
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/224098198

Flexible framework for commodity FPGA cluster computing

Conference Paper · January 2010

DOI: 10.1109/FPT.2009.5377649 · Source: IEEE Xplore

CITATION

1
READS

114

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Digital Science Center View project

Collaboratory for Multiscale Chemistry View project

Marcin Lukowiak

Rochester Institute of Technology

60 PUBLICATIONS 204 CITATIONS

SEE PROFILE

Gregor von Laszewski

Indiana University Bloomington

246 PUBLICATIONS 8,556 CITATIONS

SEE PROFILE

All content following this page was uploaded by Gregor von Laszewski on 26 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/224098198_Flexible_framework_for_commodity_FPGA_cluster_computing?enrichId=rgreq-dced1eff157b4874dd7a14ce9431feb6-XXX&enrichSource=Y292ZXJQYWdlOzIyNDA5ODE5ODtBUzoxMDEwMjY0MDk0ODQzMDZAMTQwMTA5Nzk4MTY2NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/224098198_Flexible_framework_for_commodity_FPGA_cluster_computing?enrichId=rgreq-dced1eff157b4874dd7a14ce9431feb6-XXX&enrichSource=Y292ZXJQYWdlOzIyNDA5ODE5ODtBUzoxMDEwMjY0MDk0ODQzMDZAMTQwMTA5Nzk4MTY2NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Digital-Science-Center?enrichId=rgreq-dced1eff157b4874dd7a14ce9431feb6-XXX&enrichSource=Y292ZXJQYWdlOzIyNDA5ODE5ODtBUzoxMDEwMjY0MDk0ODQzMDZAMTQwMTA5Nzk4MTY2NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Collaboratory-for-Multiscale-Chemistry?enrichId=rgreq-dced1eff157b4874dd7a14ce9431feb6-XXX&enrichSource=Y292ZXJQYWdlOzIyNDA5ODE5ODtBUzoxMDEwMjY0MDk0ODQzMDZAMTQwMTA5Nzk4MTY2NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-dced1eff157b4874dd7a14ce9431feb6-XXX&enrichSource=Y292ZXJQYWdlOzIyNDA5ODE5ODtBUzoxMDEwMjY0MDk0ODQzMDZAMTQwMTA5Nzk4MTY2NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcin-Lukowiak?enrichId=rgreq-dced1eff157b4874dd7a14ce9431feb6-XXX&enrichSource=Y292ZXJQYWdlOzIyNDA5ODE5ODtBUzoxMDEwMjY0MDk0ODQzMDZAMTQwMTA5Nzk4MTY2NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcin-Lukowiak?enrichId=rgreq-dced1eff157b4874dd7a14ce9431feb6-XXX&enrichSource=Y292ZXJQYWdlOzIyNDA5ODE5ODtBUzoxMDEwMjY0MDk0ODQzMDZAMTQwMTA5Nzk4MTY2NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Rochester-Institute-of-Technology?enrichId=rgreq-dced1eff157b4874dd7a14ce9431feb6-XXX&enrichSource=Y292ZXJQYWdlOzIyNDA5ODE5ODtBUzoxMDEwMjY0MDk0ODQzMDZAMTQwMTA5Nzk4MTY2NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcin-Lukowiak?enrichId=rgreq-dced1eff157b4874dd7a14ce9431feb6-XXX&enrichSource=Y292ZXJQYWdlOzIyNDA5ODE5ODtBUzoxMDEwMjY0MDk0ODQzMDZAMTQwMTA5Nzk4MTY2NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gregor-Von-Laszewski?enrichId=rgreq-dced1eff157b4874dd7a14ce9431feb6-XXX&enrichSource=Y292ZXJQYWdlOzIyNDA5ODE5ODtBUzoxMDEwMjY0MDk0ODQzMDZAMTQwMTA5Nzk4MTY2NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gregor-Von-Laszewski?enrichId=rgreq-dced1eff157b4874dd7a14ce9431feb6-XXX&enrichSource=Y292ZXJQYWdlOzIyNDA5ODE5ODtBUzoxMDEwMjY0MDk0ODQzMDZAMTQwMTA5Nzk4MTY2NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Indiana-University-Bloomington?enrichId=rgreq-dced1eff157b4874dd7a14ce9431feb6-XXX&enrichSource=Y292ZXJQYWdlOzIyNDA5ODE5ODtBUzoxMDEwMjY0MDk0ODQzMDZAMTQwMTA5Nzk4MTY2NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gregor-Von-Laszewski?enrichId=rgreq-dced1eff157b4874dd7a14ce9431feb6-XXX&enrichSource=Y292ZXJQYWdlOzIyNDA5ODE5ODtBUzoxMDEwMjY0MDk0ODQzMDZAMTQwMTA5Nzk4MTY2NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gregor-Von-Laszewski?enrichId=rgreq-dced1eff157b4874dd7a14ce9431feb6-XXX&enrichSource=Y292ZXJQYWdlOzIyNDA5ODE5ODtBUzoxMDEwMjY0MDk0ODQzMDZAMTQwMTA5Nzk4MTY2NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Flexible Framework for Commodity FPGA Cluster
Computing

Jeremy Espenshade 1, Marcin Lukowiak 1, Gregor von Laszewski 2

1 Department of Computer Engineering, Rochester Institute of Technology
2 Service Oriented Cyberinfrastructure Lab, Rochester Institute of Technology

Rochester, NY USA
1 {jke2553, mxleec}@rit.edu, 2 laszewski@gmail.com

Abstract—With the continued fall of costs and successful
demonstrations of performance, FPGAs have become a prime
candidate for use in high performance computing. However, the
use of FPGA technology in clustered environments has largely
been limited to commercial and/or proprietary designs that re-
quire developers to learn new programming models and software
tools. In this paper, a framework is presented which enables
parallel software development across application-specific recon-
figured hardware using simple hardware interface abstractions
and standard MPI applications. Leveraging embedded Linux
running on hardwired PowerPC processors, communication is
managed such that each hardware element can function as a fully
MPI-2 compatible node. Application case studies are presented
and platform characteristics are elucidated through performance
analysis.

I. INTRODUCTION

In the domain of high performance computing, several
architectural avenues are being explored in the search for max-
imum performance, optimal cost/benefit ratios, and flexibility
of approaching computationally intensive tasks. Although most
commercial super computers continue to be built with many
homogeneous uniprocessors or chip-multiprocessors [1] [2],
a recognizable trend has been toward inclusion of dedicated
hardware to assist in computations that are especially inten-
sive or for which a typical general-purpose processor is ill-
suited. This acceleration often takes the form of hardware co-
processors connected via PCI or some other direct interface us-
ing application-specific integrated circuits (ASICs), reconfig-
urable fabric (FPGAs), or, more recently, the class of streaming
architectures including the STI Cell Broadband Engine and
programmable graphics processing units (GPGPUs). Examples
of each include the D.E. Shaw Research Anton molecular
dynamics simulation supercomputer [3], the Cray XT5h [4]
and SRC-7 reconfigurable supercomputers [5], and the IBM
BlueGene/P hybrid supercomputer [6] and Nvidia Tesla based
computing solutions [7] respectively. The motivation for all
of these architectures is the set of applications that require
acceleration and contain program segments that are not ideally
suited to computation on a general purpose processor (GPP).
Some examples of such applications are cryptanalysis, molec-
ular dynamics simulations, bioinformatics, and high data-
throughput image and video processing [8].

While positive results have been garnered in these and many
other application areas using the co-processor model, a recent
area of research interest has been placing increased respon-
sibility with the dedicated hardware, especially focused on
reconfigurable computing elements. High performance com-
puting research efforts using reconfigurable elements exclu-
sively have been undergone at several universities [9][10] and
the Airforce Research Laboratory Rome [11]. These efforts
have been largely successful at demonstrating the potential for
reconfigurable computing in a massively parallel environment
[8].

An avenue that has yet to be explored to any great extent is
in the use of commodity off-the-shelf (COTS) FPGAs with
multiple custom hardware units each acting as fully func-
tioning and participating nodes in a heterogeneous computing
cluster for HPC use. With the advent of high performance,
large area FPGAs with cost similar to that of GPP cluster
nodes, such an inclusion is both feasible and promising.

Fig. 1. Physical Cluster Structure

To enable FPGA inclusion in such a cluster, one must
first consider the communication method used to coordinate
processes and pass data between nodes. A commonly accepted
standard API for communication on everything from tradi-
tional COTS clusters to the BlueGene/P supercomputer is the
Message Passing Interface (MPI). The MPI standard supports
a send/receive paradigm for interprocess communication with
many additional features for collective communication, pro-
cess organization, etc [12]. As such, retaining this common
interface has the benefits of allowing reuse of existing code
structure and function, building upon a well-established com-
munication infrastructure, and, most importantly, presenting a

familiar and understood API for development targeted toward
an FPGA cluster.

To realize the inclusion of FPGA hardware units as fully
functioning cluster nodes, the following paper presents a
framework for hardware and software development that allows
multiple, specialized computation elements to exist on each
FPGA and exploits a Linux operating system environment
running on embedded PowerPC processors to abstract com-
munication such that each computation element exists as
a node supporting MPI communication and synchronization
in a common manner. The rest of the paper is organized
as follows: Section 2 will discuss related and supporting
work. Section 3 will present the system description including
hardware, software, and programming model considerations
while walking through testbed applications. Section 4 will
discuss the results collected. And section 5 will conclude
the paper with discussion of future research and development
directions.

II. RELATED WORK

In general computation, the use of MPI communication has
been investigated extensively and demonstrated to be a high
quality method for organizing processes and communication
across clusters ranging in size from small groups of worksta-
tions to supercomputers to grids using MPI as a layer under-
lying Condor and/or Globus system coordination. The current
standard is MPI-2.1, an extension to the original MPI-1.X
that adds one-sided communication, dynamic processes, and
parallel I/O among other features to the original set of features
supporting point-to-point and collective communication and
synchronization. One of the most prevalent implementations
of the MPI API is OpenMPI [13], a community driven open
source implementation merging and building on the older FT-
MPI, LA-MPI, LAM/MPI, and PACX-MPI implementations.

On the hardware side, Field Programmable Gate Arrays
(FPGAs) have been the target of vigorous research that at-
tempts to make effective use of the potential for performance
improvement in appropriate applications. Most a propos is
the body of work targeting System-on-Chip (SoC) designs.
SoC is generally defined as any disparate set of computing
elements existing on a single chip, and this design strategy is
common practice for FPGA usage in embedded systems. An
extension on SoC is MPSoC, or multiple processor System-
on-Chip, design where multiple processors are combined with
other elements on a single chip and interface buses provide
communication. The use of MPI for MPSoC integration has
been discussed for several years [14] [15] but has been largely
confined to single platforms.

Single-FPGA MPSoC research using Linux and MPI has
been performed with good results on Xilinx FPGAs for image
processing[16]. This work builds on an earlier MPI implemen-
tation using the Xilinx FSL (Fast-Simplex Link) bus to provide
FIFO communication links between MicroBlaze processors
[15]. A parallel image processing library is subsequently built
on top of that MPI layer and scaling similar to multiple
desktops is demonstrated. As mentioned, this work is limited

to a single FPGA and implements only a small subset of the
MPI API.

Probably the closest in terms of scope to the effort detailed
in this paper is the TMD-MPI project work done at the
University of Toronto [17]. TMD-MPI was developed as
a programming model for the TMD multi-fpga computing
machine built for molecular dynamics simulations. Like the
previous work, a stripped down MPI implementation was
designed that also used the FSL bus for on-chip communi-
cation [18]. This design was extended to make use of Xilinx
Multi-Gigabit Transceivers that connected multiple FPGAs on
a single PCB and multiple PCBs to form the full system.
Besides the required custom construction of such a hardware
configuration, the TMD-MPI implementation suffered from
some limitations resulting primarily from the absence of an
operating system. Only a small subset of the MPI API was
implemented and without dynamic management, ranks had to
be statically assigned, processes must be statically started, and
only synchronous sends and receives were implemented [19].
Despite these issues, TMD-MPI serves as a valuable effort
showing the validity of a MPSoC approach across multiple
FPGAs.

Finally, there is a body of work considering integration
of hardware acceleration units into a Linux Operating Sys-
tem environment running on embedded PowerPC processors
[20][21][22]. These efforts demonstrate the validity of using a
Linux device driver to control software/hardware communica-
tion. FIFO queues in particular were suggested as a preferred
SW/HW communication abstraction by Williams et al [23].

III. FRAMEWORK DESCRIPTION

The framework described throughout this work is intended
to be portable across any Xilinx FPGAs that include an
embedded PowerPC processor. For demonstration purposes
a network of two Virtex-5 FX70T, two Virtex-5 FX130T,
and one Virtex-4 FX60 evaluation platforms was used as the
testbed. These platforms include Gigabit Ethernet controllers,
256-512 MB of DDR2 RAM, and 512MB compact flash
cards. Each FPGA has a single PowerPC hardwired into
the reconfigurable fabric. The Processor Local Bus (PLB)
connects the 400 MHz PowerPC 440 (Virtex-5) or 300 MHz
PowerPC 405 (Virtex-4) processors to all on-chip peripherals
running at 100 MHz.

A. Software Environment

The core of the software environment is a Linux operating
system built on the 2.6 kernel. Xilinx provides a standard
configuration along with drivers for a minimal set of periph-
eral hardware. Subsequent configuration changes and driver
development was done using the DENX Embedded System
Development Kit cross-compilation environment. The root file
system was built starting from a base Xilinx ramdisk and
BusyBox utilities.

This effort builds upon OpenMPI, as it is constructed in a
consistent layered model that provides for the possibility of

custom physical layer communication methods, builds in sup-
port for limited heterogeneity, and is implemented in standard
C/C++ rather than using Python scripts to implement the MPI
command line interface. Given the use of embedded Linux,
each additional application that must be ported and/or con-
figured within the root file system requires additional design
effort and is preferably avoided. OpenMPI utilizes OpenSSH
and in turn, OpenSSL, to provide secure communication.
Both to save space and ensure maximum interoperability,
all programs were built dynamically, requiring the manual
identification and installation of shared libraries. SSH was
also configured across the nodes for seamless certificate-based
security. While initially time consuming, the same root file
system can now be deployed to the compact flash drive of
each FPGA or shared via NFS.

Fig. 2. Application Layers

B. Hardware Interface

The hardware acceleration units expose a common FIFO
interface through the use of a read/write FIFO pair attached to
the PLB. Application specific hardware may then be attached,
using data arriving in the Write FIFO and reporting results to
the Read FIFO. Optional interrupt generation hardware is also
supported. The recommended hardware design process utilizes
existing Xilinx tools within their Embedded Development Kit
(EDK). The Base System Builder is used to generate an overall
design including the PowerPC core, DDR interface, hardwired
Ethernet MAC, and SystemACE compact flash components
connected via the PLB. The Create/Import Peripheral wizard is
then used to generate PLB interface wrappers and include the
FIFO, interrupt generation, and supporting logic. Example in-
teraction code is provided allowing developers to quickly and
easily develop or integrate application-specific logic. Further
tools allow intuitive connection of new hardware accelerators
to the PLB and global interrupt controller and also assignment
of unique physical addresses.

Interaction with this hardware interface is supported through
a common device driver developed for the purpose. This
driver registers Linux character drivers for each compatible

hardware accelerator included in the hardware design. Physical
addresses and IRQs are remapped into Linux-managed virtual
space and file operations implementing open, release, read,
and write behaviors are implemented. Through the use of
special device files, standard C-language fopen operations
are thereby mapped to the open behavior including hard-
ware initialization and lock-based arbitration ensuring singular
software process access. Similarly, fclose, fwrite, and fread
operations can be used to invoke the defined release, read,
and write behaviors.

Special device files are created and managed dynamically
allowing for seamless hardware design flexibility. At boot
time, the character device registry exposed in /proc/devices is
checked for user-created hardware accelerators identified by a
“user-” prefix prepended to device names by the driver. Special
device files with the original device name and appropriate
major number are then created in the /dev directory such that a
possible configuration of two addition and three multiplication
accelerators would appear as shown in Figure 3.

IV. PROGRAMMING MODEL EXAMPLE

To provide a simple hardware acceleration unit for initial
framework verification and analysis, a matrix multiplication
unit was implemented on the FPGA. This unit accepts 32-bit
integer operands and expects to be initialized with the number
of rows and columns. After initialization, the unit stores a
set of rows from the first matrix and performs concurrent dot
products with subsequently received columns of the second
matrix. Once all columns are received, it waits on a new set
of rows. This is explained in detail to provide the basis for a
working example of the programming model in the following
section.

As desired, the programming model will look very acces-
sible to anyone familiar with MPI and standard C-language
file operations. With FIFO queues acting as a buffering ab-
straction, little consideration needs to be paid to the hardware
implementation by a software application developer. Using
the description of the matrix multiplication hardware unit in
the last section, a distributed algorithm can be easily written
as shown in figure 4. With such a direct and familiar pro-
gramming model, hardware/software co-design is effectively
disentangled and development effort can be spent directly on
software algorithms and hardware implementations.

In this case, a choice was made to increase access locality
in the hardware by reusing a each row of Matrix A M DIM
times rather than receiving pairs of operands and performing
individual multiply-accumulates. This decision and others like
it will impact the specification for what data is being sent back
and forth across the FIFOs, but this is similar to any software-
only programming model with interface specifications. As a
result, MatB was formatted in column-major order in this
case to allow contiguous blocks of memory to be written
to the FIFO. A matrix multiplication engine performing 32
concurrent dot products was synthesized on each FPGA, and
an alternative 64 dot product implementation was synthesized
for the largest Virtex-5 (FX130T).

ls -la /dev
...
crw——- 1 root root 249, 0 Jan 1 1970 addition0
crw——- 1 root root 250, 0 Jan 1 1970 addition1
...
crw——- 1 root root 251, 0 Jan 1 1970 multiplication0
crw——- 1 root root 252, 0 Jan 1 1970 multiplication1
crw——- 1 root root 253, 0 Jan 1 1970 multiplication2
...

Fig. 3. Hardware Accelerator Special Device Files in /dev Directory

Input:
MatA, MatB, MatC: MatA * MatB = MatC
HW FIFO: Device name (ie /dev/hwfifo0)
N DIM,M DIM : MatA is an NxM matrix
NUMROWS: Number of Rows locally stored

MPI Init();
MPI Rank(&rank);
MPI Size(&size);
// Send/Receive data
...
file *HWFIFO = fopen{HW FIFO, ”r+”}
setvbuf(HWFIFO, NULL, IONBF , 4)
for (i=rank to N Dim+ = size ∗NUMROWS){

fwrite(&(MatA[i ∗M DIM]),
4,M DIM ∗NUMROWS, HWFIFO);

for (j= 0 to M Dim+ = 1){
fwrite(&(MatB[j ∗M DIM]),

4,M DIM , HWFIFO);
}
fread(&(MatC[i ∗N DIM]),4,NUMROWS, HWFIFO);
}
// Send/Receive Results
...
fclose(HWFIFO);
MPI Finalize();

Fig. 4. Matrix Multiplication Program

A. Matrix Multiplication Outcomes

While exceptional performance should not be the expec-
tation when targetting FPGAs for dense linear algebra [24],
application development and deployment did shed light on
some important characteristics of the platform. Acting as
a general purpose comparison, a cluster of 32 Intel Xeon
5140 2.33 GHz dual-core processors connected over Gigabit
ethernet was also targeted with similar algorithmic organiza-
tion. Table I shows the execution times for the three FPGA
models with 32 multiply accumulators (MACs) performing
dot products, the Virtex-5 FX130T with 64 MACs, and a
single core Xeon performing multiplications across matricies
of varying dimensions.

Fig. 5. Single Node Matrix Multiplication Speedup Over Xeon

Several interesting results are immediately apparent when
analyzing these results along with the speedup graphically
shown in Figure 5. First, while the two similarly config-
ured Virtex-5 devices perform nearly identically, the same
configuration on the Virtex-4 suffers a performance drop.
The 64 MAC version of the FX130T also provides speedups
ranging from 1.64x to 1.85x over the 32 MAC version. Most
importantly, however, is the lack-luster performance of the
FPGA solutions, most notibly the Virtex-4. Analysis of the
hardware design and performance results shows inefficient use
of arithmetic hardware resulting from a bandwidth bottleneck
between the PowerPC and hardware accelerator. Table II
shows the observed bandwidth peaking at around 23 MBps
for the Virtex-4 and 42 MBps for the Virtex-5 devices. This
motivates the need for DMA data transfer to hardware acceler-
ators which is one of the top priorities for future development
of this framework.

Scaling here?? It would be good if I have room. I have
room! Will add ASAP

V. DES CRYPTANALYSIS

A. Introduction and Design

While the bandwidth characteristics observed in the pre-
vious section limit the range of applications that would
experience speedup when deployed with this framework,
many applications exhibit a sufficiently low communication
to computation ratio such that the computational capabilities
of FPGAs are appropriately exploited. One such applica-
tion area is cryptanalysis. Ageing encryption standards such

Matrix Dimensions 256 x 256 (s) 512 x 512 (s) 1024 x 1024 (s) 2048 x 2048 (s)
Virtex-4 FX60 (32 MACs) 0.162 0.957 6.562 47.139
Virtex-5 FX70T (32 MACs) 0.071 0.470 3.427 26.015
Virtex-5 FX130T (32 MACs) 0.071 0.470 3.410 26.403
Virtex-5 FX130T (64 MACs) 0.043 0.269 1.875 14.269
2.33 GHz Xeon 0.031 0.258 1.956 13.405

TABLE I
SINGLE NODE MATRIX MULTIPLICATION EXECUTION TIMES

Matrix Dimensions 256 x 256 (MBps) 512 x 512 (MBps) 1024 x 1024 (MBps) 2048 x 2048 (MBps)
Virtex-4 FX60 (32 MACs) 16.150 19.732 21.731 23.490
Virtex-5 FX70T (32 MACs) 37.031 40.183 41.610 42.563
Virtex-5 FX130T (32 MACs) 36.924 40.078 41.815 41.938
Virtex-5 FX130T (64 MACs) 36.492 38.990 40.272 39.976

TABLE II
OBSERVED POWERPC TO HARDWARE ACCELERATOR BANDWIDTH

as the Data Encryption Standard (DES) often were created
with insufficient key lengths that have since been subject of
successful brute force attacks. Block ciphers like DES are
generally well-suited to FPGA implementation because of the
bit-level operations and explicitly staged operation that allows
the included bitwise logic and highly pipelined architecture to
be fully engaged.

As a practical example of such an attack, DES has previ-
ously been cracked using a known-plaintext attack where a
block of unencrypted data (plaintext) and the cooresponding
encrypted ciphertext is known a priori. DES uses a secret key
to encrypt blocks of 64-bits at a time and decryption is trivial
if the key used during encryption is known. Therefore, the
plaintext can be encrypted with each possible secret key and
once the result matches the known ciphertext, the secret key
will have been found and the encryption is broken. DES keys
have a cryptographic strength of 56 bits, so 256 keys must be
checked in the worst case to break the encryption.

From a parallel software development standpoint, a DES
cracking application is concerned with the coordination of
available processors such that each processing element stays
busy until the key is found or a chosen subspace of possible
keys is completely searched. The later approach is particu-
larly helpful during development and performance testing, as
searching the entire key space remains prohibitive regardless
of platform. To partition the key space into work units that
can be distributed to processing elements, the method used by
the COPACOBANA [25] team in their custom code-cracking
FPGA platform was applied such that the most significant 24
bits are used to indicate a group of 232 possible keys that must
be searched. A master-slave paradigm was then applied with
the master maintaining a dynamic queue of remaining work
to be distributed to the slaves.

From a hardware development perspective, internal counters
can be used to generate the least significant 32 bits of each key
in the search space designated by the 24 most significant bits.
After initialization with the known plaintext and ciphertext, 24-
bit key space indicators are received and either the correct key

or key-not-found condition is returned upon exhaustive search
completion. FPGA hardware allows DES to be pipelined easily
into sixteen stages, one for each identical DES round, and with
an additional input and output registration stage, an 18-stage
pipeline results. Furthermore, multiple concurrent encryptions
are possible with duplicate encryption engines while reusing
some peripheral hardware including the PLB interface and
interaction logic.

To make use of the available hardware parallelism, the 32-
bit search space can be further partitioned with each encryption
engine retaining a unique identifier such that the actual search
space is reduced to 32 minus log2(Number of Encryption
Engines). For example, with four encryption engines 2-bit
identifiers of “00”, “01”, “10”, and “11” would prepend the
lower 30 bits of the remaining search space. Eight encryption
engines were synthesized in the final accelerator design. This
resulted in very dense usage of the available fabric in each
FPGA type with one DES accelerator on the Virtex-4, two
on the Virtex-5 FX70T, and three on the FX130T. This
configuration implies eleven total accelerators across the five
FPGAs, each guessing eight keys concurrently at 100 MHz,
which ideally results in 8.8 billion keys guessed per second.

To act as a basis for comparison, the same cluster of
Xeon GPPs was targeted for the development of a similar
software-only implementation using the GNU Crypt library.
The only change in structure was an increase in the key
space indicator from 24 bits to 32 bits, as a 32-bit key
space search required prohibitively lengthy computation in
software. To combat the inherent increase in communication
that results from this change, all timing comparisons are
between application configurations with identical numbers of
interprocess communication instructions rather than total key
space searched.

B. Results and Analysis

The vast majority of the computation time involved in
cracking DES is searching key spaces that do not contain
the correct key. Performance analysis was therefore performed
across subspaces known not to contain the correct key so as to

ensure the entire space was searched. The target search space
was scaled linearly with the addition of processing nodes such
that each node would check sixteen key spaces on average.
Figure 6 shows how the application scales across the eleven
processing nodes available across the five FPGAs.

Fig. 6. DES application scalability with reference to ideal hardware speed

The listed data and efficiency included in Table III demon-
strate remarkable application and framework scalability. Indi-
vidual node hardware access from user software exceeds 99%
of the ideal hardware performance, while deploying the appli-
cation across distributed resources retains efficiency in excess
of 97%. This result implies that additional FPGA resources
would exhibit similar performance scaling and while efficiency
would be expected to degrade slowly, a small number of
additional FPGAs would quickly reduce the total time required
to search the entire key space and break DES. The current
configuration guessing 8.548 billion keys per second would
require an average of approximately 48.78 days of continuous
computation to break DES encryption, but hardware design
improvements and additional resources could quickly reduce
that to a very reasonable period of time.

of Hardware Execution Time Key Throughput Efficiency
Accelerators (seconds) (keys/second)
1 86.835 791.38 M 0.989
2 87.077 1578.35 M 0.986
3 87.461 2357.16 M 0.982
4 87.366 3146.28 M 0.983
5 87.777 3914.45 M 0.979
6 88.334 4667.70 M 0.972
7 88.451 5438.46 M 0.971
8 88.454 6215.16 M 0.971
9 88.303 7004.00 M 0.973
10 88.490 7765.75 M 0.971
11 88.426 8548.55 M 0.971

TABLE III
DES APPLICATION PERFORMANCE ACROSS FPGA CLUSTER

Placed in contrast with the stellar performance observed on
the FPGA cluster, the Intel Xeon GPPs executing software-
only key searches performed poorly. Application scalability
followed similar trends with 95% of single-node efficiency
observed across eleven independent processors resulting in
three orders of magnitude speedup exhibited by the FPGA
platform. To provide further framing, reference is made to a
previous study [8] of DES cryptanalysis applied to commercial
FPGA supercomputers by Cray and SRC. The cluster of

commodity FPGAs organized with the developed framework
fairs quite well against these solutions. Furthermore, while
a full cost/performance analysis is impossible given private
pricing policy, Cray’s XD1 debuted in 2005 at nearly $100,000
U.S. Dollars [26], an order of magnitude more than the
commodity FPGA cluster.

Platform Key Throughput Speedup Over
(keys/second) Software Solution

Commodity FPGAs 8,548 Million 1107 x
SRC-6 4,000 Million 518 x
Cray XD1 7,200 Million 930 x
2.33 GHz Xeon (11 cores) 7.722 Million 1 x

TABLE IV
FPGA SUPERCOMPUTER DES PERFORMANCE COMPARISON

VI. CONCLUSION

In this paper, a flexible framework for scalable commodity
FPGA cluster computing was presented and demonstrated. A
direct matrix multiplication application was deployed across
multiple FPGAs demonstrating functionality while platform
characteristics were discovered through subsequent perfor-
mance analysis. A DES cryptanalysis application was then
presented, demonstrating speedup in excess of 1100x over a
cluster of general purpose processors with a cost/performance
improvement of 371x. This work serves as a valuable con-
tribution to the literature building off the contemporary body
of research and provides the foundation for future work with
significant research potential in the field of high-performance
distributed computing leveraging FPGA technology.

A. Future Work

This paper marks the first report of an ongoing effort to
develop a flexible framework for commodity FPGA cluster
computing with considerations for software programmability,
ease of hardware implementation, and hardware/software ab-
straction. As such, there are myriad approaches to be consid-
ered and optimizations to be attempted. The following outlines
the expected continuation flow building on this work but is less
than comprehensive.

Given the limited speed of I/O operations on the PLB,
investigation into supplementary communication abstractions
is warranted. Communicating control signals and DMA ad-
dresses via the FIFO interface working in tandem with a
DMA interface between hardware accelerators and main mem-
ory could provide enough bandwidth to expand application
suitability to higher communication to computation ratios.
More suitable applications will be deployed in future work to
better examine the potential for productive HPC use regardless,
however bandwidth improvements are a high priority. Likely
areas of investigation are in the fields of astrophysics and
neural simulations.

Further framework improvements increasing the cluster ro-
bustness with fault tolerance and actively managed job queues
are expected. And investigation into dynamic reconfiguration,

integrated design tool flows, and improved developer expe-
rience round out the most likely avenues of exploration and
development.

REFERENCES

[1] T. Domany and et al, “An Overview of the BlueGene/L Supercomputer,”
in SC ’02: Proceedings of the 2006 ACM/IEEE conference on Super-
computing, Baltimore, MD, USA, 2002.

[2] “Exploring Science Frontiers at Petascale,” Oak Ridge National Labo-
ratory, Tech. Rep., 2008.

[3] D. E. Shaw and et al, “Anton, a special-purpose machine for
molecular dynamics simulation,” in ISCA ’07: Proceedings of the
34th annual international symposium on Computer architecture. New
York, NY, USA: ACM Press, 2007, pp. 1–12. [Online]. Available:
http://dx.doi.org/10.1145/1250662.1250664

[4] “Cray XT5h Supercomputer,” Cray Inc., Tech. Rep., 2008.
[5] S. Computers. (2009) SRC-7 Overview. SRC Comput-

ers. Http://srccomputers.com/products/src7.asp. [Online]. Available:
http://srccomputers.com/products/src7.asp

[6] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang,
S. Pakin, and J. C. Sancho, “Entering the petaflop era:
the architecture and performance of Roadrunner.” in SC.
IEEE/ACM, 2008, p. 1. [Online]. Available: http://dblp.uni-
trier.de/db/conf/sc/sc2008.html#BarkerDHKLPS08

[7] N. Corp. (2009) Tesla S1070. Nvidia Corp.
Http://www.nvidia.com/object/product tesla s1070 us.html. [Online].
Available: http://www.nvidia.com/object/product tesla s1070 us.html

[8] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko, and
D. Buell, “The Promise of High-Performance Reconfigurable Comput-
ing,” IEEE Computer Magazine, vol. 41, no. 2, pp. 69–76, 2008.

[9] C. Patterson, B. Martin, S. Ellingson, J. Simonetti, and S. Cutchin,
“FPGA Cluster Computing in the ETA Radio Telescope,” Field-
Programmable Technology, 2007. ICFPT 2007. International Confer-
ence on, pp. 25–32, Dec. 2007.

[10] R. Sass, W. Kritikos, A. Schmidt, S. Beeravolu, and P. Beeraka,
“Reconfigurable Computing Cluster (RCC) Project: Investigating the
Feasibility of FPGA-Based Petascale Computing,” Field-Programmable
Custom Computing Machines, 2007. FCCM 2007. 15th Annual IEEE
Symposium on, pp. 127–140, April 2007.

[11] G. D. Peterson, “Programming High Performance Reconfigurable Com-
puters,” Airforce Research Lab Rome Research Site, Rome, NY, Final
Technical Report AFRL-IF-RS-TR-2003-2, January 2003.

[12] MPI: A Message Passing Interface Standard, Message Passing Interface
Forum Std. 2.1, June 2008.

[13] R. L. Graham, T. S. Woodall, and J. M. Squyres, “OpenMPI: A Flexible
High Performance MPI,” in Proceedings, 6th Annual International
Conference on Parallel Processing and Applied Mathematics, Poznan,
Poland, September 2005.

[14] M. Youssef, S. Yoo, A. Sasongko, Y. Paviot, and A. Jerraya, “Debugging
HW/SW interface for MPSoC: video encoder system design case study,”
Design Automation Conference, 2004. Proceedings. 41st, pp. 908–913,
2004.

[15] J. A. Williams, I. Syed, J. Wu, and N. W. Bergmann, “A Reconfig-
urable Cluster-on-Chip Architecture with MPI Communication Layer,”
in FCCM ’06: Proceedings of the 14th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 350–352.

[16] I. Syed, J. Williams, and N. Bergmann, “A Hybrid Reconfigurable
Cluster-on-Chip Architecture with Message Passing Interface for Image
Processing Applications,” Field Programmable Logic and Applications,
2007. FPL 2007. International Conference on, pp. 609–612, Aug. 2007.

[17] A. Patel, C. Madill, M. Saldana, C. Comis, R. Pomes, and P. Chow,
“A Scalable FPGA-based Multiprocessor,” Field-Programmable Custom
Computing Machines, 2006. FCCM ’06. 14th Annual IEEE Symposium
on, pp. 111–120, April 2006.

[18] M. Saldana and P. Chow, “TMD-MPI: An MPI Implementation for
Multiple Processors Across Multiple FPGAs,” Field Programmable
Logic and Applications, 2006. FPL ’06. International Conference on,
pp. 1–6, Aug. 2006.

[19] M. Saldana, “A Parallel Programming Model for a Multi-FPGA Multi-
processor Machine,” Master’s thesis, University of Toronto, 2006.

[20] T. Mehlan, J. Strunk, T. Hoefler, F. Mietke, and W. Rehm, “IRS -
A Portable Interface for Reconfigurable Systems,” in PARELEC ’06:
Proceedings of the international symposium on Parallel Computing
in Electrical Engineering. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 187–191.

[21] M. Liu, W. Kuehn, Z. Lu, A. Jantsch, S. Yang, T. Perez, and Z. Liu,
“Hardware/Software Co-design of a General-Purpose Computation Plat-
form in Particle Physics,” Field-Programmable Technology, 2007. ICFPT
2007. International Conference on, pp. 177–183, Dec. 2007.

[22] S. D. Breijer, “Memory Organization of the Molen Prototype,” Master’s
thesis, Delft University of Technology, 2007. [Online]. Available:
http://ce.et.tudelft.nl/publicationfiles/1367 700 thesis.pdf

[23] J. A. Williams, N. W. Bergmann, and X. Xie, “FIFO Communication
Models in Operating Systems for Reconfigurable Computing,” in FCCM
’05: Proceedings of the 13th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 277–278.

[24] J. P. Morrison, P. O’Dowd, and P. D. Healy, High Performance Com-
puting: Paradigm and Infrastructure. John Wiley and Sons, 2006, ch.
Chapter 14 - An Investigation of the Applicability of Distributed FPGAs
to High-Performance Computing.

[25] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, A. Rupp, and M. Schimmler,
“How to break des for 8,980 euro,” in SHARCS’06 - Special-purpose
Hardware Attacking Cryptographic Systems, Cologne, Germany, April
2006.

[26] (2005, Feb 15) Cray XD1 Supercomputer Outscores
Competition in HPC Challenge Benchmark Tests. Business
Wire. http://investors.cray.com/phoenix.zhtml?c=98390&p=irol-
newsArticle&ID=674199&highlight=.

View publication statsView publication stats

https://www.researchgate.net/publication/224098198

