the electric power grid allows pervasive access to
electric power, computational grids provide perva-
sive access to compute-related resources and services
[2]. The Grid’s focus on integrating heterogeneous,
distributed resources for the purpose of high perfor-

mance computing differentiates it from other tech-
nologies such as cluster computing and the Web. The
Grid’s ability to virtualize a collection of disparate re-
sources to solve problems promises effortless collabo-
ration among the scientific communities.

The construction of the Grid requires the estab-
lishment of standards for a secure and robust in-
frastructure. One such undertaking is the defini-
tion of the Open Grid Services Architecture (OGSA),
which provides a specification for a standard service-
oriented Grid framework [2]. The implementation
of the services form the Grid middleware, and the
Globus Toolkit [3] is today’s de facto standard Grid
middleware [4]. The toolkit provides an elementary
set of facilities to handle security, communication, in-
formation, resource management, and data manage-
ment services [2]. However, the set of services may
not be compatible with the commodity technologies
that Grid application developers use. The Commod-
ity Grid project addresses the incompatibility by cre-
ating Commodity Grid (CoG) Kits that define map-
pings and interfaces between Grid services and partic-
ular commodity frameworks such as Java, Perl, and
Python [2].

The Java CoG Kit provides more than just a map-
ping between Java and the Globus Toolkit. The Java
CoG Kit bridges the Java commodity framework and
Grid technology. In addition, it contains a number
of convenient services not found in Grid middleware.
This means it not only defines a set of convenient
classes that provide the Java programmer with ac-

1

cess to basic Grid services [5], but also integrates a
number of sophisticated abstractions, one of which is
a workflow system [6]. Hence, it provides a significant
feature enhancement to existing Grid middleware [2].

A popular use of the Grid is motivated by the field
of bioinformatics, where applications such as Grid-
enabled Basic Local Alignment Search Tool (BLAST)
[?] are used to compare base or amino acid sequences
registered in a database with sequences provided by
the user [?]. BLAST runs can generate numerous
queries that require hours or even days to complete.
Managing such studies requires that scientists main-
tain the status and outputs of the individual queries,
distancing them from the experiment at hand and
burdening them with the tedious task of checking for
job status and output. In an effort to relieve the sci-
entist from the drudgery of managing output data
and provide the scientist with a tool to monitor the
progress of submitted jobs, we introduce the concept
of an experiment. An experiment can be defined as
tasks that are executed on the Grid with their asso-
ciated output stored in a user-defined location. In
this paper we show that the Java CoG Kit is ideally
suited to support such a high level service. Using the
facilities provided by the Java CoG Kit, we create a
user-driven experiment management system to sim-
plify the administration and execution of repetitive
tasks that use similar parameters.

The user-driven experiment management tool com-
bines features of several tools to empower the novice
Grid user. It includes features typically found in
queuing systems, shells with history, and process
monitoring programs such as the well-known UNIX
ps command. Naturally, it is also includes specific en-
hancements for the Grid environment. To emphasize
the similarities, consider a typical use case of a user
working in a UNIX command shell. The user queries
which jobs have been submitted with the shell’s his-
tory function. The status of the process, a running
instance of a program, can be obtained by issuing the
ps command. The output provides information such
as the process ID, current status, the cumulated CPU
time, and executable name. Our experiment manage-
ment system provides a similar interface, displaying
the added experiments in a format that includes the
experiment ID, current status, cumulative time the
experiment has been queued, and experiment name.
However, as an extension to the ps command and
history management tools provided by the shells, we
must integrate user accessible outputs and error files
on a command-by-command basis.

A preliminary version of the execution manager has
been available for years as part of the Java CoG Kit
under the name Grid Command Manager (GCM).
However, we enhanced its functionality significantly.
The enhancements include experiment status check-
pointing, management support for a large number
of experiment submissions, and the integration of
fault tolerant queues for managing experiment sub-
missions.

The rest of the paper is structured as follows. First,
we present a use case for our framework. Then we dis-
cuss the requirements derived from the use case that
lead us to redesign the Grid Command Manager for
experiment support. Next, we describe the architec-
ture that fulfills our requirements. We describe the
implementation and present preliminary performance
results. We conclude the paper with our thoughts on
future work to be conducted.

2 Use Case

While motivation for this project was derived from
several different use cases, this paper focuses on the
following single use case of bioinformatics research.

The Basic Local Alignment Search Tool (BLAST)
is one of the most popular tools for searching nu-
cleotide and protein databases. It tests a nucleotide
sequence against a database of known sequences and
returns similarities. BLAST offers many different
types of queries including ones such as nucleotide to
nucleotide, protein to nucleotide, protein to protein,
nucleotide to protein, as well as many more. Biolo-
gists use this tool to help them discover the identity
of the sequence they are studying or to identify the
biological function of the sequence they are studying
by comparing it to similar known sequences BLAST
finds [?].

Biologists may find themselves in the scenario
where they wish to research a specific genetic se-
quence by making 500 different modifications to the
sequence, and then run it through BLAST to see if
the modification produces any characteristics of other
sequences. The biologist would start by running the
original sequence and then run each of the 500 modi-
fications. At the beginning of each submission of the
BLAST run, the biologist would have to name the
task and then keep track of the 500 different names.
Upon the completion of the BLAST run, the biologist
would then have to move the output files into sepa-
rate directories which would have to be named and
then remembered.

2

Once the biologist has completed the 500 BLAST
runs, there are 500 different outputs to manage. The
biologist most likely does not want to devise a method
of organizing all of the different output they have cre-
ated. Even once organized, there is little additional
data associated with the outputs to allow the biolo-
gist to search through the output files. This research
method is inefficient and time-consuming. In essence,
it is not an optimal way for a biologist to conduct ex-
periments.

The cog-experiment tool offers a way to make this
process not only much simpler, but also much more
efficient. This tool allows the biologist to set up
the submission process to repeat itself however many
times necessary, while making slight modifications to
the submission parameters. For this example, the
modification to the parameters would be the name of
the file in which the modified sequence was stored.
The submission process no longer requires the biolo-
gist’s presence. If these submissions took long periods
of time to complete, such as several days, the cog-
experiment tool would also checkpoint progress on
the completion of a submitted task so the researcher
would not have to start the task over from the begin-
ning.

In addition to offering a better submission proce-
dure to the biologist, the cog-experiment tool simpli-
fies the file management for the biologist. The biolo-
gist may pick one name and the cog-experiment tool
will automatically assign a sequential version number
to each submission. The biologist now has an easy to
understand version schema. This auto-naming fea-
ture takes away any concerns about over writing data
or forgetting the names used for submission.

Once each submission has been automatically
named, a folder of the same name is created to store
that individual submission’s files on the user’s local
machine. Now the biologist has all of their submission
files properly named and has the output files neatly
stored in individual folders. However, as this may
still be too cumbersome to effectively manage all of
the output, we introduce metadata into the experi-
ment functionality.

The biologist can use the option to enter meta-
data about experiments on an individual basis. In-
formation about a specific experiment such as author,
time, or other notes can be saved to persistent stor-
age. When biologists do this, it allows them to search
more specifically through all the outputs. For exam-
ple, if the biologist wants to view all the experiments
generated from a certain day, a simple search can

be done for that date which displays all experiments
from that date to the screen.

3 Requirements

From the use case described, we derive several ma-
jor requirements that include automated experiment
checkpointing, transparent output management, au-
tomated version control, metadata management, ap-
plication status reporting, persistent experiment ses-
sions, and scalable experiment updating. Next, we
will discuss each of the requirements in detail.

Automated Checkpointing. A basic assump-
tion that the experiment management system makes
about experiments is that they are non-interactive,
long running jobs. With long running experiments,
the expectation that the host requesting the remote
resource maintains an uninterrupted connection with
the remote resource is impractical. From this stems
the requirement that checkpointing, or saving the
state, of an experiment must be a transparent pro-
cess so that users do not have to associate experi-
ments with checkpoint files. After submitting an ex-
periment, a user must only associate the experiment
with its name in order to track its status.

Transparent Output Management. To shield
the user from details about the Grid, the standard
output (stdout) and standard error (stderr) are auto-
matically saved in a predetermined experiment path
location to prevent the impression that the stdout
and stderr have vanished because they reside on the
remote execution host or because the experiment has
been duplicated (see also Version Control). Such
functionality provides the illusion of localized com-
puting while using the Grid.

Version Control. Storage of output files leads to
the requirement of output version control. When an
experiment is submitted more than once, the output
from its previous runs needs to be stored and acces-
sible for future comparison. Automated version con-
trol removes the responsibilities of renaming, moving,
and organizing different versions of output from the
scientist.

Metadata Management. A scientist often has
additional information about an experiment that
needs to be managed. Such information include the

3

authors of the experiment, the date, and other infor-
mation pertinent for organizing and documenting of
an experiment. Metadata will allow the scientist to
reference more than just the output to identify each
experiment. Hence, an additional requirement is to
provide a system to automatically maintain metadata
for each experiment. This system must allow for easy
entry and editing of an experiment’s metadata.

Application Status Reporting. Besides retriev-
ing stdout and stderr, we believe that users will bene-
fit from application status reporting. When checking
the status of an experiment that has failed the user
may wonder what triggered or caused the failure. The
user can query a standard status to review the events
that occurred before the failure.

The use of a standard status goes beyond error re-
porting; it provides a simple technique for runtime
application status notification. For experiments that
take days to complete, knowing that the experiment
is running is often inadequate. The standard sta-
tus provides a mechanism for application developers
to expose a more detailed record of the application’s
progress during execution.

Persistent Experiment Sessions. The ability to
load information about previous experiments when
restarting the experiment manager is an important
maintenance tool. In case the experiment manager
abruptly shuts down or if the user has multiple in-
stances of the experiment manager running, persis-
tence enables the user to maintain sessions.

Scalable Experiment Status Updating. With
persistent sessions, the number of experiments within
a session can grow quite large. The task of updat-
ing the status of such a large number of experiments
can consume a disproportionate amount of comput-
ing resources on the client machine. The experiment
management system thus needs to update the status
of all experiments in a scalable fashion.

4 Architecture

The architecture of the experiment management sys-
tem integrates with the Java CoG Kit’s layered ap-
proach. The experiment management system is a
module that reuses the abstractions layer while ex-
posing a command line tool. The abstractions layer
provides high level abstractions that include Grid

tasks, transfers, jobs, and queues that make devel-
oping Grid programs easier [6].

The experiment management system consists of
two primary components, an experiment manager
and a command line component. These components
communicate via a socket, with the experiment man-
ager running as a background process that services
requests from the command line component to add,
remove, submit, list, and retrieve the status of exper-
iments.

Figure 1 depicts the architecture of the experiment
management system. The heart of the system is the
experiment manager component, which maintains ex-
periment status with a set of four queues: pending,
submitted, completed, and failed. An experiment’s
transition through the queueing system is illustrated
through the state diagram in Figure 2. The user has
control over two state transitions: adding an exper-
iment to the pending queue, and performing a lo-
cal submit to move the experiment to the submitted
queue. The rest of the state transitions are handled
by a background thread that periodically updates the
status of the queued experiments.

cog-experiment command line interface

Grid infrastructure

Experiment Manager

Pending Queue

Submitted Queue

Completed Queue

Failed Queue

Checkpointed

Queues

Experiments

Repository

W

R/W

R/W

Experiment Status

Figure 1: The architecture of the Java CoG Kit ex-
periment management framework.

The experiment manager uses persistent storage to
provide automated experiment checkpointing, trans-
parent output management, and persistent experi-
ment sessions. The automated experiment check-
pointing and transparent output management func-
tions rely on an experiment repository to store the
checkpoint files for each submitted experiment and to
save the stdout, stderr, and stdstatus resulting from
an experiment. To provide persistent experiment ses-

4

CompletedFailed

Local Submit

Add

Grid Submit

End

Running

Submitted

Pending

Begin

Local Submission Failure

Grid Submission Failure

Runtime Failure

Completion with Failure

Figure 2: State diagram of an experiment as it tran-
sitions through the four queues.

sion functions, the experiment manager periodically
checkpoints the status of the four queues to a persis-
tent storage, where the status of the four queues can
be reloaded when the system is restarted.

The cog-experiment command line interface com-
ponent provides access to the experiment manager
functions to add, remove, submit, and retrieve the
status of experiments. The command line interface
also provides other functions such as metadata main-
tenance and version control, and thus requires read
and write access to the experiments repository.

5 Implementation

The implementation of the experiment management
system is split into two components: the client com-
mand line interface and the experiment manager ser-
vice.

5.1 Client

The client is composed of four key classes, Experi-
mentManagerClient, ExperimentMetadataImpl, Ex-
perimentOutputManager, and ExperimentDataMan-
ager.

The ExperimentManagerClient class parses the
command line arguments provided by the user to
determine the appropriate actions to take. Ex-
perimentManagerClient’s file management methods
such as auto-versioning or metadata storage use in-
stances of the ExperimentMetadataImpl class. The
view and search methods of ExperimentManager-

Client use instances of the ExperimentOutputMan-
ager class. To help keep the metadata organized
throughout the client, ExperimentMetadataImpl and
ExperimentOutputManager both use instances of the
class ExperimentDataManager. This class hierarchy
is visualized in Figure 3.

ExperientManagerClient

ExperimentMetaDataImpl ExperimentOutputManager

ExperimentDataManager ExperimentDataManager

Figure 3: Visualization of the client class hierarchy.

ExperimentDataManager manages all of the meta-
data of an experiment and allows the client to refer-
ence the metadata through the instance of one object.
This class stores the separate pieces of metadata. The
ExperimentDataManager class contains only simple
methods such to set and retrieve information from
within the class.

ExperimentMetadataImpl class is implemented us-
ing a variety of technologies. It uses JPanel from
Java’s SWING package to construct the graphical
user interface that is presented to the user for en-
tering the metadata for an experiment. This inter-
face retrieves the metadata, stores the information
as an instance of the ExperimentDataManager class,
and saves the instance to persistent storage. The in-
stance of the ExperimentDataManager class is writ-
ten to an XML file named after the experiment using
the toXML() method from the XStream package [?].

The location at which experiment files are stored
to persistent data can be customized by setting
the COG EXPERIMENT PATH environment vari-
able to a user specified location. Upon creating an
experiment, a folder named after the experiment is
created to store the experiment’s metadata file, std-
out, stderr, and stdstatus. Figure 4 depicts the de-
fault COG EXPERIMENT PATH directory hierar-
chy.

5

COG_EXPERIMENT_PATH

.globus

experiment

genes-1

genes-1.xml

stdout

stderr

stdstatus

genes-2
genes-2.xml

stdout

stderr

stdstatus

Figure 4: Default COG EXPERIMENT PATH di-
rectory hierarchy.

As one of the default settings, the name of the ex-
periment is ultimately determined not by the user,
but by the auto-naming method inside of the Ex-
perimentMetadataImpl class. This method automat-
ically increments a number that is attached to the
end of the name of the experiment the user enters.
To keep track of all the experiments that have been
created, ExperimentMetadataImpl writes all of the
experiment names to persistent storage. These names
are saved to an XML file named versions.xml using
the XStream toXML() method. This file is referenced
when the auto-naming method determines the correct
version number for an experiment or when the client
needs to know the names of all the experiments.

ExperimentOutputManager is designed to han-
dle the user’s view and search commands. It uses
XStream’s fromXML() to load the names stored in
the versions.xml file as well as each experiment’s
saved instance of the ExperimentDataManager class.
Once the necessary information has been loaded, ex-
periment output manager conducts the specified com-
mand and returns the results.

5.2 Server

The server consists of four threads of execution: (1)
the main thread of execution listens for and responds
to requests from the client; (2) another thread inter-
mittently checkpoints the four queues; (3) and (4) two
threads update the status of submitted experiments.

The main thread instantiates the experiment man-
ager class that is responsible for providing all the nec-
essary methods to expose an interface for the client

to communicate with the server. Upon startup, the
main thread loads the checkpointed queues, if any,
from the experiment path that is specified by the
COG EXPERIMENT PATH environment variable.
Once the checkpointed queues are loaded, the main
thread spawns two new threads that are responsible
for updating the status of experiments in the submit-
ted queue. The number of threads and their polling
intervals can be adjusted for performance fine-tuning.
Using only two threads to monitor and update ex-
periment status allows the experiment management
system to provide reasonable response time while re-
stricting resource consumption. These threads also
automate the retrieval of any output associated with
the experiment. Because they can detect an experi-
ment’s change in state, these threads update the stan-
dard output, error, and status on a minimal basis.
Thus the use of the two threads, instead of creat-
ing a new thread for each experiment, helps conserve
compute cycles and reduce disk I/O. The final thread
initiated during the experiment manager startup pro-
cess saves the states of the four status queues at a
configurable interval. Periodically checkpointing the
four queues addresses the possibility of an abrupt in-
terruption preventing the experiment manager from
gracefully halting.

The server uses four levels of class containment,
and Figure 5 illustrates the containment relationship.
At the root of the containment relationship is the
ExperimentManager class that provides the server-
side functions to respond to the commands that the
client issues. The commands supported by the Ex-
perimentManager class include add, submit, list, sta-
tus, and stop. The ExperimentManager class imple-
ments the functions based on the four queues that
it maintains: pending, submitted, completed, and
failed. The queues consist of objects that hold an ex-
periment data structure along with the experiment’s
id and a dependencies list.

The Experiment class is the core data structure
in mediating communication between the experiment
management system and the Grid environment. The
class exposes an interface to simplify the experiment
submission process that also incorporates enhanced
status reporting through the standard status. We
considered three methods of implementing applica-
tion status notification. The first implementation
we considered simply directs the notifications to the
user. However, such an approach would undermine
the underlying assumption that experiments are non-
interactive and long running. The purpose of using

6

Id

Experiment

Dependencies

ExperimentManagerServer

ExperimentManager

ExperimentQueueObject

*
ExperimentStatusQueue

*

ExperimentManagerClient

ExperimentDataManager

ExperimentMetaDataImpl

ExperimentOutputManager

Figure 5: Containment relationship among the pri-
mary classes used to implement the experiment man-
ager server.

the checkpointing mechanism provided by the Java
CoG Kit’s abstractions module is to address the over-
head of maintaining a persistent network connection
with the remote execution host. Losing the network
connection means losing all status notifications. The
second alternative to providing application status no-
tifications is to append to the stdout. The problem
with this approach is that the notifications could get
buried when applications excessively write to stdout.
The third method we considered defines the stan-
dard status as a separate file, similar to how stderr
is separated from stdout in the UNIX environment.
This definition addresses the shortcomings of the two
previous alternatives: status notifications are saved
despite losing network connectivity, and status mes-
sages are separated from the stdout.

The standard status is simply a file with entries de-
scribing the current status of an experiment that is
written to the working directory where the executable
program is invoked. The standardized format of each
entry, as shown in Figure 6, permits customized sta-
tus reporting. However, the applications that inte-
grate runtime status notification must be rebuilt to
append to the standard status additional information
about the application’s execution state. The stan-
dard status, as currently implemented, reports the
latter three states of the experiment state diagram:
running, completed, and failed. It also supports more
detailed error detection by reporting trapped signals
that otherwise would have vanished on the remote
host.

#CoG: <status> : <time> <date> <time_zone>

where
status ::= pending | submitted | running |

completed | failed
time ::= HH:MM:SS
date ::= MM/DD/YYYY
time_zone ::= GMT

Figure 6: Specification of an entry for the standard
status.

The experiment class uses the Java CoG Kit’s task
and file operation abstractions to interact with the
Grid environment. Preparation of the experiment for
submission requires wrapping the executable and its
associated list of arguments into a shell script. This
implementation of the standard status requires trans-
ferring the script to the remote host and then set-
ting the execute permission for the script on the re-
mote machine. The experiment is submitted through
a task handler that provides simple status reporting
via through the Status interface defined in the Java
CoG Kit abstractions-common module. Automated
checkpointing of the experiment occurs when the Ex-
periment object detects that the experiment has been
successfully submitted to the remote host for execu-
tion.

6 Security Issues

With a simple client-server implementation, we re-
quire that the experiment client and server operate
in a secure Intranet. However, as we have already im-
plemented the logic for managing experiments, it will
be straightforward to use either the Java CoG Kit’s
secure grid sockets or the Globus Toolkit 4’s secure
grid services. In both cases, the communication be-
tween the client and server can be securely achieved.
At this time, we provide a secure solution as both
client and server can run on the same machine, with
the client and the server communicating through a
port that is externally inaccessible.

7 Performance Results

We logged the amount of memory and wall clock time
required for the four primary server operations of
adding, submitting, listing, and displaying the status

7

of experiments under increasing loads. The number
of experiments maintained by the experiment man-
ager provides the basis of measuring the load on the
system. Memory consumption is an important indi-
cator of how well the experiment management sys-
tem will perform with other programs running con-
currently. On a Pentium 4 1.8 GHz machine run-
ning the Linux-2.4 operating system with 512 MB
of RAM, we obtained the following results pertain-
ing to the amount of allocated heap space used by
the experiment management system. Because of the
fluctuating heap size allocated by the Java Virtual
Machine (JVM), evaluating the absolute byte count
of used memory is not useful. Instead, we analyze the
percentage of the amount of heap space used versus
the total heap size. The results of the heap usage
performance test, as summarized in Figure 7, show
that the experiment manager consumes within the
range of 75-80 percent of the available heap space
when a reasonably large number of experiments have
been added. However, the percentages exist within
the context of the total heap space allocated by the
JVM ranging from 2MB to 60MB for loads ranging
from one experiment to 1000 experiments. The 60
MB needed to maintain 1000 experiments suggests
that managing 1000 experiments can be problematic
in an environment where memory is a scarce resource.
On the other hand, the nearly constant 75-80 per-
cent heap space consumption is a testament to the
system’s spatial scalability.

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 20 40 60 80 10
0

30
0

50
0

10
00

Number of queued experiments

Pe
rc

en
ta

ge
 o

f m
em

or
y

co
ns

um
ed

Figure 7: Percentage of allocated heap space con-
sumed under increasing load of added experiments.

In the time domain, the logs indicate a constant
response time for requests to add, submit, and list

the status of queue experiments. Adding an exper-
iment requires a range of 10 ms to 100 ms to ex-
ecute. Checking the status of experiments requires
approximately 0.5 ms to 1.5 ms to complete. Ex-
periment submissions take approximately 0.5 to 1.5
seconds to locate the experiment, prepare the task
for submission, and submit the task. However, the
amount of time needed to start the experiment man-
ager requires orders of magnitude more time than the
other operations. Beyond the 50 experiments thresh-
old, we clocked an average of approximately one sec-
ond per experiment, displaying linear growth perfor-
mance. Below that threshold, the loading time grows
linearly but at a rate that is less than 0.5 seconds per
experiment. Figure 8 shows the difference in load-
ing time below and above the threshold number of
experiments.

The performance results show that the system
scales well when running; however, because of size-
able disk I/O involved in deserializing the check-
pointed queues, reloading the experiment manage-
ment system is an expensive operation. As such, it is
advisable to categorize sets of experiments into sepa-
rate projects, and manage the different categories of
experiments with separate sessions.

0

20

40

60

80

100

120

140

1 3 5 7 9 20 40 60 80 10
0

Number of Experiments

T
im

e
(s

ec
on

ds
)

Figure 8: Amount of time to load checkpointed
queues with an increasing number of experiments.

8 Conclusion

While reviewing bioinformatics applications, we have
identified that typical experiments need to be man-
aged by the novice Grid user. In order to support
this requirement we have developed a tool called cog-

8

experiment. This tool is structured around a client-
server model that allows the user to manage a large
number of tasks as part of a daily research quest.
The experiment framework is based on a layered ar-
chitecture that integrates fully with the Java CoG
Kit. With this combination, we have developed a
system that incorporates automated checkpointing,
automatic version control, and output file manage-
ment. These features enable researchers to interact
with the Grid in a simpler and more efficient fash-
ion. The cog-experiment command line tool is imple-
mented in Java, and uses the Java CoG Kit to provide
the experiment management features.

Future research will focus on integrating our client-
server model into a Web Services Resource Frame-
work (WS-RF) [7] based Grid environment. Addi-
tionally, it will be simple to integrate our system into
the Java CoG Kit’s workflow framework.

9 Acknowledgements

This work was supported by the Mathematical, In-
formation, and Computational Science Division sub-
program of the Office of Advanced Scientific Comput-
ing Research, Office of Science, U.S. Department of
Energy, under Contract W-31-109-Eng-38. DARPA,
DOE, and NSF support Globus Project research and
development. The Java CoG Kit Project is supported
by DOE MICS, and NSF Alliance. This work was
also supported by the National Science Foundation
under Grant No. 0353989.

References

[1] I. Foster, “The anatomy of the grid: Enabling
scalable virtual organizations,” International
Journal of High Performance Computing Appli-
cations, vol. 15, no. 3, pp. 200–222, August
2001, a brief introduciton to the grid. [On-
line]. Available: http://www.gl.iit.edu/database/
frame/compendex.htm

[2] G. von Laszewski and K. Amin, Grid Mid-
dleware. Wiley, 2004, ch. Middleware for
Communications, pp. 109–130. [Online]. Avail-
able: http://www.mcs.anl.gov/∼gregor/papers/
vonLaszewski--grid-middleware.pdf

[3] “The Globus Alliance,” Web Page. [Online].
Available: http://www.globus.org

[4] I. Foster, “What is the Grid? A Three
Point Checklist,” 22 July 2002. [Online].
Available: http://www.gridtoday.com/02/0722/
100136.html

[5] G. von Laszewski, I. Foster, J. Gawor,
W. Smith, and S. Tuecke, “CoG Kits: A
Bridge between Commodity Distributed Com-
puting and High-Performance Grids,” in ACM
Java Grande 2000 Conference, San Francisco,
CA, 3-5 June 2000, pp. 97–106. [Online]. Avail-
able: http://www.mcs.anl.gov/∼gregor/papers/
vonLaszewski--cog-final.pdf

[6] G. von Laszewski and M. Hategan, “Grid
Workflow - An Integrated Approach,” in Tech-
nical Report., Argonne National Laboratory,
Argonne National Laboratory, 9700 S. Cass
Ave., Argonne, IL 60440, 2005. [Online]. Avail-
able: http://www.mcs.anl.gov/∼gregor/papers/
vonLaszewski-workflow-draft.pdf

[7] “Web Services Resource Framework (WSRF),”
Web Page. [Online]. Available: http://www.
globus.org/wsrf

9

http://www.gl.iit.edu/database/frame/compendex.htm
http://www.gl.iit.edu/database/frame/compendex.htm
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf
http://www.globus.org
http://www.gridtoday.com/02/0722/100136.html
http://www.gridtoday.com/02/0722/100136.html
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-final.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-final.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-workflow-draft.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-workflow-draft.pdf
http://www.globus.org/wsrf
http://www.globus.org/wsrf

A Command cog-experiment

NAME
cog-experiment

SYNOPSIS

cog-experiment[-help]
[-list]
[-add <experiment name> -service-contact <host>

-executable <file>
[-job-manager <jobmanager>]
[-provider <provider>][-arguments <string>]
[-enviroment <string>][-directory <string>]
[-batch][-redirected][-stdout <file>]
[-stderr<file>][-attributes<string>]
[-checkpoint <filename>][-verbose]
[-metadataoff][-versionoff]]

[-submit <experiment name> | all]
[-status <option>]
[-delete <experiment name>]
[-metaset <experiment name>]
[-search <string> [-dir <experiment>][-metadata]

[-data][-error][-stdstatus]]
[-view <experiment name> [-metadata][-output]

[-error][-stdstatus]]
[-stop]

For some of the options a short form is available:

cog-experiment[-h]
[-l]
[-add <experiment name> -s <host> -e <file>

[-jm <jobmanager>][-p <provider>]
[-args <string>][-env<string>]
[-dir<string>][b][-r][-stdout<file>]
[-stderr<file>][-a <string>][-c <filename>]
[-v][-mo][-vo]]

[-sub <experiment name> | all]
[-stat <state>]
[-del <experiment name>]
[-search <string> [-dir <experiment name>][-md]

[-out][-err][-stdstatus]
[-view <experiment name> [-md][-out]

[-err][-stdstatus]]
[-stop]

DESCRIPTION

cog-experiment manages experiments. Experiments can be added,
deleted, submitted, and monitored. Other management tasks include
querying for the status of experiments and searching and filtering
experiments. The stdout and stderr of each of experiment is
managed using a directory structure that is customizable through
the COG_EXPERIMENT_PATH environment variable. An example for a
directory structure for an experiment could look something like
this: $HOME/.globus/experiment/<experiment name>/stdout. A paper
at (insert link) describes the cog-experiment framework in more
detail. Please read through the simple examples provided
at the bottom before reviewing the descriptions of each option.

OPTIONS
-help

Returns information about the available commands

10

-list
Lists the name and experiment ID of all experiments

-add <experiment name> -service-contact <host>
-executable <file>
[-job-manager <jobmanager>]
[-provider <provider>][-arguments <string>]
[-enviroment <string>][-directory <string>]
[-batch][-redirected][-stdout <file>]
[-stderr<file>][-attributes<string>]
[-checkpoint <filename>][-verbose]
[-metadataoff][-versionoff]]

Creates a new experiment without submitting it
user prompted to enter experiment information

-service-contact
specify service contact or the host to perform
task

-exectutable
specifies executable file or the program used to
conduct the computations for the experiment. this
is required when adding a job.

-job-manager
Execution job manager (fork, pbs, etc)

-provider
choose specific provider or type of middleware to
use

-arguments
specify arguments used in the grid computation.
If more than one use quotes

-enviroment
enviroment variable for the remote execution
enviroment, specified as name=value[,name=vaule]

-directory
set the directory where information is sent to
on remote machine

-batch
if present, job runs in batch mode or not
interacting with user until completion

-redirected
if present, the arguments to -stdout and -stderr
refer to local files

-stdout
indicates the file where the standard output of the
job should be directed

-stderr
indicates the file where the standard error of the
job should be directed

-attributes
additional task specification attributes. attributes
can be specified as "name=value[,name=value]"

-checkpoint

11

checkpoint file name. checkpointing or auto-recovery
information is stored in this file

-verbose
if enabled, more information about what is
being done is displayed

-metadataoff
when present disables the GUI to enter metadata

-versionoff
when present the auto versioning feature is disabled

-status [state|name]
Available states:

all
Lists all experiments in all queue

pending
Lists all experiments in pending queue

submitted
Lists all experiments in the submitted queue

completed
Lists all experiments in the completed queue

failed
Lists all experiments in the failed queue

name:

experiment name
Displays status information of named experiment

-submit <experiment name | all>

experiment name
submits experiment to be processed

all
submits all experiments waiting to be submitted

-delete <experiment name>
deletes the named experiment

-edit <experiment name>
edit metadata to named experiment

-search <string>
search for string in all experiment directories

-search <string> [-dir <experiment name>][-metadata]
[-output][-error][-stdstatus]

-dir <experiment name>
searches specified experiment

-metadata
searches only metadata

-output
searches only stdout

12

-error
searches only stderr

-stdstatus
searches only stdstatus

-versions <experiment name>
lists the name of all files in the specified
experiment folder

-experiments
lists all experiments

-view <experiment name>
prints all information in the named experiment to screen

-view <experiment name> [-metadata][-output][-error][-stdstatus]

-metadata
displys experiment’s metadata to screen

-output
displays experiment’s stdout to screen

-error
displays experiment’s stderr to screen

-stdstatus
displays experiment’s stdstatus to screen

-stop

stops server

Examples:

Standard -add command:

./cog-experiment -add genes -e /bin/date -s localhost

This will prompt the user to enter the metadata JFrame window:

Name genes-1
Author Phill
Department MCS
Project genetics
Phone 555-555-5555
E-mail cog@cogkit.org
Date August 16, 2005
Time
Program Used BLAST
Argument
Account Number
Parameters

genes-1 has been added

Standard -list command:

./cog-experiment -list

This will list all added experiments:

genes-1

13

Second Standarad -add command:

./cog-experiment -add genes -e /bin/date -s localhost

This will prompt the user to enter the metadata JFrame window:

Name genes-2
Author Phill
Department MCS
Project genetics
Phone 555-555-5555
E-mail cog@cogkit.org
Date August 17, 2005
Time
Program Used BLAST
Argument
Account Number
Parameters

genes-2 has been added

Standard -submit command:

./cog-experiment -submit genes-1

This will submit genes-1 to it’s service contact:

genes-1 has been submitted

View metadata command:

./cog-experiment -view genes-1 -metadata

This will display genes-1 metadata:

Name genes-1
Author Phill
Department MCS
Project genetics
Phone 555-555-5555
E-mail cog@cogkit.org
Date August 16, 2005
Time
Program Used BLAST
Argument
Account Number
Parameters

Standard -versions command:

./cog-experiment -versions genes

This will display all versions of genes:

Versions of genes:

genes-1
genes-2

Standard status command:

./cog-experiment -status genes-1

14

This will return the status of the genes-1:

[1] submitted 4000 genes-1

B Interfaces

B.1 Experiment Interface

/**
* Experiment is an interface to an experiment, which exposes a simple submit method
* The submission process requires preparation of a wrapper script that implements
* the standard status and the transfer of that script to the remote host for execution
*/
public interface Experiment {

/**
* getCurrentStatus returns the experiment’s current status
* (in this case, in which queue the experiment resides)
* @return a String from the ExperimentStates class that holds the experiment’s
* status
*/
public String getCurrentStatus();

/**
* setCurrentStatus updates the current status of the experiment
* @param currentStatus the new status of the experiment
*/
public void setCurrentStatus(String newStatus);

/**
* getExperimentStopWatch returns the stopwatch that records how long the
* experiment resides in each queue
* @return a StopWatch that is used to maintain how long an experiment
* has sits in each of the queues
*/
public StopWatch getExperimentStopWatch();

/**
* setExperimentStopWatch replaces the current stopwatch with the one specified
* @param stopWatch the StopWatch
*/
public void setExperimentStopWatch(StopWatch stopWatch);

/**
* saveStandardOutput saves the standard output to the specified destionation path
* @param String the location to save the standard output
*/
public void saveStandardOutput(String destinationPath);

/**
* saveStandardError saves the standard error to the specified destionation path
* @param String the location to save the standard error
*/

15

public void saveStandardError(String destinationPath);

/**
* saveStandardStatus saves the standard status to the specified destionation path
* @param String the location to save the standard status
*/
public void saveStandardStatus(String destinationPath);

// The rest of these methods replicate the interface to the
// cog-job-submit interface
public Task getExecutionTask();
public void setExecutionTask(Task executionTask);

public void submitTask() throws Exception;

public String getArguments();
public void setArguments(String arguments);

public String getExecutable();
public void setExecutable(String executable);

public boolean isBatch();
public void setBatch(boolean batch);

public boolean isRedirected();
public void setRedirected(boolean redirected);

public String getProvider();
public void setProvider(String provider);

public String getStderr();
public void setStderr(String stderr);

public String getStdout();
public void setStdout(String stdout);

public void setCommandline(boolean bool);
public boolean isCommandline();

public String getCheckpointFile();
public void setCheckpointFile(String file);

public String getName();
public void setName(String name);

public String getServiceContact();
public void setServiceContact(String serviceContact);

public String getDirectory();
public void setDirectory(String directory);

16

public String getEnvironment();
public void setEnvironment(String environment);

public String getAttributes();
public void setAttributes(String attributes);

public String getJobManager();
public void setJobManager(String jobmanager);

}

B.2 ExperimentQueueObject Interface

/**
* ExperimentQueueObject is an interface to an the object that gets queued into
* an experiment status queue
* Such an object should provide access to an experiment, that experiment’s
* unique identifier, and any dependencies that an experiment may have
*/
public interface ExperimentQueueObject {

/**
* setId sets the unique identifier for an experiment in the status queue
* @param String the new unique identifier associated with an experiment
*/
public void setId(String id);

/**
* getId returns the unique identifier associated with the experiment contained
* in the current experiment object
* @return String the unique experiment identifier
*/
public String getId();

/**
* setExperiment sets the experiment associated with the queueObject
* @param experiment the object to associate with the queueObject
*/
// we should really replace the ’Object’ references with Experiment references to
// eliminate unnecessary casting, & thus improve performance
public void setExperiment(Object experiment);

/**
* getExperiment returns the experiment associated with the queue object
* @return the experiment associated with the queue object
*/
public Object getExperiment();

/**
* setDependencies updates the dependencies list associated with an queue object
* @param dependencies a Vector of other queue objects that this queue object
* depends on

17

*/
public void setDependencies(Vector dependencies);

/**
* getDependencies returns the dependencies list associated with the queue object
* @return a Vector containing the queue object’s dependencies list
*/
public Vector getDependencies();

}

B.3 ExperimentStatusQueue Interface

/**
* ExperimentStatusQueue is the interface to the queue of experiments
*/
public interface ExperimentStatusQueue {

// we should remove the Object references for enqueue and dequeue, and
// replace them with ExperimentQueueObject
/**
* enqueue pushes an experiment into the queue using FIFO
* @param experiment the object to enqueue
* @return a String holding the enqueued object’s id
*/
public String enqueue(Object experiment);

/**
* enqueue pushes an experiment with the specified id into the queue using FIFO
* @param experiment the object to enqueue
* @return a String holding the enqueued object’s id
*
*/
public String enqueue(Object experiment, String id);

/**
* enqueue pushes an object with the specified id and dependencies list in the
* queue in FIFO order
* @param experiment the experiment to enqueue
* @param id the id of the experiment to enqueue
* @param dependencies the list of dependencies for the experiment to enqueue
* @return a String holding the enqueued object’s id
*/
public String enqueue(Object experiment, String id, Vector dependencies);

/**
* dequeue removes the next object from the queue based on a scheduling policy
* @return the object removed from the queue
*/
public Object dequeue();

/**
* dequeue removes the object with the specified id from the queue

18

* @param id the id of the object to dequeue
* @return the object that has been dequeued
*/
public Object dequeue(String id);

/**
* setDependencies sets the new dependencies list for the object with the given id
* @param id the id of the object to change the dependencies list
* @param dependencies the new dependencies list
*/
public void setDependencies(String id, Vector dependencies);

/**
* getDependencies returns the list of dependencies for the object with the given id
* @param id the id of the object to retrieve the depdencies from
* @return a Vector containing the dependencies of the object with the given id
*/
public Vector getDependencies(String id);

/**
* setSchedulingPolicy changes the scheduling policy to the one specified
* @param schedulingPolicy the new scheduling policy
*/
public void setSchedulingPolicy(String schedulingPolicy);

/**
* getSchedulingPolicy returns the current scheduling policy for dequeuing
* @return a String holding the scheduling policy
*/
public String getSchedulingPolicy();

/**
* enumerateQueue returns an array of all the objects in the queue
* @return an array of objects in the queue
*/
public Object[] enumerateQueue();

}

B.4 ExperimentManager Interface

public interface ExperimentManager {
/**
* addExperiment adds a named experiment to the pending queue
* @param experimentName the name of the experiment
* @param experiment the experiment to add
*/
public String addExperiment(String experimentName, Object experiment);

/**
* removeExperiment removes the experiment with the given id from the
* experiment management system
* @param id the id assigned to an experiment during the add process

19

*/
public void removeExperiment(String id);

/**
* submitExperiment moves the experiment with the given id from the pending
* queue to the submitted queue
* @param id the id associated with an experiment
*/
public void submitExperiment(String id);

/**
* enumerateExperiments returns an array of queue objects in all the queues
* @return an array of queue objects form all the queues
*/
public Object[] enumerateExperiments();

/**
* enumerateExperiments returns an array of queue objects from a particular
* status queue
* @param status the status (queue) to enumerate
* @return an array of queue objects with the given status
*/
public Object[] enumerateExperiments(String status);

/**
* getExperimentStatus returns the status of an experiment with the given id
* @param id the id associated with an experiment
* @return the status of the experiment of interest
*/
public String getExperimentStatus(String id);

/**
* setExperimentStatus moves an experiment with the given id to a new queue
* specified by newStatus
* @param id the id associated with an experiment
* @param newStatus the new status
*/
public void setExperimentStatus(String id, String newStatus);

public ExperimentStatusQueue getPendingQueue();
public ExperimentStatusQueue getSubmittedQueue();
public ExperimentStatusQueue getCompletedQueue();
public ExperimentStatusQueue getFailedQueue();

/**
* checkpointExperimentStatusQueues saves all the status queues to
* persistent storage in XML format; the checkpoint files are saved under
* the experiment’s directory as hidden files
*/
public void checkpointExperimentStatusQueues();

20

/**
* updateExperimentRepository does an update on all files from all
* experiments
*/
public void updateExperimentRepository();

/**
* updateExperimentRepository writes out all files associated with the
* experiment with the given id; files include stdout, stderr, stdstatus ...
* @param id the id associated with an experiment
*/
public void updateExperimentRepository(String id);

}

21

	Introduction
	Use Case
	Requirements
	Architecture
	Implementation
	Client
	Server

	Security Issues
	Performance Results
	Conclusion
	Acknowledgements
	Command cog-experiment
	Interfaces
	Experiment Interface
	ExperimentQueueObject Interface
	ExperimentStatusQueue Interface
	ExperimentManager Interface

