
Lecture Notes in Computer Science 1

Design and Implementation of a CORBA Commodity
Grid Kit

Snigdha Verma1, Manish Parashar1, Jarek Gawor2 and Gregor von Laszewski2

1 The Applied Software Systems Laboratory,
Department of Electrical and Computer Engineering,

 Rutgers University, 94 Brett Road, Piscataway, NJ 08854-8058, U.S.A
{snigdha,parashar}@caip.rutgers.edu

http://www.caip.rutgers.edu/TASSL/CorbaCoG/
2Mathematics and Computer Science Division

 Argonne National Laboratory, 9700 S. Cass Ave, Argonne, Il, 60440, U.S.A.
{gawor,gregor}@mcs.anl.gov
http://www.globus.org/cog/

Abstract. This paper reports on an ongoing research project aimed at designing
and deploying a CORBA Commodity Grid (CoG) Kit. The overall goal of this
project is to explore how commodity distributed computing technologies and
state-of-the-art software engineering practices can be used for the development
of advanced Grid applications. As part of this activity, we are investigating how
CORBA can be integrated with the existing Grid infrastructure. In this paper,
we present the design of a CORBA Commodity Grid Kit that provides a
software development framework for building a CORBA �Grid domain.� We
then present our experiences in developing a prototype CORBA CoG Kit that
supports the development and deployment of CORBA applications on the Grid
by providing them access to the Grid services provided by the Globus toolkit.

1. Introduction

The past decade has seen the emergence of computational Grids aimed at enabling
programmers and application developers to aggregate resources1 scattered around the
globe. However, developing applications that can effectively utilize the Grid still
remains a difficult task. Although, there exist Grid services that enable application
developers to authenticate, access, discover, manage, and schedule remote Grid
resources, these services are often incompatible with commodity technologies. As a
result, it is difficult to integrate these services into the software engineering processes
and technologies that are currently used by application developers. Recently, a
number of research groups have started to investigate Commodity Grid Kits (CoG
Kits) to address this problem. Developers of CoG Kits have the common goal of
developing mappings and interfaces between Grid services and a particular

1 In this paper we use resources to collectively refer to computers, data stores, services and

applications.

Lecture Notes in Computer Science 2

commodity technology (such as Java platform [1] [2], Java Server Pages [3], Python
[4], and Perl [5]). We believe that CoG Kits will encourage and facilitate the use of
the Grid, while at the same time leveraging the benefits of the commodity technology.
Recent years have also seen significant advances in commodity distributed
technologies aimed at easing application development in distributed environments.
One such technology is the Common Object Request Broker Architecture (CORBA)
[6] defined by the Object Management Group (OMG). CORBA specifies an open,
vendor independent and language independent architecture for distributed application
development and integration. Furthermore, CORBA defines a standard
interoperability protocol (i.e. GIOP and IIOP) that enables different CORBA
implementations and applications to interoperate and be portable across vendors.
CORBA has emerged as a popular distributed computing standard and meets the
necessary requirements to be considered by application developers as part of the Grid
infrastructure. It is therefore natural to investigate the development of a CoG Kit that
integrates CORBA with the Grid such that CORBA applications can access (and
provide) services on the Grid. Such an integration would provide a powerful
application development environment for high-end users and create a CORBA �Grid
domain�.
This paper presents the design and implementation of a CORBA CoG Kit that
provides CORBA application with access to Grid services provided by the Globus
toolkit [7]. In this paper we first give a brief overview of the Grid and its architecture
and introduce the services and protocols that we intend to integrate within the CORBA
CoG Kit. We then briefly outline requirements, advantages and disadvantages of
CORBA technologies from the point of view of Grid application developers. Next, we
present the architecture of the CORBA CoG Kit, and describe the design,
implementation, and application of a prototype. Finally, we conclude our paper and
identify the directions of ongoing and future activities.

2. The Grid

The term �Grid� has emerged in the last decade to denote an integrated distributed
computing infrastructure for advanced science and engineering applications. The Grid
concept is based on coordinated resource sharing and problem solving in dynamic
multi-institutional virtual organizations [8]. Grid computing not only provides access
to a diverse set of remote resources distributed across different organizations, but also
facilitates highly flexible sharing relationships among these resources, ranging from
client-server to peer-to-peer. An example of a typical client-server relationship is the
classical model where a remote client submits jobs to batch queues for resources at a
supercomputer center. An example of peer-to-peer relationship is the collaborative
online interaction and steering of remote (distributed) high-end applications and
advanced instruments [9].

Grids must support different levels of control ranging from fine-grained access control
to delegation and from single user to multi user, and different services such as
scheduling, co-allocation and accounting. These requirements are not sufficiently

Lecture Notes in Computer Science 3

addressed by the current commodity technologies, including CORBA. Although
sharing of information and communication between resources is allowed, it is not easy
to coordinate the use of distributed resources spanning multiple institutions and
organizations. The Grid community has developed protocols, services and tools,
which address the issues arising from sharing resources in peer communities. This
community is also addressing security solutions that support management of
credentials and policies when computations span multiple institutions, secure remote
access to resources, information query protocols that provide services for obtaining
the configuration and status information about the resources. Because of the diversity
of the Grid it is difficult to develop an all-encompassing Grid architecture. Recently, a
layered Grid architecture representation has been proposed [8] that distinguishes a

• fabric layer, that interfaces to local control including physical and logical
resources such as files, or even a distributed file system,

• connectivity layer, that defines core communication and authentication
protocols supporting Grid-specific network transactions,

• resource layer, that allows the sharing of a single resource while using a
• collective layer that allows to view resources as collection,
• and an application layer that uses the appropriate components of each layer

to support applications.
Each of these layers may contain protocols, APIs, and SDKs to support the
development of Grid applications. This general layered architecture of the Grid is
shown in the left part of Fig. 1.

O
R

B

A p p lica tion

C o lle c tive

Re source

C o nnectivity

F a b ric

A p p lica tion
 O

bjects S e rvices: Na m ing
Tra d ing , ...

C lient S e rve r

G IO P , IIO P

P O A

N e tw.

Fig. 1. The Grid Architecture and CORBA (The figure on the left shows the Grid architecture.

The figure on the right shows how CORBA fits into the Grid Architecture).

3. CORBA and Grid Computing

CORBA provides advanced capabilities and services for distributed computing and
can support the Grid architecture as shown in Fig. 1. Features of CORBA that makes it
a suitable candidate for a CoG Kit include its high-level modular programming model,
availability of advanced services (e.g. security, naming, trading, event, transaction,
etc.) and readymade solutions, interoperability, language independence, location

Lecture Notes in Computer Science 4

transparency and an open standard supported by industry and academia. The interest
in CORBA within the Grid Community has led to a number of efforts aimed at
combining functionalities of CORBA and Globus [10]. While most of these efforts
address specific problems encountered in individual applications, the goal of this work
is to examine the affinities of these two models as well as the breadth of functionality
they cover, and to define a consistent set of functionality that would fulfil the needs of
CORBA Grid applications.
Integration and interoperability between CORBA and Grid applications/services can
be achieved at atleast two levels � a high-level integration where CORBA interfaces
are wrapped around Grid services, and a low level integration wherein CORBA
services are extended (and new services added) to support Grid applications. While
our final solution will combine these approaches, the design and implementation
presented in this paper focuses on a high-level integration. Furthermore, the discussion
in this paper concentrates on providing CORBA applications access to Grid services.
Our approach however, enables true interoperability between CORBA and Grid
services.

4. CORBA Interfaces to Globus Grid Services

This section describes the development of CORBA interfaces to Grid services
provided by the Globus toolkit [7]. The section focuses on information management,
security, remote job submission, and data access services, as these services are
elementary and essential to enabling computational Grids and provide the foundation
for building more advanced Grid services. The corresponding Globus services are
Meta-computing Directory Service (MDS) [11], Grid Security Infrastructure (GSI)
[12], Grid Resource Allocation Manager (GRAM) [13] and Globus Access to
Secondary Storage (GASS) [14].

4.1 CORBA CoG Kit Architecture

In the overall CORBA CoG Kit architecture, the CORBA ORB (object resource
broker) forms the middle-tier providing clients access to CORBA server objects that
interface to services on the Grid. Our current implementation provides server objects
for the Globus MDS, GSI, GRAM and GASS services. Each of these server objects is
a wrapper around the corresponding Globus service. Clients access these server
objects using the CORBA naming service, which maps names to object references.
The CORBA security service is used for authenticating clients and enabling them to
interact securely with server objects. The server objects notify clients of any status
changes using the CORBA event service.

Lecture Notes in Computer Science 5

4.2 Grid Information Service

The Globus Meta-computing Directory Service (MDS) provides the ability to access
and manage information about the state of Grid resources. The current implementation
of MDS consists of a distributed directory based on LDAP [15]. A Grid application
can access information about the structure and state of the resource through the
uniform LDAP API. Information in the MDS is structured using a standard data model
consisting of a hierarchy of entities. Each entity is described by a set of �objects�
containing typed attribute-value pairs.

4.2.1 The MDSServer Object
The CORBA MDSServer object implements a CORBA object wrapper to MDS
providing a simple interface with the following functionality:
1. Establishing connection to the MDS server.
2. Querying the MDS server.
3. Retrieving results from an MDS query.
4. Disconnecting from the MDS server.
The CORBA MDSServer object accesses Globus MDS using JNDI (Java Naming and
Directory Interface) [16] libraries, i.e. it essentially replicates the approach used by
the Java CoG Kit [1]. Fig. 2 presents the IDL used for this purpose. The data types
returned by the calls to the MDSServer are very specific to the JNDI libraries. As
CORBA is a language independent middleware, it is necessary to map these specific
data types into a generic data type. This is achieved by the structures (i.e. Result,
ListResult, MDSList, MDSResult) defined within the MDSServer object IDL in Fig. 2.
For example, when the getAttributes() method is invoked on the CORBA MDSServer
object, the JNDI libraries return an array of NamingEnumeration objects which have
to be mapped into a Result data variable. This is done by retrieving the id and
attribute for each NamingEnumeration object in this array as string types, and storing
the string array as the value variable in the Result object. An array of this Result object
forms the MDSResult data variable. Similarly MDSList data variable is created by
mapping the values returned by the search() and getList() methods.

module MDSService {
struct Result {string id; sequence<string> value; };
typedef sequence<Result> MDSResult;
struct ListResult {string id; MDSResult value; };
typedef sequence<ListResult> MDSList;

interface MDSServer {
exception MDSException{string mdsMessage;

string ldapMessage;}};
void connect(in string name, in long portno,

in string username,
in string password)

raises MDSException);
void disconnect()

raises (MDSException);
MDSResult getAttributes(in string dn)

raises (MDSException);

Lecture Notes in Computer Science 6

MDSResult getSelectedAttributes (in string dn,
in Attributes attrs)

raises (MDSException);
MDSList getList(in string basedn)

raises (MDSException);
MDSList search (in string baseDN, in string filter,

in long searchScope)
raises (MDSException);

MDSList selectedSearch (in string baseDN, in string
filter, in Attributes attrToReturn,
in long searchScope)

raises (MDSException);
};};

Fig. 2. The IDL for accessing CORBA MDS Service.

4.2.2 Grid Domain Trading Service
The CORBA Trader Service is used to store service advertisements from remote
objects. In the CORBA CoG Kit, we use the CORBA trader to provide service offers
from Grid resources. For example, Fig. 3 presents the interface for a trader that returns
information about the number of free nodes at a compute resource. The trader obtains
this information from the MDS either using direct access or using the CORBA
MDSService. More sophisticated and customized trader services can be similarly
defined. These traders provide bridges between different information sources and
form the basis for a more sophisticated information service within the Grid. Such a
trading server has been successfully prototyped and implemented as part of [10].

module GlobusMachineTrader {
struct MachineType {string dn; string hn; string

GlobusContact; long freenodes; long totalnodes;};
typedef sequence<MachineType> MachineTypeSeq;
…
interface GetMachineInfofromMDS {

void update_seq();
void initialize_trader();
void update_trader();
void refresh_trader();

};};

Fig. 3. A simple example for a CORBA trader accessing selected MDS information

4.3 Accessing Grid Security

Providing access to Grid security is an essential part of the CORBA CoG Kit. We
base our current implementation on the Globus Grid Security Infrastructure (GSI)
[12]. GSI provides protocols for authentication and communication and builds on the
Transport Layer Security (TLS) protocols. It addresses single sign-on in virtual

Lecture Notes in Computer Science 7

organizations, delegation, integration with local security solutions, and user-based
trust relations, and is designed to overcome cross-organizational security issues.
One can integrate Grid security at various levels of the CORBA architecture. In order
to maintain portability across ORBs, we have not considered the modification of the
protocol stack in this work, but have placed an intermediary object between the
CORBA client and Grid services called the CORBA GSIServer object. This
GSIServer object creates a secure proxy object, which allows other server objects, i.e.
MDSServer, GRAMServer and GASSServer objects, to securely access
corresponding Globus services. The creation of the secure proxy object consists of
the following steps:
1. The client and the CORBA server mutually authenticate each other using the

CORBA security service (CORBASec) [17][18]. One of the basic requirements for
mutual authentication in CORBASec is to have private credentials i.e. a public
certificate signed by a trusted certificate authority (CA), at both the client and
server side. In our architecture both the CORBA client and server use Globus
credentials where the trusted certificate authority is Globus CA.

2. As Globus services, such as gatekeeper [13] and gasserver [14], only accept
connections from clients with secure Globus credentials, the CORBA client
delegates the GSIServer object to create a secure proxy object that has the authority
to communicate with the gatekeeper/gasserver on the clients� behalf.

3. After successful delegation, the GRAMServer and GASSServer objects use the
secure proxy object to set up secure connections to the corresponding Globus
servers (gatekeeper/gasserver) and access required Globus services.

The process of delegation from the CORBA client to the CORBA GSIServer object
involves the following steps. First, the client sends over its public certificate in an
encoded form to the server object. Next, the server object generates a completely new
pair of public and private keys and embeds the new public key and the subject name
from the client certificate in a newly generated certificate request. The certificate
request is signed by the new private key and sent across to the client. The client
retrieves the public key from the certificate request and embeds it a newly generated
certificate. This new certificate is called a proxy certificate. It is signed by the client�s
original private key (not the one from the newly generated pair), and is sent back to
the server object in an encoded form. The server object thus creates a chain of
certificates where the first certificate is the proxy certificate, followed by the client
certificate and then the certificate of the CA. It can then send this certificate chain to
the gatekeeper as proof that it has the right to act on behalf on the client. The
gatekeeper verifies the chain by walking through it starting with the proxy certificate,
searching for trusted certificates and verifying the certificate signatures along the way.
If no trusted certificate is found at the base of the chain the gatekeeper throws a
CertificateException error. The IDL interface for the GSISever object is shown in Fig
4. Its methods are described below:
• setClientCredentials(): This method is called by the client to send its public

certificate to the server in an encoded form. The client can access this method only
after mutual authentication has been successful.

• getCertificateRequest(): This method provides the client access to the certificate
request generated at the server end.

Lecture Notes in Computer Science 8

• setDelegatedCertificate(): Using the certificate request obtained from the server,
the client generates a new certificate called the proxy certificate for delegating to
the server the right to access the Globus services on its behalf. By invoking this
method the client can send this proxy certificate in an encoded form to the server.

module GSIService {
interface GSIServer{

typedef sequence<octet> ByteSeq;
void setClientCredentials(in ByteSeq certificate);
ByteSeq getCertificateRequest();
void setDelegatedCertificate(in ByteSeq

certificate);
};};

Fig. 4. The IDL for accessing CORBA GSI Service.

4.4 Job Submission in a Grid

Remote job submission capabilities are provided by the GRAMServer object using the
Globus GRAM service as described below.

Fig. 5. Accessing a Globus Gatekeeper from a CORBA client.

Job submission using GRAM consists of the following steps: First, the client
authenticates with the CORBA server object using CORBASec. After mutual
authentication is successful, the client subscribes to the CORBA event channel on
which the server is listening. Next the client gets a handle to the GSIServer object
from the naming service and delegates the CORBA GSIServer object as described in
the process above. Once delegation is successful, the client obtains a reference to
GRAMServer object (using the CORBA naming service) and submits a job
submission request specifying the name of the executable and the name of the resource
on which the job is to be executed. On receiving the request, the GRAMServer uses
the secure proxy object created by GSIServer during delegation to set up a secure
connection with the GRAM gatekeeper. It then forwards the request to the gatekeeper
and waits for status updates from the job via the CORBA event channel. The
implementation of the GRAMServer object in the CORBA CoG Kit provides a simple
interface with the following methods (see Fig. 6):

ORB

Globus
Gatekeeper

Proxy
Globus

Gatekeeper

ORB

GRAM
Client GRAM

IIOP over SSL

Lecture Notes in Computer Science 9

• setProxyCredentials() : This method sets the reference to the proxy secure object
created by the GSIServer object.

• jobRequest(): This method is used by the client to request a job submission on a
remote resource.

Additionally the following data structure is used to monitor the status of the job:
• JobStatus: This data structure is used by the CORBA event service to notify the

client of changes in the job status. The structure consists of two string data types �
jobid and jobstatus. jobid identifies the id of the submitted job and jobstatus is one
of the following values � PENDING, DONE, ACTIVE, FAILED, or
SUSPENDED.

module GRAMService {
exception GramException{short errorcode;};
exception GlobusProxyException{short errorcode;};
struct JobStatus{string jobid;string currstatus;};

interface GRAMServer{
void setProxyCredentials();
void jobRequest(in string rsl, in string
contact, in boolean batchjob);

};};

Fig. 6. The IDL for accessing CORBA GRAM Service

4.5 Data Transfer on the Grid

Client GASS
Server
Object

FTP,
GSIFTP
HTTP,
HTTPS

GASS Server

ORB

FTP,
GSIFTP
HTTP,
HTTPS

GASS Server

Fig. 7. The CORBA CoG Kit interface to GASS.

A frequent problem that needs to be addressed by Grid applications is access to
remote data -- for example, when the application may want to pre-stage data on
remote machines, cache data, log remote application output in real time or stage
executables on a remote computer. In our current implmentation we use Globus GASS
[14] for data transfer between resources on the Grid. The goal of GASS is not to build
a general-purpose distributed file system but to support I/O operations commonly
required by Grid applications. The strategy employed is to fetch the file and cache it
on first read open, and write it to disk when it is closed.

Lecture Notes in Computer Science 10

The objective of the CORBA GASSServer object is to provide an interface to the
Globus GASS service as shown Fig 7. The client gets a handle to the GASSServer
object from the naming service, and then the server object forwards the request to the
appropriate GASS servers using the protocol specified by the client. GASS supports
FTP, HTTP, HTTPS, and GSIFTP. Both the FTP and GSIFTP protocol allows third-
party file transfers; that is they allow file transfers from a sender machine to a receiver
machine to be initiated by an third initiator machine. Both the sender and receiver
machines have to provide a GASS server. Authentication is performed using GSI. The
methods defined by the CORBA GASSServer object is defined in the IDL as shown in
Fig. 8.

module GASSService {
interface GASSServer {

void setProxyCredentials();
void setSourceURL(in string sourceurl);
void setDestinationURL(in string destnurl);
void allowThirdPartyTransfer(in boolean value);
void URLcopy()

};
};

Fig. 8: The IDL for accessing CORBA GASS Service.

5. Applications

We believe that many applications can benefit from the CORBA CoG Kit presented in
this paper. One example is the Numerical Propulsion System Simulation (NPSS) [10],
which is part of NASA IPG and provides an engine simulation using computational
fluid dynamics (CFD). It consists of 0 to 3-Dimensional engine component models
responsible for examining aerodynamics, structures and heat transfer. Previous
studies have shown that NPSS�s engine components can be encapsulated using
CORBA to provide object access and communication from heterogeneous platforms,
while at the same time enable coordination of multiple modeling runs across the Grid.
In this application a large number of NPSS jobs (1000+) are submitted from a desktop
interface using the CORBA CoG Kit. The longer-term goal of the application is to
deploy computationally intense (3-Dimensional) NPSS jobs across the Globus-
enabled NASA Information Power Grid (IPG). The primary benefit of the CORBA
CoG Kit to this project is being able to access Globus functionality directly from the
CORBA application.

6. Status

The current implementation of the CORBA CoG Kit provides server objects for MDS,
GSI, and GRAM services. The performance of the CoG implementation with different

Lecture Notes in Computer Science 11

ORBs is currently being evaluated. We have also made significant progress in
integrating the CORBA CoG Kit with DISCOVER[19], a collaboratory for interaction
and steering. The current status of the CORBA CoG project and the software can be
obtained from http://www.caip.rutgers.edu/TASSL/CorbaCoG/CORBA/.

7. Conclusion

This paper reports on an ongoing project aimed at designing, implementing and
deploying a CORBA CoG Kit. The overall goal of this project is to provide a
framework that will enable existing Grid Computing Environments and CORBA
Service Providers to interoperate. CORBA is an accepted technology for building
distributed applications and is widely used and supported by academia and industry.
Its features include a high-level modular programming model, availability of advanced
services (e.g. security, naming, trading, event, transaction, etc.) and readymade
solutions, interoperability, language independence, location transparency and an open
standard, making it a suitable candidate for developing Grid applications. Developing
a CORBA CoG Kit facilitates this integration. The demand for such a CoG Kit has
been expressed by various projects ranging from the creation of CORBA based
control systems for advanced instruments to the collaborative interaction and
computational steering of very large numerical relativity and fluid dynamics
applications. Our current efforts are focused on enabling applications to combine and
compose services on the Grid � e.g. combining services provided by Globus, with the
collaborative monitoring, interaction, and steering capabilities provided by
DISCOVER [19]. For example a scientific application can use CORBA CoG Kit to
discover the available resources on the network, use the GRAM Service provided by
CoG to run his simulation on the desired high end resource, and use DISCOVER web-
portals to collaboratively monitor, interact with, and steering the application.

8. Acknowledgement

We would like to acknowledge Brian Ginsburg, Olle Larsson, Stuart Martin, Steven
Tuecke, David Woodford, Isaac Lopez, Gregory J. Follen, Richard Gutierrez and
Robert Griffin for their efforts towards providing a C++ based CORBA interface for
the NPSS application performed at the NASA Glenn Research Center. We would also
like to thank Kate Keahey and Nell Rehn for valuable discussions.
This work was supported in part by the National Science Foundation under Grant
Number ACI 9984357 (CAREERS) awarded to Manish Parashar, by the Mathemat-
ical, Information, and Computational Sciences Division subprogram of the Office of
Advanced Scientific Computing Research, U.S. Department of Energy, under Contract
W-31-109-Eng-38; by the Defense Advanced Research Projects Agency under
contract N66001-96-C-8523, and by the NASA Information Power Grid program.

Lecture Notes in Computer Science 12

9. References

[1]G. v. Laszewski, I. Foster, J. Gawor, and P. Lane, �A Java Commodity Grid Kit,�
Concurrency and Computation: Practice and Experience, vol. 13, pp. 643-662, Issue 8-9,
2001. http://www.globus.org/cog/documentation/papers/

[2]V. Getov, G. v. Laszewski, M. Philippsen, and I. Foster,� Multi-Paradigm Communications
in Java for Grid Computing,� ACM Communications, October 2001 (to appear).
http://www.globus.org/cog/documentation/papers/

[3]�The Grid Portal Development Kit,� 2001, http://dast.nlanr.net/Features/GridPortal/.
[4] �The Python CoG Kit,� 2001, http://www.globus.org/cog.
[5]�The Perl CoG Kit,� 2001, http://hotpage.npaci.edu.
[6] CORBA: Common Object Request Broker Architecture, http://www.omg.org.
[7] I. Foster, and C. Kesselman, �Globus: A Metacomputing Infrastructure,� International

Journal of Supercomputer Applications, 11(2): pp. 115-128, 1997
[8] I. Foster, C. Kesselman, and S. Tuecke, �The Anatomy of the Grid: Enabling Scalable

Virtual Organizations,� International Journal of Supercomputing Applications, 2001 (to
appear). http://www.globus.org/research/papers/anatomy.pdf.

[9] Y. Wang, F. D. Carlo, D. Mancini, I. McNulty, B. Tieman, J. Bresnahan, I. Foster, J. Insley,
P. Lane, G. v. Laszewski, C. Kesselman, M.-H. Su, and M. Thiebaux, �A high-throughput
x-ray microtomography system at the Advanced Photon Source,� Review of Scientific
Instruments, vol. 72, pp. 2062-2068, 2001.

[10] Numerical Propulsion System Simulation NPSS),http://hpcc.lerc.nasa.gov/npssintro.shtml.
[11]K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, �Grid Information Services for

Distributed Resource Sharing,� Proc. 10th IEEE International Symposium on High
Performance Distributed Computing, August 2001.

[12]I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, �A Security Architecture for
Computational Grids,� Proc. 5th ACM Conference on Computer and Communications
Security Conference, pp. 83-92, 1998.

[13]K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tuecke,
�A Resource Management Architecture for Metacomputing Systems,� Proc. IPPS/SPDP�98
Workshop on Job Scheduling Strategies for Parallel Processing, 1998.

[14]J. Bester, I. Foster, C. Kesselmaz, J. Tedesco, and S. Tuecke, �GASS: A Data Movement
and Access Service for Wide Area Computing Systems,� 6th Workshop on I/O in Parallel
and Distributed Systems, May 1999.

[15]Netscape Directory and LDAP Developer Central,
http://developer.netscape.com/tech/directory/index.html.

[16]JAVA Naming and Directory Interface (JNDI), http://java.sun.com/products/jndi. V1.2.
[17]U. Lang, D. Gollmann, and R. Schreiner, �Security Attributes in CORBA,� Submitted to

IEEE Symposium on Security and Privacy, 2001.
[18]B. Blakley, R. Blakley, and R. M. Soley, �CORBA Security: An Introduction to Safe

Computing With Objects,� The Addison �Wesley Object Technology Series
[19]S. Kaur, V. Mann, V. Matossian, R. Muralidhar, and M. Parashar, �Engineering a

Distributed Computational Collaboratory,� Accepted for publication at the 34th Hawaii
Conference on System Sciences, January 2001.

http://www.omg.org/
http://hpcc.lerc.nasa.gov/npssintro.shtml

