
Accessing Multiple Clouds with Cloudmesh

Gregor von Laszewski
˚

School of Informatics and
Computing, Indiana University

919 E. 10th Street
Bloomington IN 47408, U.S.A.

laszewski@gmail.com

Fugang Wang
School of Informatics and

Computing, Indiana University
919 E. 10th Street

Bloomington IN 47408, U.S.A.

Hyungro Lee
School of Informatics and

Computing, Indiana University
919 E. 10th Street

Bloomington IN 47408, U.S.A.

Heng Chen
School of Informatics and

Computing, Indiana University
919 E. 10th Street

Bloomington IN 47408, U.S.A.

Geoffrey C. Fox
School of Informatics and

Computing, Indiana University
919 E. 10th Street

Bloomington IN 47408, U.S.A.

ABSTRACT
We present the design of a toolkit that can be employed
by users and administrators to manage virtual machines on
multi-cloud environments. It can be run by individual users
or offered as a service to a shared user community. We
have practically demonstrated its use as part of a Future-
Grid service, allowing users of FutureGrid to utilize such a
service. Furthermore, we discuss implications and solutions
for a unified metrics system assisting the users to find and
utilize resources appropriate for their applications. Lastly,
we discuss how to move such a multi-cloud environment for-
ward by integrating clouds managed by the community or
are offered as public clouds. This includes the introduction
of a mutual trust agreement on a user and project basis.
We have developed a number of components that support
the creation of such a multi-cloud environment. This sys-
tem is known as Cloudmesh and has been used in practice
to achieve virtual machine management in multiple clouds.
An important distinguishing factor of Cloudmesh is that it
also allows the use of bare metal provisioning for support-
ing service providers and authorized users, offering services
beyond those available by typical clouds.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Cloud Computing

General Terms
Computer-Communication Networks

˚Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
BigSystem 2014, June 23, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2909-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2609441.2609638.

Keywords
Cloud, multi-cloud, federated clouds, FutureGrid, Cloudmesh

1. INTRODUCTION
Cloud computing has become an integral factor for man-

aging infrastructure by research organizations and industry.
Users and organizations are faced with a variety of solutions
that may support their needs. Such offerings include a va-
riety of Infrastructure as a Service (IaaS) frameworks. The
choice between them provides a significant risk of investment
and has to be conducted carefully. The community has the
choice to either use public clouds or set up their own private
clouds. Public clouds are offered by large providers such
as Amazon, Microsoft, Google, Rackspace, HP, and others.
Private clouds are set up by internal Information Technology
(IT) departments and made available as part of the general
IT infrastructure. Two aspects resulting from this availabil-
ity bear consideration. First, which of the many Infrastruc-
tures should be chosen? Second, can the multitude of IaaS
service offerings be leveraged and instead of choosing one,
can a service be offered that utilizes multiple services? Fur-
thermore, we have to consider that the IaaS frameworks to
deploy private clouds are evolving and that extensions may
be needed that are not yet offered by the frameworks to
adequately address the requirements posed by advanced IT
service infrastructures of research organizations.

In this paper, we will present the design and implemen-
tation of a toolkit that addresses some of the points raised
here. The paper is structured as follows. First, we discuss
the important terminology used in this paper (Section 1.1).
Next, we analyze the requirements in more detail (Section 3)
and summarize some related work (Section 2). Then, we ex-
plore the requirements that motivate our design (Section 4)
and implementation (Section ??). We focus on two aspects
of the Cloudmesh features, namely dynamic provisioning/
rain. Last, we present our conclusion (Section 6).

1.1 Terminology
We will be using the following definitions throughout the

paper:

Public cloud: a service provider makes resources available
to users over the public internet. This includes compute,
storage, and applications. FutureGrid offers a public cloud
to its users.

Private cloud: access to services may have additional re-
strictions. Restrictions could include a limited set of au-
thorized users to the services offered or possible restrictions
regarding exposing services on the public internet. Future-
Grid offers the ability to set up private clouds for special
projects. Examples include modified OpenStack deploy-
ments or reserved resources for classes.

Hybrid cloud: a combination of public and private clouds.

Multi-cloud: access to a number of different clouds that
may even use different IaaS or PaaS offerings.

HPC service: a cloud service that allows the ability to run
high performance computing jobs, for example on a com-
pute cluster offering MPI.

Provisioning: a set of instructions to install the operating
system, data and software to enable access to it.

Rain: an advanced set of instructions that not only pro-
visions the operating system, but allows the deployment
and configuration of useful and complex services to be run
on one or multiple machines in order to provide a service
utilizing potentially distributed resources or services. It
also contains the ability to re-provision servers and ser-
vices, that is, services may be suspended and the resources
used to run the service may be used by other services.

Provider consortium: is a (virtual) organization that in-
tegrates resources from multiple providers. We also can
refer to such a consortium as a multi-cloud Grid.

2. RELATED WORK
It is not possible to provide an extensive overview of re-

lated research due to space limitations of this paper. In-
stead, we will provide examples of activities that address
similar although not the same issues as our work.

Phantom [6] is a tool that monitors the health of resources
and automatically provisions and configures new ones based
on demand. It is designed to automatically (a) provision new
resources to counteract failures or (b) react to increasing
demand, reducing constant attention and repetitive tasks
that can be automated.

What makes our effort different, is that our framework is fo-
cused not only on the user initiated federation of resources,
the access to the native protocols that are not only the re-
liance on EC2 EC2 protocol, as well as the concept of access
to baremetal provisioning. Furthermore, our framework in-
cludes the ability to provide a holistic cloud usage service
that can be used to develop holistic scheduling algorithms
for better utilization.

RightScale [8] enables users to manage multi-cloud infras-
tructure by migrating workloads between private clouds and
public clouds. RightScale interfaces with a wide variety of
clouds including Amazon Web Services (AWS), Rackspace
Cloud, Windows Azure, and Google Compute Engine. It
also offers a cloud cost estimator, allowing customers to as-
sess expenses they are charged by comparing their workload
on various cloud providers.

Our effort is different because it is an open source toolkit and
allows the deployment not only as a hosted service managed

by one entity, but also allows the deployment by a provider,
provider consortium, or even the user.

Other research efforts include theoretical definitions for
cloud federation [7] or are relying on a single IaaS, such as
efforts planned for future versions of OpenStack. Standard
efforts provide an interesting approach to multi-cloud inter-
operability, but at the same time may hinder the innovation
brought forward by individual IaaS offerings. We see such
an encumbrance with the difference between the OpenStack
and EC2 API’s, which leads to limitations in the function-
ality of Phantom.

2.1 FutureGrid
Many of the requirements for this project originate from

FutureGrid. FutureGrid [12, 3] is a project to develop a high
performance grid testbed that will allow scientists to collab-
oratively develop and test innovative approaches to parallel,
grid, and cloud computing. It provides infrastructure and
advanced services that are documented in more detail in [11]
. FutureGrid users can deploy their own hardware and soft-
ware configurations on a public/private cloud, and run their
experiments. FutureGrid provides an advanced framework
to manage user and project affiliation and propagates this
information to a variety of subsystems constituting the Fu-
tureGrid service infrastructure. This includes operational
services to deal with authentication, authorization and ac-
counting. In particular we have developed a unique metric
framework [13] that allows us to create usage reports from
our entire IaaS frameworks and is presented in more detail
later. Repeatable experiments can be created with a number
of tools including Pegasus, Precip and Cloudmesh. Provi-
sioning of services and images can be conducted by Rain
[1, 2]. One of the main features of FutureGrid is to offer its
users a variety of IaaS frameworks [10] including OpenStack,
Eucalyptus, and Nimbus. Based on our experience with Fu-
tureGrid over the last couple of years, it is advantageous
to offer a mixed operation model. This includes a standard
production cloud that operates on-demand, but also a set of
cloud instances that can be reserved for a particular project.

3. REQUIREMENTS
We list here a subset of requirements that are to be ad-

dressed by the design and implementation of our toolkit.
This includes (a) provide virtual machine management in
a multi-cloud environment while using (a.1) FutureGrid re-
sources, (a.2) external clouds from fresearch partners, (a.3)
public clouds; (b) provide multi-cloud services controled by
the user; (c) provide multi-cloud services controlled by the
provider; (d) enable deployment of the service by users or
providers; (e) enable raining (e.1) of operating systems (bare-
metal provisioning), (e.2) services, (e.3) platforms, (e.4) IaaS;
(f) monitoring infrastructure accross a multi-cloud environ-
ment; (g) provid multiple interfaces such as (g.1) command
line, (g.2) command shell, (g.3) REST, (g.4) Python API;
(h) deliver an (h.1) open source (h.2) extensible (h.3) easy
deployable, (h.4) documented toolkit.

As open source project much of the presented material in
the next sections can be found in its online Web page [5].

4. DESIGN
Our initial design is addressing the requirments listed in

Section 3 and will provide a tightly integrated software in-

frastructure toolkit addressing the need to deliver a software-
defined system encompassing virtualized and bare-metal in-
frastructure, networks, application, systems and platform
software with a unifying goal of providing Cloud Testbeds
as a Service (CTaaS). This system is termed Cloudmesh to
symbolize

1. the creation of a tightly integrated mesh of serviceto sys
targeting multiple IaaS frameworks (Requirement (a)),

2. the ability to federate a number of resources from academia
and industry. This includes existing FutureGrid infras-
tructure, Amazon Web Services, Azure, HP Cloud, Karl-
sruhe using not only one IaaS framework but various (Re-
quirements (a), (b), (c)),

3. the creation of an environment in which it becomes more
easy to experiment with platforms and software services
while assisting to deploy them more easily (Requirement
(e)).

4. the exposure of information to guide the efficient utiliza-
tion (Requiremnet (f))

In addition to virtual resources, Cloudmesh exposes baremetal
provisioning to users. Services will be available through
command line, API, and Web interfaces (Requirement (g)).

Due to its integrated services Cloudmesh provides the
ability to be an onramp for other clouds. It also provides
information services to various system level sensors to give
access to sensor and utilization data. Internally, it can be
used to optimize the system usage. The provisioning experi-
ence from FutureGrid has taught us that we need to provide
the creation of new clouds, the repartitioning of resources
between services (cloud shifting), and the integration of ex-
ternal cloud resources in case of over provisioning (cloud
bursting). As we deal with many IaaS frameworks, we need
an abstraction layer on top of the IaaS framework. Exper-
iment management is conducted with workflows controlled
in shells [9], Python/iPython, as well as systems such as
OpenStack’s Heat. Accounting is supported through addi-
tional services such as user management and charge rate
management. Not all features are yet implemented. Figure
shows the main functionality that we target at this time to
implement.

Figure 1: Cloudmesh Functionality.

To implement the Cloudmesh functionality, we have de-
vised a layered architecture to gradually provide services in
support of the requiremennts identified for our toolkit.

The architecture is depicted in Figure 2 and conatains
threem main layers: the resource layer, the provisioning and
execution layer, and the management framework layer.

 Management Framework

Pr
ov

is
io

ni
ng

 a
nd

 E
xe

cu
tio

n Platform as a Service
Provisioning & Federation

Compute
Provisioning

Ex
pe

rim
en

t M
on

ito
rin

g
&

 E
xe

cu
tio

n

Se
cu

rit
y

A
ut

he
nt

ic
at

io
n,

 A
ut

ho
riz

at
io

n,
 S

S
O

Hadoop, HPC Cluster, virtual
Cluster, Customization

System,VM,
Hypervisors,
Bare-Metal,
GPU,MIC

R
es

ou
rc

es Federated Nucleus
Internet

Internet2

...AWS

...

Azure
Rack-
spaceGoogle

TACC

Portal, REST, API, command line

Federation Management, Systems Monitoring, Operations

User & Project Services

Experiment Planning and Deployment Services

HP
Cloud

Infrastructure as a Service
OpenStack, Eucalyptus, Nimbus,

OpenNebula, CloudStack, Customization

Network
Provisioning

Storage
Provisioning

Partitions,
Disks,

Filespace,
Object Store

OpenFlow,
Neutron,

ViNe, others

Fe
de

ra
tio

n
Se

rv
ic

es

EGI

XSEDE
Grid
5000

IU UCUF

Figure 2: Cloudmesh Architecture.

4.1 Management Framework Layer
User and Project Services. FutureGrid user and project
services simplify the application processes needed to obtain
user accounts and projects. We have demonstrated in Fu-
tureGrid the ability to create accounts in a very short time,
including vetting projects and users – allowing fast turn-
around times for the majority of FutureGrid projects with
an initial startup allocation. Cloudmesh reuses this infras-
tructure and also allows users to manage proxy accounts to
federate to other IaaS services to provide an easy interface
to integrate them.

Accounting and App Store. To lower the barrier of en-
try, Cloudmesh will be providing a shopping cart, which will
allow checking out of predefined repeatable experiment tem-
plates. A cost is associated with an experiment making it
possible to engage in careful planning and to save time by
reusing previous experiments. Additionally, the Cloudmesh
App Store may function as a clearing-house of images, im-
age templates, services offered and provisioning templates.
Users may package complex deployment descriptions in an
easy parameter/form-based interface and other users may be
able to replicate the specified setup. Due to our advanced
Cloudmesh Metrics framework we are in the position to fur-
ther develop an integrated accounting framework allowing a
usage cost model for users and management to identify the
real impact of an experiment on resources. This will help
avoid overprovisioning and inefficient resource usage. The
cost model will be based not only on number of core hours
used, but also the capabilities of the resource, the time, and
special support it takes to set up the experiment. We will
expand upon the metrics framework of FutureGrid that al-
lows measuring of VM and HPC usage and associate this

with cost models. Benchmarks will be used to normalize
the charge models.

4.2 Provisioning and Execution Layer
Baremetal Provisioning. We have a broad vision of re-
source integration offering different levels of control from
bare metal to use of a portion of a resource. As part of
our efforts we originally developed a provisioning framework
based on XCAT. However due to limitations and significant
changes between versions we are currently replacing it with a
more general framework that allows the utilization of differ-
ent bare metal provisioners. At this time we have provided
an interface for cobbler and are also targeting an interface
to OpenStack Ironic.

Virtual Machine Provisioning. Cloudmesh provides an
abstraction layer to allow the integration of virtual machine
management APIs based on the native IaaS service proto-
cols. This helps in exposing features that are otherwise not
accessible when quasi protocol standards such as EC2 are
used on non-AWS IaaS frameworks. It also prevents limita-
tions that exist in current implementations, such as libcloud
to use OpenStack.

Network Provisioning. Likewise, we must utilize networks
offering various levels of control, from standard IP connec-
tivity to completely configurable SDNs as novel cloud archi-
tectures will almost certainly leverage NaaS and SDN along-
side system software and middleware. FutureGrid resources
will make use of SDN using OpenFlow whenever possible
though the same level of networking control will not be avail-
able in every location.

Storage Provisioning. As we have access to baremetal
provisioning storage, provisioning becomes a possibility while
keeping partions between deployments and experiments. How-
ever, we will have to expand upon making storage provision-
ing accessible to the users.

Platform, IaaS, and Federated Provisioning. One of the
significant features of the design of Cloudmesh is that it can
not only provision the operating system, but that through
additional services it can also provision platforms, IaaS, and
even federated services. This is achieved by the integration
of cloudmesh shell scripting, or the utilization of DevOps
frameworks such as Chef or Puppet.

Furthermore, we have already demonstrated via the Rain
tool in FutureGrid that it is possible to shift resources al-
locations between services such as HPC and OpenStack or
Eucalyptus. We are currently expanding upon this idea and
developing intuitive user interfaces as part of Cloudmesh
that assist administrators and users through role and project
based authentication to move resources from one service to
another (see Figure 3).

4.3 Resource Layer
To integrate IaaS frameworks Cloudmesh offers two dis-

tinct services: (a) a federated IaaS frameworks hosted on
FutureGrid, (b) the availability of a service that is hosted
on FutureGrid, allowing the integration of IaaS frameworks
through user credentials either registered by the users or
automatically obtained from our distributed user directory.

For (b) several toolkits exist to create user-based federa-
tions, including our own abstraction level which supports in-
teroperability via libcloud, but more importantly it directly

FG Move

FutureGrid Fabric

FG
Provisioning
Component

(Teefaa)

FG
CLI

Component

FG
Metrics

Component

OpenStack

FG Move
Controller

HPC

FG Move
Controller

Eucalyptus

FG Move
Controller

FG
Scheduler

Component

1
2

CM CM CM CM

CM CM CM

Plugin

Figure 3: Shifting resources makes it possible to of-
fer flexibility in the service distribution in case of
over or underprovisioning.

supports the native OpenStack protocol and overcomes lim-
itations of the EC2 protocol and the libcloud compatibility
layer. Plugins that we currently develop will enable access to
clouds via firewall penetration, abstraction layers for clouds
with few public IP addresses and integration with new ser-
vices such as OpenStack Heat. We successfully federated
resources from Azure, AWS, the HP cloud, Karlsruhe In-
stitute of Technology Cloud, and four FutureGrid clouds
using various versions of OpenStack and Eucalyptus. The
same will be done for OpenCirrus resources at GeorgiaTech
and CMU. Additional management flexibility will be intro-
duced through automatic cloud-bursting and shifting ser-
vices. While cloud bursting will locate empty resources in
other clouds, cloud shifting will identify unused services and
resources, shut them down and provision them with services
that are requested by the users. We have demonstrated this
concept in 2012 moving resources for more than 100 users to
services that were needed based on class schedules. A reser-
vation system will be used to allow for reserved creation of
such environments, along with improvements of automation
of cloud-shifting.

4.4 Monitoring
Cloudmesh must be able to access empirical data about

the properties and performance of the underlying infrastruc-
ture beyond what is available from commercial cloud envi-
ronments. The component of Cloudmesh accomplishing this
is called Cloud Metrics.

Experience with FutureGrid has provided greater under-
standing about resource allocation and utilization. We have
learned that it is essential to provide users and administra-
tors with a holistic view of the infrastructure in order to
guide better utilization overall and on an individual basis.
This is crucial in cloud deployments such as FutureGrid,
which supports more than 380 projects and 2300 users (as
of April 2014). Due to such a large user base, resources
could become over-provisioned or not properly utilized by
the users. Among the many services that FutureGrid offers,
we have particularly focused on IaaS including OpenStack,
Eucalyptus, Nimbus, as well as batch systems, to offer high
performance computing capabilities. However, for this pa-

per we will restrict our discussion to the IaaS based moni-
toring components. Other HPC related activities in regards
to monitoring and metrics are discussed in [4].

When FutureGrid initially started, the existing IaaS frame-
works such as Eucalyptus, Nimbus, and OpenStack did not
provide adequate support for monitoring resource usage.
Furthermore, a service with sufficient monitoring capabil-
ities across heterogeneous cloud IaaS frameworks was not
available. Hence, it was difficult to assess user utilization
in a holistic fashion. Additionally, we found that some IaaS
frameworks such as Nimbus, lacks support for project al-
locations, which is a must have feature to support project
managed allocations as is the case of almost every modern
shared datacenter. To overcome these missing features and
service offerings, we developed a federated cloud metric ser-
vice that aggregates the information from distributed clus-
ters and a variety of heterogeneous IaaS services, such as
OpenStack, Eucalyptus, and Nimbus. We have named this
service Cloudmesh Metrics.

The main components of Cloudmesh Metrics enable (a)
the measurement of the resource allocation across several
IaaS platforms, (b) the generation of data in regards to uti-
lization, (c) the comparison of data via definable metrics to
mine the usage statistics, (d) the display of the information
through a convenient user interface, (e) the availability of a
simple command line interface and shell language, and (f)
the automatic creation of resource reports in printed format
for arbitrary time periods.

The services offered by Cloudmesh Metrics support re-
quirements from a variety of user communities. This in-
cludes individual users and users as part of projects (Section
4.4.1), as well as administrative users (Section 4.4.2).

4.4.1 User- and Project-based Metrics Services
In order for users to use a variety of clouds, it is impor-

tant for them to monitor and compare their resource utiliza-
tion. In case the usage is organized as a project, the project
related information needs to be exposed while being able
to clearly distinguish between different projects. Therefore,
we need to support an overall project view. Thus, the re-
quirement exists to present the data to the user based on
individual user utilization, group utilization, or even exper-
iment utilization, where a particular experiment is analyzed
instead of just looking at the total utilization.

4.4.2 Resource Provider-based Metrics Services
A resource provider need to have access to a holistic view

of the variety of metrics across the different clouds that build
the multi-cloud environment as part of a provider consor-
tium. Summary information may be customized based on
the requirements by individual users, project leads, resource
providers, site managers, and funding agencies. This in-
formation is typically restricted to the actual resources for
which administrative access exists in order to provide a holis-
tic set of metrics.

4.4.3 Metric Access for Multi-cloud Environments
Due to the different governance models between a private

cloud managed as part of a provider consortium, and the
integration of resources, use must be based on an access
integration policy. In order to devise such a policy, we need
to be aware of the hierarchical access management employed
in clouds as depicted in Figure 4.

User ManagedProvider Consortium

Provider

Resource

Project

User

Public Clouds

Provider

Resource

Project

User

Public Clouds

Provider

Resource

Project

User

Figure 4: An example of a policy to establish a ac-
cess public clouds as part of provider and user man-
aged multi-clouds.

Integration into a Provider Consortium Managed Multi-
Cloud.

In the hierarchy, we distinguish users ñ project with
many users ñ a resource serving many projects ñ a
provider having many resources ñ and a provider consor-
tium with many providers.

The provider consortium has a multitude of possibilities
to extend their resource offerings to its users while integrat-
ing public clouds. This could include replicating projects
on public clouds, or assigning a particular user access to an
account that integrates resources in a public cloud. In case
multiple clouds are offered, this integration could be repli-
cated for them. Hence, it would be possible for a provider
consortium not only to provide private clouds as part of a
multi-cloud environment, but also public cloud offerings al-
lowing access to these public clouds through a provider con-
sortium managed project or users on the public clouds. This
is of particular interest if we intend to gain financial advan-
tages through volume discounts that would otherwise not be
available to the users. In Figure 4 we show one example for
such an integration policy where we simply map the existing
projects and users of the consortium to projects and users of
a public cloud. An applicable instance where such integra-
tion is easy to accomplish is the HP Cloud environment that
uses OpenStack as its IaaS framework. Due to OpenStack’s
well-documented interfaces, it is possible to replicate the
user and project information and provide detailed charges
to the users on projects in case the HP OpenStack cloud
would be used. Naturally, it would be possible to devise
other integration policies such as restricting access to only
approved projects, or provide limited access into different
levels of the hierarchy.

Integration into a User Managed Multi-Cloud.
Based on our experience with FutureGrid, we must also

be aware that users may have their own accounts and ac-
cess to other clouds, thereby needing to integrate them into
a multi-cloud environment. The user decides whether the
metric information to such clouds is forwarded to the multi-
cloud environment offered as part of a Provider Consortium.
However, in most cases the user will not share this informa-
tion. Hence, the metric system ideally should be able to
allow users to integrate their own information into such a
metric system in order for the user to gain a more accurate
picture about their own cloud usage not just in the consor-
tium, but also in the public clouds. We represent this clear
division in Figure 4. Explicit access policies must be de-

fined to allow the users or projects to access the information
provided by the public clouds.

Cloudmesh Metric Architecture.
The Cloudmesh metric architecture is based on the inte-

gration of an authorized REST service, that utilizes a simple
abstraction layer to interface with the various cloud services
to obtain needed information gathered under authorization
constraints. The data will be hosted in a NOSQL database
to allow mining of the data in map/reduce frameworks. Data
can be ingested either directly through the database via the
API, or through REST calls that are mitigated through mes-
sage queues with AMPQ. Adapters can be written to inte-
grate new information providers for other clouds. Policies
can be used to limit the amount of information presented to
other users or projects.

4.4.4 Cloudmesh Metric Service for FutureGrid
To work towards the goal of a metric system for multi-

cloud environments, we started by basing our initial devel-
opment efforts on the extension of the cloud metrics ser-
vices that have been developed by FutureGrid for a multi-
cloud environment for resource providers within FutureGrid.
Here, we have limited the services to a provider consor-
tium that offers information of clouds directly managed by
the consortium. This includes OpenStack, Eucalyptus, and
Nimbus clouds on various resources. The information ac-
cess policy for using the resources is public, as this is most
suitable to the goals of FutureGrid as a public testbed.

Data Collector and Metric service.
One of the fundamental services needed is a data collector.

It collects relevant data from a variety of sources including
resource databases, log files, and data reporters. Hence, to
integrate new cloud services into the data collectors we have
to define a data model, as well as data sources that popu-
late the data model with data. Currently, data collectors are
available for OpenStack, Eucalyptus, and Nimbus but not
limited to these platforms. Dependent on the IaaS frame-
work they obtain the data from different sources such as log
files or databases as listed in Table 1. Beneficial informa-
tion to be collected includes detailed information about the
virtual machines (VM), the users and/or projects starting
them, memory usage over the lifetime of the VMs, errors
associated with VMs during runtime, or at startup. One of
the issues to be addressed is, if such data should be directly
accessed in the production environment offered by the IaaS
framework. Practical experience with FutureGrid has shown
that the analysis of the data poses a significant amount of
stress on the originating resource, making it impractical to
offer a detailed report and metric system on the original data
sources. Hence, it is important that we replicate it when the
information we request is involved in a detailed analysis. For
some smaller scale queries, as the one posed by most users,
direct access is sufficient and desirable for the live view of
the system in order to provide information about how many
VMs are currently running, on which system and by whom.

Metric Analyzer.
The data collected provides the opportunity to analyze

it for specific needs in a repeated fashion or provide filters
and services for further specialized analysis. The FutureGrid
metric framework therefore provides a metric analyzer com-

Table 1: Measurement of IaaS on FutureGrid

Nimbus OpenStack Eucalyptus

Documentation of the Data Sources
7 3 3

Data Sources
sqlite3 MySQL Log Files

Metrics
vCPU core 3 3 3
memory 3 3 3
disk 3 3 3
instance type 7 3 3
host 3 3 3

Account Management Features
Users 3 3 3
Projects 7 3 3

Cluster
Alamo 3 3 7
Foxtrot 3 7 7
Hotel 3 3 7
India 7 3 3
Sierra 7 3 3

ponent with a convenient interface for analyzing the data not
only on an automated fashion, but also interactively through
a simple metrics analyzer shell. Information of interest in-
cludes yearly, monthly, and/or weekly usage information by
user, project, resource, provider, and the agglomerated in-
formation. Our scripting environment provides this infor-
mation and is run at predefined intervals or upon request.
In the future, we will be enhancing the service to allow users
to schedule queries to conduct specific analysis. To avoid re-
peated analysis, metric result caching is conducted. Thus,
if a query has been executed in the past the result is cached
and returned without reanalysis (if not forced). To more
easily facilitate fast and distributed calculation of the re-
sults by multiple users, we will base future versions of the
Cloudmetric system on NoSQL database technologies.

Metric Interface.
Early on we recognized that the access of information and

the metrics must be provided through a variety of interfaces.
This includes command shells, programming API’s, REST
interfaces, graphical user interfaces, and printable reports.

Interactive Command Shell. To simplify the interactive
use, we have developed a python command shell called
CMD3 that allows the dynamic load of additional com-
mands, thus making it ideal to define new analytic methods
on the fly if they are not provided by the original toolkit.

REST API. We are currently building access through a
convenient REST API to allow easy access from Web frame-
works, but also integration from arbitrary programming
languages

Programming API. We have provided a robust API in-
terface in python to access the basic analytical functions
useful for many users and reused by the interactive com-
mand shell and the REST service.

Graphical Representation and Printable Reports.
Using our basic API and command shell, we have inte-
grated them into the Python sphinx framework to expose
the metric data in a convenient form and present the data
online via charts or in a PDF report. As sphinx offers the

Table 2: Metric visualization with graphs
Example Description

Detailed display of virtual machine informa-
tion including number of virtual machines,
user count, memory utilization, disk utiliza-
tion, project lead, etc.
Summary information for periods to display
aggregates of the metrics gathered by the sys-
tem, such as number of VMs by month for a
user, project, or resource.
Alternate representation of aggregated infor-
mation in pie charts.

Alternate representation of agglomerated in-
formation in a table (exporatble as csv or
json).

export of data reports in PDF, we leverage this framework
and do not have to develop a separate framework for it.
The sphinx framework service is currently enhanced, allow-
ing customizable interactive queries to the metric and data
sources. The data can be represented visually in various
chart forms such as bar graphs, line charts, or pie charts.
A template for generating a quarterly and yearly report of
the data exists making adaptation to additional resources
or other provider consortia easy. Furthermore, the data
can be exported in a variety of formats such as JSON or
CSV making it possible to use other tools, such as excel for
data post processing. In Table 2 we are including a limited
number of examples to demonstrate the various data rep-
resentations of the Cloudmetric system that are exposed to
the users.

4.5 Graphical User Interface
Despite the fact that Cloudmesh was originally a quite

sophisticated command shell and command line tool, we re-
cently dedicated more time in exposing this functionality
through a convenient Web interface. Some more popular
views if this interface are depicted in Figure 6 hinting on
how easy it is with a single button to create multiple VMs
across a variety of IaaS. Notably, this not only includes re-
sources at IU but also at external locations. Pushing this
easy management in a more sophisticated experience for the
user while associating one-click deployments that include the
ability to deploy virtual clusters, Hadoop environments, and
other more elaborate setups we provide an early prototype
screenshot in Figure 7.

5. STATUS AND FUTURE WORK
At this time we have developed a first version of Cloudmesh

and focussed on the development of three of its components.
This includes virtual machine management in multi-clouds,
cloud metrics in multi-clouds, and bare metal provisioning.
The next steps will include the development of other com-
ponents we discussed in our design. Cloudmesh has been
successfully used in FutureGrid. A GUI and a Cloudmesh
shell is available for easy usage by users. It has been used
by users while deploying it on their local machines, but it
also has been demonstrated as a hosted service. A REST
interface to the management functionality is under develop-
ment. Cloudmesh is an open source project. It uses python
and Javascript. Although the current Web related func-

Figure 5: Monitoring the service distribution in Fu-
tureGrid Clusters with Cloudmesh.

Figure 6: Screenshot demonstrating how easy it is
to manage multiple VMs across various clouds.

Figure 7: One click deployment of platforms and so-
phisticated services that could even spawn multiple
resources.

tionality is developed in flask it is possible to transition it
easily to other web frameworks such as web2py or django.
We consider the cloudmesh API a basis for such reuse in
other frameworks. Up to date information is available at
cloudmesh.futuregrid.org.

6. CONCLUSION
In this paper we presented the design of a toolkit called

Cloudmesh that allows to access to multiple clouds through
convenient interfaces. This includes command line, a com-
mand shell, REST, as well as a graphical user interface.
Cloudmesh is under active development and has shown its
viability for accessing more than EC2 based clouds. Native
interfaces to OpenStack, Azure, as well as any EC2 com-
patible cloud have been delivered and virtual machine man-
agement enabled. An important contribution of Cloudmesh
is that it provides a sophisticated interface to bare metal
provisioning capabilities that not only can be used by ad-
ministrators, but also by authorized users. A role based
authorization service makes this possible. Furthermore, we
have developed a multi-cloud metrics framework that lever-
ages information from various IaaS frameworks. Future en-
hancements will include network and storage provisioning.

7. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 0910812 and
OCI 1025159. Some work of Cloudmesh is based on earlier
work conducted as part of cyberaide.org.

8. REFERENCES
[1] J. Diaz, G. von Laszewski, F. Wang, and G. C. Fox.

Abstract Image Management and Universal Image
Registration for Cloud and HPC Infrastructures. In
IEEE Cloud 2012, Honolulu, June 2012. URL:
http://cyberaide.googlecode.com/svn/trunk/

papers/12-cloud12-imagemanagement/

vonLaszewski-12-IEEECloud2012.pdf,
doi:10.1109/CLOUD.2012.94.

[2] J. Diaz, G. von Laszewski, F. Wang, A. J. Younge,
and G. C. Fox. FutureGrid Image Repository: A
Generic Catalog and Storage System for
Heterogeneous Virtual Machine Images. In Third
IEEE International Conference on Coud Computing
Technology and Science (CloudCom2011), pages
560–564, Athens, Greece, 12/2011 2011. URL:
http://cyberaide.googlecode.com/svn/trunk/

papers/11-cloudcom11-imagerepo/

vonLaszewski-draft-11-imagerepo.pdf,
doi:10.1109/CloudCom.2011.85.

[3] G. C. Fox, G. von Laszewski, J. Diaz, K. Keahey,
J. Fortes, R. Figueiredo, S. Smallen, W. Smith, and
A. Grimshaw. Contemporary HPC Architectures,
chapter FutureGrid - a reconfigurable testbed for
Cloud, HPC and Grid Computing. draft edition, 2012.
URL:
http://cyberaide.googlecode.com/svn/trunk/

papers/pdf/vonLaszewski-12-fg-bookchapter.pdf.

[4] T. R. Furlani, B. L. Schneider, M. D. Jones, J. Towns,
D. L. Hart, S. M. Gallo, R. L. DeLeon, C.-D. Lu,
A. Ghadersohi, R. J. Gentner, A. K. Patra, G. von
Laszewski, F. Wang, J. T. Palmer, and N. Simakov.

Using XDMoD to Facilitate XSEDE Operations,
Planning and Analysis. In Proceedings of the
Conference on Extreme Science and Engineering
Discovery Environment: Gateway to Discovery,
XSEDE ’13, pages 46:1–46:8, New York, NY, USA,
2013. ACM. doi:10.1145/2484762.2484763.

[5] Gregor. Cloudmesh on Github. Web Page. URL:
http://cloudmesh.github.io/cloudmesh/.

[6] K. Keahey, P. Armstrong, J. Bresnahan,
D. LaBissoniere, and P. Riteau. Infrastructure
outsourcing in multi-cloud environment. In
Proceedings of the 2012 Workshop on Cloud Services,
Federation, and the 8th Open Cirrus Summit,
FederatedClouds ’12, pages 33–38, New York, NY,
USA, 2012. ACM. URL:
http://doi.acm.org/10.1145/2378975.2378984,
doi:10.1145/2378975.2378984.

[7] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai,
and M. Kunze. Cloud federation. In CLOUD
COMPUTING 2011, The Second International
Conference on Cloud Computing, GRIDs, and
Virtualization, pages 32–38, 2011.

[8] Rightscale inc. [Online].
http://www.rightscale.com/.

[9] G. von Laszewski. Cmd3. Github Documentation and
Code. URL:
http://cloudmesh.futuregrid.org/cmd3/.

[10] G. von Laszewski, J. Diaz, F. Wang, and G. C. Fox.
Comparison of Multiple Cloud Frameworks. In IEEE
Cloud 2012, Honolulu, HI, June 2012. URL:
http://cyberaide.googlecode.com/svn/trunk/

papers/12-cloud12-cloudcompare/

laszewski-IEEECloud2012_id-4803.pdf,
doi:10.1109/CLOUD.2012.104.

[11] G. von Laszewski and G. Fox. TBD, chapter The
FutureGrid Testbed for Big Data, page TBD. TBD,
Indiana University, 2014.

[12] G. von Laszewski, G. C. Fox, F. Wang, A. J. Younge,
Kulshrestha, G. G. Pike, W. Smith, J. Voeckler, R. J.
Figueiredo, J. Fortes, K. Keahey, and E. Deelman.
Design of the FutureGrid Experiment Management
Framework. In Proceedings of Gateway Computing
Environments 2010 (GCE2010) at SC10, New
Orleans, LA, Nov. 2010. IEEE. URL:
http://cyberaide.googlecode.com/svn/trunk/

papers/10-FG-exp-GCE10/

vonLaszewski-10-FG-exp-GCE10.pdf,
doi:10.1109/GCE.2010.5676126.

[13] G. von Laszewski, H. Lee, J. Diaz, F. Wang,
K. Tanaka, S. Karavinkoppa, G. C. Fox, and
T. Furlani. Design of an Accounting and
Metric-basedcloud-shifting and Cloud-seeding
Framework for Federatedclouds and Bare-metal
Environments. In Proceedings of the 2012 Workshop
on Cloud Services, Federation, and the 8th Open
Cirrus Summit, FederatedClouds ’12, pages 25–32,
New York, NY, USA, 2012. ACM.
doi:10.1145/2378975.2378982.

cloudmesh.futuregrid.org
cyberaide.org
http://cyberaide.googlecode.com/svn/trunk/papers/12-cloud12-imagemanagement/vonLaszewski-12-IEEECloud2012.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/12-cloud12-imagemanagement/vonLaszewski-12-IEEECloud2012.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/12-cloud12-imagemanagement/vonLaszewski-12-IEEECloud2012.pdf
http://dx.doi.org/10.1109/CLOUD.2012.94
http://cyberaide.googlecode.com/svn/trunk/papers/11-cloudcom11-imagerepo/vonLaszewski-draft-11-imagerepo.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/11-cloudcom11-imagerepo/vonLaszewski-draft-11-imagerepo.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/11-cloudcom11-imagerepo/vonLaszewski-draft-11-imagerepo.pdf
http://dx.doi.org/10.1109/CloudCom.2011.85
http://cyberaide.googlecode.com/svn/trunk/papers/pdf/vonLaszewski-12-fg-bookchapter.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/pdf/vonLaszewski-12-fg-bookchapter.pdf
http://dx.doi.org/10.1145/2484762.2484763
http://cloudmesh.github.io/cloudmesh/
http://doi.acm.org/10.1145/2378975.2378984
http://dx.doi.org/10.1145/2378975.2378984
http://www.rightscale.com/
http://cloudmesh.futuregrid.org/cmd3/
http://cyberaide.googlecode.com/svn/trunk/papers/12-cloud12-cloudcompare/laszewski-IEEECloud2012_id-4803.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/12-cloud12-cloudcompare/laszewski-IEEECloud2012_id-4803.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/12-cloud12-cloudcompare/laszewski-IEEECloud2012_id-4803.pdf
http://dx.doi.org/10.1109/CLOUD.2012.104
http://cyberaide.googlecode.com/svn/trunk/papers/10-FG-exp-GCE10/vonLaszewski-10-FG-exp-GCE10.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/10-FG-exp-GCE10/vonLaszewski-10-FG-exp-GCE10.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/10-FG-exp-GCE10/vonLaszewski-10-FG-exp-GCE10.pdf
http://dx.doi.org/10.1109/GCE.2010.5676126
http://dx.doi.org/10.1145/2378975.2378982

	Introduction
	Terminology

	Related Work
	FutureGrid

	Requirements
	Design
	Management Framework Layer
	Provisioning and Execution Layer
	Resource Layer
	Monitoring
	User- and Project-based Metrics Services
	Resource Provider-based Metrics Services
	Metric Access for Multi-cloud Environments
	Cloudmesh Metric Service for FutureGrid

	Graphical User Interface

	Status and Future Work
	Conclusion
	Acknowledgments
	References

