
Design of an Accounting and Metric-based  
Cloud-shifting and Cloud-seeding framework for Federated 

Clouds and Bare-metal Environments
Gregor von Laszewski1*, Hyungro Lee1, Javier Diaz1, Fugang Wang1,  

Koji Tanaka1, Shubhada Karavinkoppa1, Geoffrey C. Fox1, Tom Furlani2 

 
1Indiana University 

2719 East 10th Street 
Bloomington, IN 47408. U.S.A. 

laszewski@gmail.com 

2Center for Computational Research 
University at Buffalo 

701 Ellicott St 
Buffalo, New York 14203

   
ABSTRACT 
We present the design of a dynamic provisioning system that is 
able to manage the resources of a federated cloud environment 
by focusing on their utilization. With our framework, it is not 
only possible to allocate resources at a particular time to a 
specific Infrastructure as a Service framework, but also to utilize 
them as part of a typical HPC environment controlled by batch 
queuing systems. Through this interplay between virtualized and 
non-virtualized resources, we provide a flexible resource 
management framework that can be adapted based on users' 
demands. The need for such a framework is motivated by real 
user data gathered during our operation of FutureGrid (FG). We 
observed that the usage of the different infrastructures vary over 
time changing from being over-utilized to underutilize and vice 
versa. Therefore, the proposed framework will be beneficial for 
users of environments such a FutureGrid where several 
infrastructures are supported with limited physical resources.  

Categories and Subject Descriptors 
D.4.8 [Performance]: Operational Analysis, Monitors, 
Measurements D.4.7 [Organization and Design]: Distributed 
systems 

General Terms 
Management, Measurement, Performance, Design, Economics.  

Keywords 
Cloud Metric, Dynamic Provisioning, RAIN, FutureGrid, 
Federated Clouds, Cloud seeding, Cloud shifting. 

1. INTRODUCTION 
Batch, Cloud and Grid computing build the pillars of today’s 
modern scientific compute environments. Batch computing has 
traditionally supported high performance computing centers to 
better utilize their compute resources with the goal to satisfy the 
many concurrent users with sophisticated batch policies utilizing 
a number of well managed compute resources. Grid Computing 

and its predecessor meta-computing elevated this goal by not 
only introducing the utilization of multiple queues accessible to 
the users, but by establishing virtual organizations that share 
resources among the organizational users. This includes storage 
and compute resources and exposes the functionality that users 
need as services. Recently, it has been identified that these 
models are too restrictive, as many researchers and groups tend 
to develop and deploy their own software stacks on 
computational resources to build the specific environment 
required for their experiments. Cloud computing provides here a 
good solution as it introduces a level of abstraction that lets the 
advanced scientific community assemble their own images with 
their own software stacks and deploy them on large numbers of 
computational resources in clouds. Since a number of 
Infrastructure as a Service (IaaS) exist, our experience [1] tells 
us the importance of offering a variety of them to satisfy the 
various user community demands. In addition, it is important to 
support researchers that develop such frameworks further and 
may need more access to the compute and storage hardware 
resources than is provided by the current IaaS frameworks. For 
this reason, it is also important to provide users with the 
capabilities of staging their own software stack. This feature has 
also been introduced by other test-beds. This includes 
OpenCirrus [2], EmuLab [3], Grid5000 [4] and FutureGrid [5].  
Within FutureGrid we developed a sophisticated set of services 
that simplify the instantiation of images that can be deployed on 
virtualized and non-virtualized resources contrasting our efforts. 

The work described here significantly enhances the services 
developed and described in our publications about FutureGrid 
focusing on dynamic provisioning supported by image 
management, generation, and deployment [1] [6]. 

In this paper, we enhance our services in the following aspects: 

a) Implementation of a uniform cloud metric framework for 
Eucalyptus 3 and OpenStack Essex. 

b) Design of a flexible framework that allows resource re-
allocation between various IaaS frameworks, as well as 
bare-metal. 

c) Design of a meta-scheduler that re-allocates resources 
based on metric data gathered from the usage of different 
frameworks. 

d) Targeted prototype development and deployment for 
FutureGrid. 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. Workshop on Cloud 
Services, Federation, and the 8th Open Cirrus Summit, , September 21 
2012, San Jose, CA, USA 
Copyright 2012 ACM 978-1-4503-1267-7/12/09 $15.00. 



The paper is organized as follows. In Section 2, we introduce the 
current state of Cloud Metrics as used in various IaaS 
frameworks. In Section 3 we give a short overview of 
FutureGrid. In Section 4 we present our elementary 
requirements that are fulfilled in our design, presented in Section 
5. In Section 6 we outline the current status of our efforts and 
conclude our paper in Section 7. 

2. ACCOUNTING SYSTEMS 
Before we can present our design it is important to review 
existing accounting systems, as they will become an integral part 
of our design and solution. This not only covers accounting 
systems for clouds, but also for HPC and Grid computing as 
motivated by user needs and the ability of FutureGrid to provide 
a testbed for clouds, HPC, and Grid computing as discussed in 
more detail in Section 3. 

Accounting systems have been put into production since the 
early days of computing stemming back to the mainframe, 
which introduced batch processing, but also virtualization.  The 
purpose of such an accounting system is manifold, but one of its 
main purposes is to define a policy that allows the shared usage 
of the resources: 

• Enable tracking of resource usage so that an accurate 
picture of current and past utilization of the resources can 
be determined and become an input to determining a proper 
resource policy. 

• Enable tracking of jobs and service usage by user and 
group as they typically build the common unit of 
measurement in addition to the wall clock time as part of a 
resource allocation policy.    

• Enable a metric for economic charge so that it can be 
integrated into resource policies as one input for scheduling 
jobs within the system.  

• Enable a resource allocation policy so that multiple users 
can use the shared resource. The policy allows users to get 
typically a quota and establishes a priority order in which 
users can utilize the shared resource. Typically a number of 
metrics are placed into a model that determines the priority 
and order in which users and their jobs utilize the resource. 

• Enable the automation of the resource scheduling task to a 
systems service instead of being conducted by the 
administrator. 

One of the essential ingredients for such an accounting system 
are the measurements and metrics that are used as input to the 
scheduling model and is part of the active computer science 
research since 1960 with the advent of the first mainframes.   

2.1 High Performance Computing 
As High Performance Computing (HPC) systems have always 
been shared resources, batch systems usually include an 
accounting system. Typically metrics that are part of scheduling 
policies include number of jobs run by a user/group at a time, 
overall time used by a user/group on the HPC system, wait time 
for jobs to get started, size of the jobs, scale of the jobs, and 
more. Many batch systems are today available and include 
popular choices such as Moab which originated from Maui, 
SLURM [7], Univa Grid Engine [8] which originated from 
CODINE [9], PBS [10], and others.. Recently many of these 
vendors have made access to manipulation of the scheduling 
policies and the resource inventory, managed by the schedulers, 
much easier by adding Graphical user interfaces to them [10-
12]. Many of them have also added services that provide cloud-

bursting capabilities by submitting jobs for example to private or 
public clouds such as AWS.  

One of the more popular accounting systems with the 
community is Gold [13].  Gold introduces an economical charge 
model similar to that of a bank. Transactions such as deposits, 
charges, transfers, and refunds allow easy integration with 
scheduling tools. One of the strength of Gold was its free 
availability and the possibility to integrate it with Grid 
resources. Unfortunately, the current maintainers of Gold have 
decided to discontinue its development and instead provide an 
alternative as a paid solution. It has to be seen if the community 
will continue picking up Gold or if they switch to the new 
system.  

An interesting projects that has recently been initiated is the 
XDMod project [14] that is funded by NSF XD and is integrated 
into the XSEDE project. One of the tasks of this project includes 
the development of a sophisticated framework for analyzing 
account and usage data within XSEDE. However, we assume 
this project will develop an open source version that can be 
adapted for other purposes. This component contains an 
unprecedented richness of features to view, and creates reports 
based on user roles and access rights. It also allows the export of 
the data through Web services.  

2.2 Grids 
Accounting systems in Grids were initially independent from 
each other. Each member of a virtual organization had, by 
design, its own allocation and accounting policies. This is 
verifiable by the creation of the earliest virtual organization 
termed GUSTO [15], but also in more recent efforts such as the 
TeraGrid [16], XSEDE [17] and the OpenScience Grid [18]. 
Efforts were put in place later to establish a common resource 
usage unit to allow trading between resources, as for example in 
TeraGrid and XSEDE. The earliest metric to establish usage of 
Grid services outside of such frameworks in an independent 
fashion was initiated by von Laszewski et al. [19] for the usage 
of GridFTP and later on enhanced and integrated by the Globus 
project for other Grid services such as job utilization. Other 
systems such as Nimrod [20] provided a platform to the users in 
the Grid community that introduced economical metrics similar 
to Gold and allowed for the creation of trading and auction 
based systems. They have been followed up by a number of 
research activities [21] but such systems have not been part of 
larger deployments in the US.   

2.3 Clouds 
The de facto standard for clouds has been introduced by 
Amazon Web Services [22]. Since the initial offering, additional 
IaaS frameworks have become available to enable the creation 
of privately managed clouds. As part of these offering, we have 
additional components that address accounting and usage 
metrics. We find particularly relevant the work conducted by 
Amazon [23], Eucalyptus [24], Nimbus [25], OpenStack [26], 
and OpenNebula [27]. Other ongoing community activities also 
contribute in the accounting and metric area, most notably by 
integrating GreenIT [28, 29]. In addition, some of these cloud 
platforms can be enhanced by external monitoring tools like 
Nagios [30] and Ganglia [31]. 
For IaaS frameworks we make the following observations. 
Amazon CloudWatch [23] provides real-time monitoring of 
resource utilization such as CPU, disk and network. It also 
enables users to collect metrics about AWS resources, as well as 



publish custom metrics directly to Amazon CloudWatch. 
Eucalyptus enables, since version 3.0, usage reporting as part of 
its resource management [24, 32]. However, it does not provide 
a sophisticated accounting system that allows users and 
administrators to observe details about particular VM instances. 
To enable this third  party tools such as Nagios, Ganglia and log 
file analyzers [24] have to be used. An integrated sophisticated 
and convenient framework for accounting is not provided by 
default.  

Nimbus claims to support per-client usage tracking and per-user 
storage quota in its image repository and in Cumulus (Nimbus 
storage system) as accounting features. The per-client usage 
tracking provides information of requested VM instances and 
historical usage data. The per-user storage quota enables 
restriction of file system usage. Nimbus also uses Torque 
resource manager for gathering accounting logs. For monitoring 
features, Nimbus utilizes Nagios and Cloud Aggregator, which 
is a utility to receive system resource information. 

OpenNebula has a utility named OpenNebula Watch [27] as an 
accounting information module. It stores activities of VM 
instances and hosts (clusters) to show resource utilization or 
charging data based on the aggregated data. OpenNebula Watch 
requires database handler like sequel, sqlite3 or MySQL to store 
the accounting information. It checks the status of hosts so 
physical systems can be monitored, for example, CPU and 
memory except network.  

OpenStack is currently under heavy development in regards to 
many of its more advanced components. An on-going effort for 
developing accounting systems of OpenStack exists which is 
named Efficient Metering or ceilometer. It aims to collect all 
events from OpenStack components for billing and monitoring 
purposes [33]. This service will measure general resource 
attributes such as CPU core, memory, disk and network as used 
by the nova components. Additional metrics might be added to 
provide customization. Efficient Metering is planned to be 
released in the next version of Openstack (Folsom) late in 2012. 
Besides this effort, other metric projects include several billing 
projects such as Dough [34] and third party OpenStack billing 
plugin [35].  
Microsoft Azure has a software called System Center Monitoring 
Pack that enables the monitoring of Azure applications [36]. 
According to Microsoft, the monitoring pack provides features 
such monitoring da and performance data, with integration to 
Microsoft supported products such as Azure, .NET. The 
performance monitoring can also be enabled by using some 
tools like Powershell cmdlets for Windows Azure [37] and 
Azure Diagnostics Manager 2 from Cerebrata [38]. The 
monitoring data can be visualized using System Center 
Operation Manager Console. 

Google Compute Engine is an IaaS product launched end of 
June, 2012 and still under development [39]. Google currently 
supports several options for networking and storage while 
managing virtual machines through the compute engine. 
Presently, there is no accounting APIs for Google Compute 
Engine, but there is a monitoring API for Google App Engine. It  
delivers a usage report for displaying resource utilization of 
instances in the administration console [40] and provides a 
runtime API [41] to retrieve measured data from the application 
instances such as CPU, memory, and status. We expect that 
similar functionality will become available for the Google 
Compute Engine as well. 

3. FUTUREGRID: AS A TESTBED FOR 
FEDERATED CLOUD RESEARCH 
FutureGrid [42] provides a set of distributed resources totaling 
more than  4300 compute cores. Resources include a variety of 
different platforms allowing users to access heterogeneous 
distributed computing, network, and storage resources. Services 
to conduct HPC, Grid, and Cloud projects including various 
IaaS and PaaS are offered. Interesting interoperability and 
scalability experiments that foster research in many areas, 
including federated clouds, becomes possible due to this variety 
of resources and services. Users can experiment with various 
IaaS frameworks at the same time, and also integrate Grid and 
HPC services that are of special interest to the scientific 
community. One important feature of FutureGrid is that its 
software services can make use of the physical resources 
through both virtualization technologies and dynamic 
provisioning on bare-metal. This feature is provided by our 
software called Rain [1, 6], which allows us to rain a software 
stack and even the OS onto a compute server/resource. 
Authorized users have access to this feature that is ideal for 
performance experiments. Via the help of Rain, we can now 
devise a design and implementation that can re-allocate compute 
servers into various clouds determined by user demand. We 
refer to this new functionality as cloud shifting. 

4. REQUIREMENTS 
In [1] we presented qualitative and quantitative evidence that 
users are experimenting with a variety of IaaS frameworks. To 
support this need, we have instantiated multiple clouds based on 
multiple IaaS frameworks on distributed compute clusters in FG. 
However, the association of compute servers to the various IaaS 
frameworks is currently conducted manually by the system 
administrators through best effort. As this can become a labor 
intensive process, readjustments based on utilization needs occur 
infrequently, or not at all as some clusters have been dedicated 
to a particular IaaS framework regardless of utilization. 
However, our operational experience shows that readjustments 
are desirable while observing the usage patterns of over 240 
projects hosted on FutureGrid. One such use pattern arises from 
educational classes in the distributed computing area. We 
observe that classes cycle through topics to teach students about 
HPC, Grid, and Cloud computing. When teaching cloud 
computing they also introduce multiple cloud IaaS frameworks. 
Thus, the demand to access the resources one after another is a 
logical consequence based on the way such classes are taught.  
However, this leads to resource starvation as at times certain 
services offered are underutilized, while others are over utilized. 

Additionally, we observe that some projects utilize the resources 
in a federated fashion either while focusing on federation within 
the same IaaS framework [43], but more interestingly to federate 
between IaaS frameworks while focusing on scientific 
workflows that utilize cycle scavenging [44] or select 
frameworks that are most suitable for a particular set of 
calculations as part of the workflow [45]. These projects do not 
take into account that it is possible to conduct cloud shifting 
instead of scavenging resulting in a simplification of the 
development and utilization aspect for application developers. 

In a coordinated response to our observations, we derived the 
following requirements that shape the design of the services in 
support of cloud federation research: 

• Support for multiple IaaS: This includes OpenStack, 
Nimbus, Eucalyptus, and OpenNebula. Furthermore, we 



would like to integrate with AWS and potentially other 
clouds hosted outside of FG. 

• Support for bare-metal provisioning to the privately 
managed resources: This will allow us to rain custom 
designed software stacks on OS on demand onto each of 
the servers we choose. 

• Support for dynamic adjustment of service assignments: 
The services placed on a server are not fixed, but can 
change over time via Rain  [1, 6]. 

• Support for educational class patterns: Compute classes 
often require a particular set of services that are accessed 
by many of its members concurrently leading to spikes in 
the demand for one service type. 

• Support for advance provisioning: Sometimes users know 
in advance when they need a particular service motivating 
the need for the instantiation of services in advance. This is 
different from advance reservation of a service, as the 
service is still shared by the users after the provisioning has 
taken place. Such a service will help to reduce resource 
starvation. 

• Support for advance reservation: Some experiments 
require the exclusive access to the services. 

• Support for automation: Managing such an environment 
should be automatized as much as possible. 

• Support for inter-cloud federation experiments: Ability to 
access multiple IaaS instances at the same time.  

• Support for diverse user communities: Users, 
Administrators, Groups, and services are interested in using 
the framework. These groups require different access rights 
and use modalities. 

We intend to implement this design gradually and verify it on 
FG. The resulting software and services will be made available 
in open source so others can utilize them as well. 

Due to these requirements we must support four very important 
functions of our framework. These functions include: 

Cloud-bursting enables access to additional resources in other 
clouds when the demand for computing capacity spikes. It 
outsources services in case of over-provisioning, or inter-cloud 
federation enabling to use compute or storage resources across 
various clouds. 

Cloud-seeding enables the instantiation of new cloud 
frameworks within FutureGrid.  
Cloud-shifting enables moving (or re-allocating) compute 
resources between the various clouds and HPC. 

Resource Provisioning is a basic functionality to enable cloud-
seeding and -shifting as it allows the dynamic provisioning of 
the OS and software stack on bare-metal. 

5. DESIGN 
Before we explain our architecture, we have to point out some 
features of the resource and service fabric that are an integral 
part of our design. We assume that the Resource Fabric consists 
of a resource pool that contains a number of compute services. 
Such services are provided either as a cluster or as part of a 
distributed network of workstations (NOW). The resources are 
grouped based on network connectivity proximity. This will 
allow the creation of regions within cloud IaaS environments to 
perform more efficiently among its servers. We assume a rich 
variety of services offered in the Service Fabric. This includes 
multiple IaaS, PaaS frameworks, and HPC environments. 
Instead of assuming that there can only be one cloud for a 

particular IaaS framework, we envision multiple independent 
clouds. This assumption potentially allows users to host their 
own privately managed clouds and also integrate them with 
public clouds. We have already deployed such an infrastructure 
as part of the FutureGrid, allowing users to access a variety of 
preconfigured clouds to conduct interoperability experiments 
among the same IaaS and also different IaaS frameworks, as 
well as the inclusion of dedicated HPC services. 

Having access to such a comprehensive environment opens up a 
number of interesting design challenges. We observe that our 
operational mode is significantly enhanced in contrast to other 
academic clouds that typically only install a single IaaS 
framework on their resource [46, 47]. Thus, such environments 
cannot offer by themselves the comprehensive infrastructure 
needed to conduct many of the topics that arise in cloud 
federation. 

One of the questions we need to answer is how we can best 
utilize such an environment that supports inter-cloud and bare-
metal demands posed by the users as we have practically 
observed in FutureGrid and how we can integrate these 
requirements into a software architecture.  

We have designed a software architecture to address the 
requirements presented earlier. We distinguish the user layer 
allowing administrators, but also users (and groups of users) to 
interact with the framework. In addition, we point out that Web 
services can interact with it to develop third party automated 
tools and services leveraging the capabilities. Access to the 
various functions is provided in a secure fashion. Due to the 
diverse user communities wishing to use the environment, our 
design supports a variety of access interfaces including 
command line, dashboard, web services, as well as libraries and 
APIs. 

An important aspect is to be able to integrate existing and future 
information services to provide the data to guide dynamic and 
automatic resource provisioning, cloud–bursting, cloud-seeding, 
and cloud-shifting. Due to this reason, we allow in our design 
the integration of events posted by services such as Inca, 
Ganglia, and Nagios. Moreover, we obtain information from the 
running clouds and, when the provided information is not 
sufficient, we will be able to ingest our own information by 
analyzing log files or other information obtained when running a 
cloud. For clouds, we also host an instance archive that allows 
us to capture traces of data that can be associated with a 
particular virtual machine instance. A metric archive allows the 
registration of a self-contained service that analyses the data 
gathered while providing a data series according to the metric 
specified. Metrics can be combined and can result in new data 
series.  

At the center of this design is a comprehensive RAIN service 
Layer. Rain is an acronym for Runtime Adaptable INsertion 
service signifying services that on the one hand adapt to runtime 
conditions and on the other allow inserting or dynamically 
provisioning software environments and stacks. We use the 
terms rain and raining to refer to the process of instantiating 
services on the resource and service fabrics. In this analogy, we 
can rain onto a cluster services that correspond to an IaaS, a 
PaaS, or a HPC batch system. Rain can be applied to virtualized 
and non-virtualized machine images and software stacks. In 
addition, Rain can also be used to move resources between 
already instantiated environments, hence supporting cloud-
shifting. The most elementary operation to enable cloud-seeding 



and cloud-shifting is to provision the software and services onto 
the resources. We have devised this elementary operation and 
introduced in [6] and can now build upon it. In our past effort, 
we took on the problem of image management.  In this work we 
focus on cloud-shifting, which is a logical extension in order to 
satisfy our users' needs.  

Image Management. Rain allows us to dynamically provision 
images on IaaS and HPC resources. As users need quite a bit of 
sophistication to enable a cross platform independent image 
management, we have developed some tools that significantly 
simplify this problem. This is achieved by creating template 
images that are stored in a common image repository and 
adapted according to the environment or IaaS framework in 
which the image is to be deployed. Hence, users have the ability 
to setup experiment environments that provide similar 
functionality in different IaaS such as OpenStack, Eucalyptus, 
Nimbus, and HPC. Our image management services support the 
entire image lifecycle including generation, storage, reuse, and 
registration. Furthermore, we have started to provide extensions 
for image usage monitoring and quota management. 

Cloud Shifting enables the re-allocation of compute resources 
within the various clouds and HPC. To enable cloud-shifting we 
have introduced a number of low-level tools and services that 
allow the re-allocation of resources from an IaaS or HPC service 
to another. A typical cloud-shifting request follows these steps: 

1. Identify which resources should be moved (re-allocated) as 
part of the shift. This can be done by simply providing the 
names of the resources or by letting the service identify 
them according to service level agreements and specifiable 
requirements, such as using free nodes which have some 
specific characteristics.  

2. De-register the resources from the service they are 
currently registered on. This involves identifying running 
jobs/VMs on the selected resource. If they exist, the service 
will wait a fixed amount of time for them to finish or it will 
terminate them. The behavior is selected when placing the 
request. Once a resource becomes available it will be 
placed into an available resource pool. 

 
Figure 1: Design of the rain-based federated cloud management services. 
 



3. Pick resources from the available resource pool and rain 
the needed OS and other services onto each resource (if not 
already available). 

4. Register the resources with the selected service and 
advertise their availability. 

5. The resources are now integrated in the service and can be 
used by the users. 

Cloud-Seeding allows us to deploy a new service such as cloud 
infrastructure, from scratch, in FutureGrid. Thus, cloud-seeding 
enhances and makes use of the previously described cloud-
shifting. A cloud-seeding request includes: 

1. Install the new service (cloud or HPC infrastructure) in the 
selected resources.  

2. Set up the new service with some predefined configuration 
or following some given specifications. These 
specifications may include private IP range, ACL policies, 
and users’ profiles. 

3. Make use of cloud-shifting to add resources to the newly 
created service. 

4. Announce and advertise the availability of the new service 
to the users and other services. 

This is not a simple process, because it requires a great deal of 
planning and knowledge about the available infrastructure. 
Currently, we do this planning step by hand, but we intend to 
further automatize it as much as possible 

Queue Service. We anticipate that users may have demands that 
cannot be immediately fulfilled by using a single request of the 
cloud shifting or cloud seeding services. Therefore, our design 
includes the introduction of a queuing service that can 
coordinate multiple requests. In this way, users can create a 
workflow that will subsequently call different services to create 
the desired environment. Such a queuing service could be 
hidden from the users and integrate with cloud-bursting services 
to integrate additional resources in case of overprovisioning. 
Once no additional resources are available requests are queued.  

Reservation Service. Our design also includes the introduction 
of a reservation service to satisfy users with definite requests to 
be fulfilled at predefined times. This is the case for tutorials, 
classes, and regularly executed experiments. 

State Prediction Service. This service will provide accounting 
and usage information, as well as, access to customized metrics 
while monitoring our different services to predict their 
anticipated usage. For cloud IaaS frameworks, our instance 
database and instance analyzer (that we developed) will collect 
valuable input of the resource and service fabrics.  

Metrics. Elementary inputs to our prediction service are the 
metrics to guide our framework. These metrics are fed by 
elementary information in regards to job and virtual machine 
traces. 

Traditional computing systems provide common resource 
metrics such as CPU, memory, storage, network bandwidth, and 
electricity utilization.   

In case of VMs, we have to expand these metrics with VM 
specific information such as VM state, size, type, OS, memory, 
disk, CPU, kernel, Network IP, owner, and label. In addition, we 
are concerned with how much time it costs to create the VM, 
transfer it to a resource, instantiate and dynamically provision it, 
as well as bringing it in a state that allows access by the user. 
Furthermore, once the machine is shut down, we need to account 

for the shutdown time and eventual cleanup or removal of the 
VM. Naturally we also need to keep track of which user, group 
or project instantiated the VM and if the image is a replication 
run in parallel on other resources in the fabric. 

When dealing with services that are dependent on performance 
metrics, we also have to deal with periodicity of the events and 
filter out events not only based potentially on a yearly, monthly, 
weekly, daily, hourly, minute or per second basis, but to 
eliminate events that do not contribute significantly to the trace 
of a virtual machine image. We have practically devised such a 
service for Eucalyptus that reduced four million log events to 
about 10000 trace events for virtual machine images. This 
allows us to query needed information for our predictive 
services in milliseconds rather than hours of reanalyzing such 
log entries over and over again. Hence, our design is not only to 
retrieve standard information such as average, sum, minimum 
and maximum, as well as count of VM related events, but it can 
also input this data efficiently into a time series analysis and 
predictive service. In addition, we have integrated metrics for 
OpenStack and are in the process of expanding to Nimbus. 
Clearly, this framework is a sophisticated tool in support of 
federated heterogeneous and homogeneous clouds. 
 

6. STATUS AND IMPLEMENTATION 
As already pointed out, we have developed the basic 
infrastructure to support rain by enabling the image 
management services. These services are in detail documented 
in [1, 6, 42]. Recently we started the development of rain 
services that address the issue of cloud-shifting. We developed 
the ability to add and remove resources dynamically to and from 
Eucalyptus, OpenStack and HPC services. This allows us to 
easily move resources between OpenStack, Eucalyptus, and 
HPC services. We used this service to shift resources in support 
of a summer school held at the end of July 2012 where more 
than 100 participants were taught a variety of IaaS and PaaS 
frameworks. Within a short period of time we were able to adapt 

 
Figure 2: Screenshot of our Cloud Instance Analyzing 
framework applied to data from FutureGrid for 



our resource assignments to more closely serve the requirements 
of the projects executed at the time. As currently, some features 
in Nimbus are missing that are necessary to integrate with our 
framework, FutureGrid is also funding the Nimbus project to 
enhance their services so they will allow similar features as 
other IaaS frameworks already provide in order to support our 
image management framework. In parallel, we have 
significantly contributed towards the analysis of instance data 
for Eucalyptus and OpenStack clouds. Such data is instrumental 
for our planned predictive services.  This effort includes the 
creation of a comprehensive database for instance traces that 
records important changes conducted as part of the VM instance 
runtime documented in our design section. A previous analysis 
effort that analyses log files in a repeated fashion was designed 
and implemented by von Laszewski, Wang, and Lee, replacing 
an effort that allows the ingestion and extraction of important 
log files from newly created log events [48]. As a result, we 
were able to significantly reduce the log entries, which led to a 
speedup of our analyzing capabilities from hours to 
milliseconds. In addition, we made the framework independent 
from web frameworks and chart display tools. A convenient 
command shell that can also be accessed as a command line tool 
was added to allow for interactive sampling and preparation of 
data. Web services, as well as a simple graphical interface to this 
data will be available (see Figure 2). At the same time the code 
was significantly reduced and modularized so that future 
maintenance and enhancements become easier. Examples for 
data currently presented in our Web interface are based on the 
utilization of several metrics. This includes total running hours 
of VM instances; total number of VM instances in a particular 
state and time interval;  CPU core, memory and disk allocations; 
delay of launching and termination requests, the provisioning 
Interval, and geographical locations of VM instances. Metrics 
projecting a per user, per group, or per project view, metrics per 
cloud view, as well as metrics for the overall infrastructure and 
metrics related to the resource and service fabric are under 
development. Additional metrics such as traffic intensity for a 
particular time period [49, 50] are also useful in considering 
optimized utilization. Future activities will also include our 
strategy to use DevOps frameworks that we started from the 
beginning of the project and have also been independently been 
used by the FutureGrid community [51]. Clearly our framework 
can also be beneficial for integrative cloud environments such as 
CometCloud [52]. 
 

7. CONCLUSION 
In this paper, we have presented a design of a federated cloud 
environment that is not focused singly on supporting just an IaaS 
framework. Our understanding of federation includes various 
IaaS frameworks on potentially heterogeneous compute 
resources. In addition, we are expanding our federated cloud 
environment to include and integrate traditional HPC services. 
This work is a significant enhancement to our earlier work on 
dynamic image generation and provisioning in clouds and bare-
metal environments by addressing challenges arising in cloud 
seeding and cloud shifting. One of the other contributions of this 
paper is the creation of an accounting and metric framework that 
allows us to manage traces of virtual machine instances. This 
framework will be an essential component towards automating 
cloud-shifting and seeding as projected by our architectural 
design. We welcome additional collaborators to contribute to 
our efforts and to use FutureGrid. 

8. ACKNOWLEDGEMENTS 
This material is based upon work supported in part by the 
National Science Foundation under Grant No. 0910812 and 
1025159. We like to thank the members of FG for their help and 
support. We like to thank the Eucalyptus team for their 
willingness and excellent help in letting us use their commercial 
product. 

9. REFERENCES 
[1] von Laszewski, G., Diaz, J., Wang, F. and Fox, G. C. Comparison 

of Multiple Cloud Frameworks. In Proceedings of the IEEE 
CLOUD 2012, 5th International Conference on Cloud Computing 
(Honolulu, HI, USA, 24-29 June, 2012).  Doi 
10.1109/CLOUD.2012.104. 

[2] Avetisyan, A. I., Campbell, R., Gupta, I., Heath, M. T., Ko, S. Y., 
Ganger, G. R., Kozuch, M. A., O'Hallaron, D., Kunze, M., Kwan, 
T. T., Lai, K., Lyons, M., Milojicic, D. S., Hing Yan, L., Yeng 
Chai, S., Ng Kwang, M., Luke, J. Y. and Han, N. Open Cirrus: A 
Global Cloud Computing Testbed. Computer, 43, 4 2010), 35-43.  
Doi  10.1109/mc.2010.111. 

[3] White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., 
Newbold, M., Hibler, M., Barb, C. and Joglekar, A. An Integrated 
Experimental Environment for Distributed Systems and Networks. 
In Proceedings of the Proceedings of the 5th Symposium on 
Operating Systems Design & Implementation (December 2002, 
2002).   

[4] Grid5000 Home Page, http://www.grid5000.fr/. 

[5] G. von Laszewski, G. C. Fox, Fugang Wang, A. J. Younge, A. 
Kulshrestha, G. G. Pike, W. Smith, J. Vöckler, R. J. Figueiredo, J. 
Fortes and K. Keahey. Design of the FutureGrid experiment 
management framework. In Proceedings of the Gateway 
Computing Environments Workshop (GCE) at SC10 (New Orleans, 
LA, 14-14 Nov. 2010, 2010). IEEE.  Doi 
10.1109/GCE.2010.5676126  

[6] Diaz, J., von Laszewski, G., Wang, F. and Fox, G. Abstract Image 
Management and Universal Image Registration for Cloud and HPC 
Infrastructures. In Proceedings of the IEEE CLOUD 2012, 5th 
International Conference on Cloud Computing (Honolulu, HI, 
2012). IEEE.  Doi 10.1109/cloud.2012.94. 

[7] Yoo, A., Jette, M. and Grondona, M. SLURM: Simple Linux 
Utility for Resource Management. in Job Scheduling Strategies for 
Parallel Processing, Lecture Notes in Computer Science, vol 2862, 
p.  44-60, Springer Berlin / Heidelberg, 2003. 

[8] Univa Grid Engine, http://www.univa.com/products/grid-engine/. 

[9] Genias CODINE: Computing in distributed networked 
environments (1995), http://www.genias.de/genias/english/ 
codine.html. 

[10] Altair PBS, http://www.pbsworks.com/. 

[11] Moab, http://www.adaptivecomputing.com/products/hpc-
products/. 

[12] Bright-Computing Cluster Manager, 
http://www.brightcomputing.com/Bright-Cluster-Manager.php. 

[13] Adaptive-Computing Gold Allocation Manager User Guide, 
http://www.adaptivecomputing.com/resources/docs/gold/. 

[14] XDMoD XDMoD (XSEDE Metrics on Demand), 
https://xdmod.ccr.buffalo.edu/. 

[15] Globus-Project Globus Ubiquitous Supercomputing Testbed 
Organization (GUSTO), 
http://www.startap.net/PUBLICATIONS/news-globus2.html. 

[16] Hart, D. Measuring TeraGrid: Workload Characterization for an 
HPC Federation. International Journal of High Performance 
Computing Applications 4(Nov. 2011), 451-465.  Doi  
10.1177/1094342010394382. 



[17] XSEDE: Extreme Science and Engineering Discovery 
Environment, https://http://www.xsede.org. 

[18] OSG Open Science Grid, http://www.opensciencegrid.org. 

[19] von Laszewski, G., DiCarlo, J. and Allcock, B. A Portal for 
Visualizing Grid Usage. Concurrency and Computation: Practice 
and Experience, 19, 12 (presented in GCE 2005 at SC'2005 2007), 
1683-1692.  Doi  

[20] Abramson, D., Foster, I., Giddy, J., Lewis, A., Sosic, R., Sutherst, 
R. and White, N. The Nimrod Computational Workbench: A Case 
Study in Desktop Metacomputing. In Proceedings of the 
Proceedings of the 20th Australasian Computer Science 
Conference (1997).   

[21] Buyya, R., Yeo, C. S. and Venugopal, S. Market-oriented cloud 
computing: Vision, hype, and reality for delivering IT services as 
computing utilities, in. 2008.  

[22] Amazon Amazon Web Services, http://aws.amazon.com/. 

[23] Amazon Web Services Cloud Watch, 
http://docs.amazonwebservices.com/AmazonCloudWatch/latest/De
veloperGuide/CloudWatch_Introduction.html. 

[24] Eucalyptus Eucalyptus Monitoring, 
http://open.eucalyptus.com/wiki/EucalyptusMonitoring_v1.6. 

[25] Nimbus-Project Per Client Tracking, 
http://www.nimbusproject.org/docs/current/features.html. 

[26] OpenStack Multi-Tenant Accounting, 
http://wiki.openstack.org/openstack-
accounting?action=AttachFile&do=get&target=accounts.pdf. 

[27] OpenNebula OpenNebula Watch - Accounting and Statistics 3.0, 
http://opennebula.org/documentation:archives:rel3.0:acctd_conf. 

[28] Beloglazov, A., Buyya, R., Lee, Y. C. and Zomaya, A. A 
Taxonomy and Survey of Energy-Efficient Data Centers and Cloud 
Computing Systems2010).  Doi  

[29] Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., De Meer, H., 
Dang, M. Q. and Pentikousis, K. Energy-Efficient Cloud 
Computing2010).  Doi  

[30] Barth, W. Nagios: System and Network Monitoring. No Starch 
Press, San Francisco, CA, USA, 2006. 

[31] Massie, M. L., Chun, B. N. and Culler, D. E. The ganglia 
distributed monitoring system: design, implementation, and 
experience. Parallel Computing, 30, 7 2004), 817 - 840.  Doi  
10.1016/j.parco.2004.04.001. 

[32] Eucalyptus Eucalyptus 3.0.2 Administration guide, 
http://www.eucalyptus.com/docs/3.0/ag.pdf. 

[33] OpenStack Blue print of Efficient Metering, 
http://wiki.openstack.org/EfficientMetering. 

[34] Luo, Z. Dough, https://github.com/lzyeval/dough. 

[35] OpenStack Billing Plugin for OpenStack, 
https://github.com/trystack/dash_billing. 

[36] Microsoft Introduction to the Monitoring Pack for Windows Azure 
Applications 

[37] Microsoft Windows Azure PowerShell Cmdlets, 
http://wappowershell.codeplex.com/. 

[38] Red-Gate-Software Cerebrata, http://www.cerebrata.com/. 

[39] Google Google Compute Engine, 
http://en.wikipedia.org/wiki/Google_Compute_Engine. 

[40] Google Monitoring Resource Usage of Google App Engine, 
https://developers.google.com/appengine/docs/python/backends/ov
erview#Monitoring_Resource_Usage. 

[41] Google Runtime API for Google App Engine, 
https://developers.google.com/appengine/docs/python/backends/ru
ntimeapi. 

[42] von Laszewski, G., Fox, G. C., Wang, F., Younge, A. J., 
Kulshrestha, A., Pike, G. G., Smith, W., Voeckler, J., Figueiredo, 
R. J., Fortes, J., Keahey, K. and Deelman, E. Design of the 
FutureGrid experiment management framework. In Proceedings of 
the Gateway Computing Environments Workshop (GCE), 2010 in 
conjunction with SC10 (New Orleans, LA, 14-14 Nov. 2010, 
2010). IEEE.  Doi 10.1109/GCE.2010.5676126. 

[43] Keahey, K., Tsugawa, M., Matsunaga, A. and Fortes, J. Sky 
Computing. Internet Computing, IEEE, 132009), 43-51.  Doi  
10.1109/MIC.2009.94. 

[44] Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, 
C., Mehta, G., Vahi, K., Berriman, G. B., Good, J., Laity, A., 
Jacob, J. C. and Katz, D. S. Pegasus: A framework for mapping 
complex scientific workflows onto distributed systems. Scientific 
Programming Journal, 13, 3 2005), 219-237.  Doi  10.1.1.117.132. 

[45] Thilina Gunarathne, Judy Qiu and Geoffrey Fox. Iterative 
MapReduce for Azure Cloud In Proceedings of the CCA11 Cloud 
Computing and Its Applications (Chicago, IL, April 12-13, 2011).   

[46] Cornell Cornell University Red Cloud, 
http://www.cac.cornell.edu/redcloud/. 

[47] Clemson Clemson University One Cloud, 
https://sites.google.com/site/cuonecloud/. 

[48] Laszewski, G. v., Lee, H. and Wang, F. Eucalyptus Metric 
Framework (Source Code), 
https://github.com/futuregrid/futuregrid-cloud-metrics. 

[49] Calheiros, R. N., Ranjan, R. and Buyya, R. Virtual Machine 
Provisioning Based on Analytical Performance and QoS in Cloud 
Computing Environments. In Proceedings of the International 
Conference on Parallel Processing (Washngton, DC, 2011). IEEE 
Computer Society.  Doi 10.1109/ICPP.2011.17. 

[50] Maguluri, S. T., Srikant, R. and Ying, L. Stochastic Models of 
Load Balancing and Scheduling in Cloud Computing Clusters. 
2012.  

[51] Klinginsmith, J., Mahoui, M. and Wu, Y. M. Towards 
Reproducible eScience in the Cloud. In Proceedings of the Cloud 
Computing Technology and Science (CloudCom), 2011 IEEE 
Third International Conference on (Nov. 29 2011-Dec. 1 2011, 
2011).  Doi 10.1109/CloudCom.2011.89. 

[52] Kim, H. and Parashar, M. CometCloud: An Autonomic Cloud 
Engine. in Cloud Computing, vol p.  275-297, John Wiley & Sons, 
Inc., 2011.  


