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Abstract High temperatures within a data center can

cause a number of problems, such as increased cooling

costs and increased hardware failure rates. To overcome

this problem, researchers have shown that workload man-

agement, focused on a data center’s thermal properties,

effectively reduces temperatures within a data center. In

this paper, we propose a method to predict a workload’s

thermal effect on a data center, which will be suitable for

real-time scenarios. We use machine learning techniques,

such as artificial neural networks (ANN) as our prediction

methodology. We use real data taken from a data center’s

normal operation to conduct our experiments. To reduce

the data’s complexity, we introduce a thermal impact

matrix to capture the spacial relationship between the data

center’s heat sources, such as the compute nodes. Our

results show that machine learning techniques can predict

the workload’s thermal effects in a timely manner, thus

making them well suited for real-time scenarios. Based on

the temperature prediction techniques, we developed a

thermal-aware workload scheduling algorithm for data

centers, which aims to reduce power consumption and

temperatures in a data center. A simulation study is carried

out to evaluate the performance of the algorithm. Simula-

tion results show that our algorithm can significantly

reduce temperatures in data centers by introducing an

endurable decline in performance.

Keywords Data center � Green computing �
Workload scheduling

1 Introduction

A data center is a facility which houses a number of

computing systems such as high-performance clusters,

telecommunications, and storage systems. Nowadays, data

centers play a key role in the modern IT infrastructure.

Power usage is the most expensive portion of a data cen-

ter’s operational costs. Recently, the U.S. Environmental

Protection Agency (EPA) reported that 61 billion KWh,

1.5% of US electricity consumption, is used for data center

computing [1]. Additionally, the energy consumption in

data centers doubled between 2000 and 2006. Continuing

this trend, the EPA estimates that the energy usage will

double again by 2011. It is reported that the power and

cooling cost is the most significant cost in data centers [2].

It is reported that this cooling costs can be up to 50% of the

total energy cost [3]. Even with more efficient cooling

technologies, such as those used in IBM’s BlueGene/L and

TACC’s Ranger, one of the clusters at the Texas Advanced

Computing Center, cooling cost still remains a significant

portion of the total energy cost for these data centers. It is

also noted that the reliability of a computer system’s

hardware is directly related to its operating temperature.

L. Wang � G. von Laszewski (&) � G. Fox

Pervasive Technology Institute, Indiana University,

2719 E. 10th St., Bloomington, IN 47408, USA

e-mail: laszewski@gmail.com

F. Huang

Institute of Geo-Spatial Information Technology, College of

Automation, University of Electronic Science and Technology of

China, Chengdu 611731, People’s Republic of China

J. Dayal

College of Computing, George Institute of Technology,

Atlanta, USA

T. Frulani

Center for Computational Research, NYS Center of Excellence

in Bioinformatics and Life Sciences, University at Buffalo,

SUNY, 701 Ellicott St., Buffalo, NY 14203, USA

123

Engineering with Computers (2011) 27:381–391

DOI 10.1007/s00366-011-0211-4



Thus, it is important to control data center operational

temperatures for reducing energy cost. Consequently,

resource management with thermal considerations is

important for any data center operation.

The objective of this work is to develop models and

algorithms for thermal-aware task scheduling in a data

center. Our work of thermal-aware workload placement

can reduce compute resource temperatures without a too

severe performance punishment, for example, job response

time. In specific, a thermal-aware workload placement can

bring several benefits like,

• Reduce the cost of cooling a data center. It is reported

that for every 1�F reduced in a data center, 2% of the

energy for a cooling system can be saved [4, 5]. In a

30,000 ft data center with 1,000 standard computing

racks, with an average electricity cost of $100/MWh,

the annual costs for cooling alone are $4–8 million [6].

Therefore, reducing compute resource temperature can

bring huge economical benefits.

• Increase compute resource reliability. It is recom-

mended that a compute server’s temperature should be

kept in the range between 20 and 30�C [7]. Based on

Arrhenius time-to-fail model [8], every 10�C increase

of temperature leads to a doubling of the system failure

rate [9].

• Increase power density and improve operation effi-

ciency. Compute servers with lower temperatures can

be accommodated in smaller spaces, thus increasing

power density and operation efficiency of a data center.

In this paper, we develop a thermal-aware workload

scheduling concept framework and algorithm in a data

center. The goal of our implementation is to reduce tem-

peratures of compute nodes in a data center without sig-

nificantly increasing job execution times. The key idea of

the implementation is to distribute workloads to ‘‘cool’’

computing nodes, thus making a thermal balancing. We

first develop a workload model and compute resource

model for data centers in Sect. 3. Then a task scheduling

concept framework and a thermal-aware scheduling algo-

rithm (TASA) are described in Sects. 5 and 7. In TASA,

workloads are distributed to ‘‘cool’’ computing nodes,

which is predicted by the artificial neural network (ANN)

technique. In Sect. 6, we present the implementation of

ANN-based temperature prediction. Section 8 discusses the

simulation and performance evaluation of TASA and Sect.

9 concludes our work.

Our contribution is twofold: (1) In this paper, we

describe a thermal-aware task scheduling concept frame-

work and algorithm. We also give a detailed performance

discussion on the implementation. (2) We develop a data

center-specific implementation of ANN-based temperature

prediction with performance discussion.

2 Related work and background

2.1 Research on thermal management for a data center

There is existing research on thermal management in a data

center. The most elaborate thermal-aware schedule algo-

rithms for tasks in data centers are with computational fluid

dynamics (CFD) models [10, 11]. Some research [12, 13]

claims that the CFD-based model is too complex and is not

suitable for real-time scheduling in a data center.

Weatherman [7] is a proof-of-concept implementation

for automated modeling of data center thermal topology. It

provides a real-time approach to predicting the heat profile

for a given data center configuration with ANN. This work

does not provide much details how to build an ANN based

on the data center configurations, like thermal map, phys-

ical layout. Furthermore, this work does not discuss whe-

ther ANN prediction is suitable for real-time scheduling

because normally training a ANN model is time-consum-

ing. In this paper, we also employ ANNs to predict thermal

maps in a data center. Compared with Weatherman, we

made a detailed discussion of the design, implementation,

and evaluation on ANN-based thermal map prediction. We

also bring a discussion on how to use ANN-based tem-

perature prediction for real-time task scheduling in a data

center. Based on the temperature prediction, we develop a

TASA, which is not included in the implementation of [7].

Moore et al. [13] developed a temperature-aware

workload placement in data centers based on thermody-

namic formulations, job power profiles, and information

about inlet and outlet temperatures. We noticed that the

power profiles in [13] are not easy to measure precisely for

a large number of job types. It is also argued in [12] that the

thermal model and power model in [13] are not accurate for

data centers.

The Impact group from ASU develops a software/

hardware architecture for thermal management in data

centers [12, 14, 15]. ASU’s work solves the research

problem of minimizing the peak inlet temperature within a

data center through task assignment (MPIT-TA), conse-

quently leading to minimal cooling requirement. Our

implementation in this paper is different from ASU’s work

in that (1) we introduce task-temperature profile for task

sorting, (2) we use ANN technique to calculate a thermal

map in a data center (3) we do not introduce power profiles,

cooling system, and inlet and outlet temperatures in our

model. Therefore our work is a lightweight implementation

and suitable for real-time scheduling in a data center.

2.2 Data center organization

The racks in a typical data center, with a standard cooling

layout based on under-floor cold air distribution, are back-
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to-back and laid out in rows on a raised floor over a shared

plenum. Modular computer room air conditioning (CRAC)

units along the walls circulate warm air from the machine

room over cooling coils and direct the cooled air into the

shared plenum. In a data center, the cooled air enters the

machine room through floor vent tiles in alternating aisles

between the rows of racks. Aisles containing vent tiles are

cool aisles; equipment in the racks is oriented, so their

intake draws inlet air from cool aisles. Aisles without vent

tiles are hot aisles, providing access to the exhaust air and,

typically, rear panels of the equipment [6].

Thermal imbalances interfere with efficient cooling

operation. Hot spots create a risk of red-lining servers by

exceeding the specified maximum inlet air temperature,

damaging electronic components, and causing them to fail

prematurely. Non-uniform equipment loads in the data

center cause some areas to heat more than others, while

irregular air flows cause some areas to cool less than others.

The mixing of hot and cold air in high heat density data

centers leads to complex airflow patterns that create hot

spots. Therefore, objectives of thermal-aware workload

scheduling are to reduce both the maximum temperature

for all compute nodes and the imbalance of the thermal

distribution in a data center.

In a data center, the thermal distribution and computer

node temperatures can be obtained by deploying ambient

temperature sensors, on-board sensors [15, 16], and with

software management architectures like Data Center

Observatory [17], Mercury and Freon [18], LiquidN2 and

C-Oracle [19].

2.3 Task-temperature profile

Given a compute processor and a steady ambient temper-

ature, a task-temperature profile is the temperature increase

along with the task’s execution. It has been observed that

different types of computing tasks generate different

amounts of heat, therefore resulting with distinct task-

temperature profiles [20].

A task-temperature profile presents thermal features of

tasks, for example, how ‘‘hot’’ a task can be. Task-tem-

perature profiles can be obtained by using some profiling

tools.

It is both constructive and realistic to assume that the

knowledge of task-temperature profile is available based on

the discussion [21, 22] that task-temperature can be well

approximated using appropriate prediction tools and

methods. In our work, we use task-temperature to describe

how much temperature a job possibly can increase when it

is executed, which is the job priority for scheduling. The

task-temperature profile can be measured or estimated

approximately since our work use it qualitatively to sort

jobs.

A task-temperature profile cannot be used to predict

compute resource temperature as there are some other

factors that are not considered, such as starting temperature

of a compute resource and heat dissemination mode around

a compute resource. In our previous work [23, 24], a real-

time task-temperature profile is introduced to predict

resource temperatures. We argue that real-time task-tem-

peratures are hard to measure in a data center and require

complex calculation, which is not suitable for real-time

scheduling. In this paper, we use ANN to predict resource

temperatures, which introduce lightweight real-time cal-

culation while integrating no pre-knowledge of real-time

task-temperature factors.

2.4 Artificial neural network

An ANN [25] was originally intended to model a biological

organism network of neurons involved in the learning

process. An ANN consists of a layer of interconnected

artificial neurons, connected via synapses, which process

the given information and produce an output. In general, an

ANN is an adaptive system that changes either its structure

or the weight of the inputs, based on information that flows

through the network during the learning, or training phase.

ANNs have proven to be successful statistical tools for

modeling both linear and non-linear relationships in a set of

data. Therefore, ANNs can be used to model a complex

non-linear system. There are a number of research projects

which use ANN to predict and control indoor temperatures

in various scenarios [26–29]. In our work, we analyze the

data center’s thermal features, resource models and work-

loads, and map these models into ANN input vectors to

predict future thermal maps. We argue that our contribu-

tion is not to propose a method of using ANN to predict

indoor temperatures. Our contribution lies in implementing

a data center-specific ANN-based temperature predication

by introducing a thermal impact matrix, which can sig-

nificantly reduce the computational complexity for ANN-

based temperature prediction in a data center. We also

discuss whether ANN is too expensive for data center real-

time scheduling.

3 Data center model

This section presents a simplified model of a data center

containing its thermal properties, and a workload.

3.1 Compute resource model

We consider a homogeneous compute center: all compute

nodes have identical hardware and software configurations.

Suppose that a data center contains I compute nodes:
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Node ¼ fnodeij1� i� Ig ð1Þ

where I is the total number of compute nodes in a data

center. nodei is the ith compute node, which is described as

follows:

nodei ¼ ðx; y; z; ta; TempðtÞÞ ð2Þ

where

• Temp(t) represents a data center thermal map, which is

the nodei’s temperature at time t.

• nodei.t
a is the time when nodei is available for job

execution.

• nodei. \ x, y, z [ is the nodei’s coordinate in a Carte-

sian coordinate system, where 0� x�X; 0� y� Y;

0� z� Z.

These coordinates relate to the physical layout of the

data center, which typically consists of Y rows of racks;

each row of racks contains X racks, and each rack contains

Z vertically stacked nodes.

To elaborate, we use the Center for Computational

Research (CCR) of State University of New York at Buf-

falo as an example. CCR has Y = 4 row of racks, and each

row has X = 12 racks. CCR’s racks are uniform, each

containing Z = 32 nodes.

3.2 Workload model

Data center workloads are modeled as a set of jobs:

Job ¼ fjobjj1� j� Jg ð3Þ

where J is the total number of incoming jobs. jobj is an

incoming job, which is described as follows:

jobj ¼ ðp; tarrive; tstart; treq;DTempðtÞÞ ð4Þ

where

• p is the required number of compute nodes for jobj.

• tarrive is the arrival time of jobj.

• tstart is the starting time of jobj.

• treq is the required execution time of jobj.

• DTempðtÞ is the task-temperature profile of jobj.

4 Research problem definition

Based on the above discussion, a job schedule is a map

from a job jobj to certain work node nodei with starting

time jobj.start:

schedulej : jobj ! ðnodei; jobj:t
startÞ ð5Þ

A workload schedule Schedule is a set of job schedules

schedulej; jobj 2 Job:

Schedule ¼ fschedulejjjobj 2 Jobg ð6Þ

We define the workload starting time T0 and finished

time T? as follows:

T1 ¼ max
1� j� J

fjobj:t
start þ jobj:t

reqg ð7Þ

T0 ¼ min
1� j� J

fjobj:t
arriveg ð8Þ

Then the workload response time Tresponse is calculated

as follows:

Tresponse ¼ T1 � T0

We also define the maximum temperature during the

workload execution as follows:

Max TempðNodeÞ ¼ max nodei:TempðtÞ ð9Þ

where 1� i� I; T0� t� T1
Assuming that the redline, the maximum node temper-

ature allowed in a data center is TEMPmax, thermal-aware

workload scheduling in a data center could be defined as

follows: given a workload set Job and a data center com-

pute resources Node, find an optimal workload schedule,

Schedule, which minimizes Tresponse of the workload Job

and the maximum node temperature Max_Temp(Node):

min Tresponse ð10Þ

minMax TempðNodeÞ ð11Þ

subject to:

Max TempðNodeÞ� Tempmax ð12Þ

It has been discussed in our previous work [23] that

research issue of Eqs. 10 and 11 is a NP-hard problem.

Section 5 then discusses the scheduling framework of

TASA in a data center. Section 6 uses ANN to predict

compute nodes’ temperatures in a data center. Section 7

then presents a thermal-aware scheduling heuristic based

on the temperature prediction.

5 Thermal-aware workload scheduling framework

This section introduces the concept of the framework for

thermal-aware workload scheduling as shown in Fig. 1.

A thermal map is the temperature field in the data center

space. A data center monitoring system, for example, either

a temperature sensor-based monitoring service [12, 16] or

by using compute fluid dynamics software [10, 11], can

generate a thermal map for a data center.

A data center model contains a workload model and

compute resource model defined in Sect. 3. Workloads of a

data center are characterized with task compute require-

ments: number of required compute nodes, execution time,

and a task-temperature profile. A compute resource model
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presents compute resource physical layout and its compute

power characteristics.

With a data center model and historical thermal map, AI

techniques like ANN can predicate future thermal maps for

a data center.

Given a data center model (resource model and job

model) and future thermal maps, a thermal-aware task

scheduling algorithm (TASA) can place workloads on the

proper compute nodes with the objective to reduce maxi-

mum node temperature and task response time.

The workload placement can also predict future thermal

maps and then give advice to future cooling system oper-

ations. Cooling system operations can change future ther-

mal maps.

6 ANN-based temperature prediction for a data center

This section discusses how we use an ANN to predict

compute resource temperatures in a data center. We use

ANN because we want our solution to be adaptable and

suitable for real-time scheduling. With an ANN, our

solution is adaptable because we can use real-time training,

combined with our initial offline training phase, to improve

the prediction performance over time. Our experimental

results show that our trained ANN can produce good pre-

dictions in a very small amount of time.

6.1 Problem formalization

At a high level, we would like a function f that can predict

a value P for all given inputs I:

P ¼ f ðIÞ ð13Þ

At a more detailed level, we can say we are attempting

to predict a thermal map TempMap(t ? Dt) for a given

workload distribution W(t) and current thermal map

TempMap(t). Then I = \ W(t), TempMap(t) [ in our

case. Therefore, to predict nodep’s temperature, we

formalize the problem as follows:

nodep:Tempðt þ MtÞ ¼ f ðWðtÞ; TempMapðtÞÞ ð14Þ

With the formal definition in Sect. 3, we have,

TempMapðtÞ ¼
�

nodei:\x; y; z [ ; nodei:TempðtÞð Þ
��nodei

2 Node; 1� i� I:g ð15Þ

WðtÞ ¼
�

jobj; nodelistj
� ���jobj 2 Job; jobj:t

arrive

� t; nodelistj � Node; 1� j� J:g ð16Þ

where nodelistj is the node set that executes jobj.

6.2 Thermal impact matrix

The complexity of an ANN is based on the number of

neurons contained in each layer of the network. The

complexity has a direct effect on the ANN’s training and

execution time. Since we want to use our ANN model in

real-time scenarios, we want to make our ANN as simple,

as possible while reducing its complexity. From our pre-

vious discussion, we can see that using the complete

thermal map in a data center produces a large input vector.

We noticed that a node’s temperature is only affected

significantly by two factors: the workload executed on it

and the neighbor nodes’ temperatures. To help reduce the

size of our input vector and the complexity of the ANN, we

introduce a Thermal Impact Matrix to reflect on the above

two factors instead of using the data center’s complete

thermal map:

A ¼ ½ai;j� ð17Þ

ai;j ¼
1 if i ¼ j

nodej:TempðtÞ�nodei:TempðtÞ
Eðnodei;nodejÞ if i 6¼ j

(

ð18Þ

where I represents the number of nodes in the data center

and ai,j present’s nodei’s spacial impact on nodej,

Eðnodei; nodejÞ is the Euler distance between nodei and

nodej, and 0� i; j� I. The Euler distance captures the

distance and space relationship between two nodes, for

example, which nodes are placed lower or higher. Natu-

rally, for a given node, the nodes directly below it will have

a high impact, while nodes above it will not have as sig-

nificant of an impact. Hence, we eliminate the impact

between nodes that are far away from each other by

ignoring them if they are below a certain threshold and we

can set ai,j = 0. Therefore, most elements of Ai are 0 in a

large data center.

Now, to predict nodep’s temperature, the problem of

Eq. 14 can be reduced as follows:

nodep:Tempðt þ MtÞ ¼ f ðnodep:TempðtÞ;Ap; joblistiÞ
ð19Þ

where joblisti is the job set that executed on nodep during

the time period of Mt;Ap ¼ ½ap;1; ap;2; . . .; ap;j; . . .; ap;I �t. As

Fig. 1 Thermal-aware workload scheduling framework
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most elements of Ap are 0, the input vector for our ANN

model is thus much reduced.

6.3 Implementation

Several tools for ANN development are readily available,

but we chose to go with the fast artificial neural network

(FANN) library [30]. FANN provided us with several

different ANN configurations, such as various activation

functions and fully and partially connected ANNs.

For our experiments, we used both fully and partially

connected multi-layered perceptron networks. For both

types, we used three layers, an input, hidden, and an output

layer. It is possible to have more layers, but this has shown

to be often unnecessary [31].

First, we discuss our input layer. As we discussed in the

previous section, for a given node nodep, our inputs are

nodep.Temp(t), the node’s partial impact matrix, Ap, and the

node’s job list joblistp. Since most elements in Ap are 0, we

can prune these values from our input vector, resulting in

the partial matrix Ap. So, the size of our input vector is

N ¼ nodep:TempðtÞ þ jApj þ jjoblistpj ð20Þ

In our experience with data fromCCR, |Ap| & I/10, I is the

total number of compute nodes in CCR.

Between the input and output layers, there exist a

number of hidden layers, each consisting of any number of

hidden neurons. There are several rules of thumb available

to determine the number of hidden neurons for a given type

of problem. The number of hidden neurons is often based

on the number of input neurons. For our experiments, we

chose N/2 hidden neurons.

For fully connected ANNs, the inputs for each neuron in

the hidden layer is the output for each node in the input

layer. Thus, in our experiment, each of the N/2 hidden

neuron had N inputs.

Each neuron applies a weight wi to each of the Ni inputs.

The weighted inputs are passed into the neurons activation

function, a_function.

yi ¼ a function
XN

i¼0

wi � Ni

 !

ð21Þ

If yi reaches a threshold, the neuron ‘‘fires’’, sending a non-

zero output to the neurons in the next layer. The most

popular activation functions are the sigmoid activation

functions. The sigmoid activation function only accepts

values from [0, 1], so we scaled each of our inputs to fall

with in this range.

With partially connected ANNs, each hidden neuron

does not always accept N inputs. As many connections

turn out to be irrelevant to the network, they get pruned

off, thus reducing the complexity of the network. For our

experiments, we tested connectivity rates of 60, 70, 80,

and 90%.

6.4 Experiment results and discussion

In this section, we will discuss the performance of our

ANN.

Several metrics are discussed, such as prediction accu-

racy, training time, and execution time. We tested these

metrics for several different ANN configurations. In the

experiments, we use the temperature data collected from

CCR as input, which was discussed in Sect. 8. For our

experiments we set a MSE to 0.0047 and maximum num-

ber of epochs to 100,000. The performance of our ANN

implementation is shown in Table 1.

While connectivity is the percentage of connections

between the input layer and the hidden layer, 100% is a

fully connected ANN. Training time is how long it took for

each network’s MSE to converge to our desired MSE of

0.0047. Epochs are the number of iterations on which the

ANN had to train to reach the desired MSE. The MSE

shows whether the network was able to converge to the

desired MSE of 0.0047.

The partially connected networks outperformed the fully

connected network, which was not able to converge to the

desired MSE over 100,000 epochs. Each of the partially

connected networks was able to predict a test job’s tem-

perature profile in less than 1 s, making it suitable for our

real-time scenario after training.

To test our accuracy, we compared the ANN’s predicted

values to the real values obtained from the CCR data

center. We tested these values using the 70% connectivity

network. We depict prediction accuracy in Table 2 and

Fig. 2. In Fig. 2, various compute nodes mean the index of

compute nodes in the CCR cluster.

Table 1 Performance of ANN implementation

Connectivity (%) Training time (min) Epochs MSE

100 102 100,000 0.0051

90 50 21,594 0.0047

80 49 21,464 0.0047

70 48 21,262 0.0047

60 43 20,892 0.0047

Table 2 Predication accuracy of ANN model

Percentage of predictions Error (%)

42 ±1.5

65 ±2.5

90 ±3.0
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7 Thermal-aware scheduling algorithm

This section discusses our TASA. As shown in Fig. 3, with

periodically updated data center information, the TASA

executes periodically to accept incoming jobs and schedule

them to compute nodes of multiple racks.

A job’s task-temperature profile defines how ‘‘hot’’ a job

is over time. The compute node’s temperature of its next

available time, nodei.t
a can be predicted by AI techniques

discussed in Sect. 6. The key idea of TASA is to schedule

‘‘hot’’ jobs on ‘‘cold’’ compute nodes and tries to reduce

the temperature increase of compute nodes. Algorithm 1

shows the details of TASA.

Algorithm 1 Thermal Aware Scheduling Algorithm (TASA)

Algorithm 1 presents the TASA. Lines 1–4 initialize

variables. Line 1 sets the initial scheduling time stamp to 0.

Lines 2–4 set compute nodes available time to 0, which

means all nodes are available from the beginning.

Lines 5–29 of Algorithm 1 schedule jobs periodically

with an interval of Tinterval. Lines 5 and 6 update current

temperatures of all nodes from temperature sensors. Then

line 7 sorts all jobs with decreased jobj:DTempðjobj:t
reqÞ:

jobs are sorted from ‘‘hottest’’ to ‘‘coolest’’. Line 8 sorts all

nodes with increasing node temperature at the next avail-

able time, nodei:Tempðnodei:t
aÞ: nodes are sorted from

‘‘coolest’’ to ‘‘hottest’’ when nodes are available.

Lines 9–14 cool down the over-heated compute nodes. If

a node’s temperature is higher than a pre-defined temper-

ature TEMPmax, then the node is cooled for a period of

Tcool. During the period of Tcool, there is no job scheduled

on this node. This node is then inserted into the sorted node

list, which keeps the increased node temperature at next

available time.

Lines 16–26 allocate jobs to all available compute

nodes. Related research [21] indicated that, based on the

Fig. 2 ANNs simulation result

Fig. 3 The TASA execution context
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standard model for the microprocessor thermal behavior,

for any two tasks, scheduling the ‘‘hotter’’ job before the

‘‘cooler’’ one results in a lower final temperature. There-

fore, Line 16 gets a job from the sorted job list, which is the

‘‘hottest’’ job, and line 17 allocates the job with a number

of required nodes, which are the ‘‘coolest’’. Lines 18–20

find the earliest starting time on these nodes, nodelistj, for

jobj. After that, line 24 predicts the temperatures of next

available time for these nodes, nodelistj. Then these nodes

are inserted into the sorted node list, Node, keeping the

increased node temperatures at next available time.

Algorithm 1 waits for a period of Tinterval and accepts

incoming jobs. It then proceeds to the next scheduling

round.

8 Simulation and performance evaluation

8.1 Simulation environment

We simulate a real data center environment based on the

Center for Computational Research (CCR) of State Uni-

versity of New York at Buffalo. All jobs submitted to CCR

are logged during a 30-day period, from 20 Feb 2009 to 22

Mar 2009. CCR’s resources and job logs are used as input

for our simulation of the TASA with backfilling.

CCR’s computing facilities include a Dell x86 64 Linux

Cluster consisting of 1056 Dell PowerEdge SC1425 nodes,

each of which has two Irwindale processors (2MB of L2

cache, either 3.0 GHz or 3.2 GHz) and varying amounts of

main memory. The peak performance of this cluster is over

13 TFlop/s.

The CCR cluster has a single job queue for incoming

jobs. All jobs are scheduled with a first come first serve

(FCFS) policy, which means incoming jobs are allocated to

the first available resources. There were 22,385 jobs sub-

mitted to CCR during the period from 20 Feb 2009 to 22

Mar 2009.

In the following section, we simulate the TASA based

on the job-temperature profile, job information, thermal

maps, and resource information obtained in CCR log files.

We evaluate the TASA by comparing it with the original

job execution information logged in the CCR, which is

scheduled by FCFS. In the simulation of TASA, we set the

maximum temperature threshold (redline) to 125:5�F.

8.2 Experiment results and discussion

8.2.1 Data center temperature

First, we consider the maximum temperature in a data

center as it correlates with the cooling system operating

level. We use rTempmax to show the maximum tempera-

ture reduced by TASA.

rTempmax ¼ Tempmax
fcfs � Tempmax

tasa ð22Þ

where Tempfcfs
max is the maximum temperature in a data

center where FCFS is employed, and Temptasa
max is the

maximum temperature in a data center where TASA is

employed.

In the simulation, we got rTempmax ¼ 6:67�F. There-

fore, TASA reduces 6:67�F of the average maximum

temperatures of the 30-day period in CCR.

It is reported that every 1�F reduced in a data center, 2%

of the energy for the cooling system can be saved [4, 5].

Therefore, TASA can save up to 13.34% power supply of

CCR’s cooling system, which is up to 6.67% of CCR’s

total power. It is estimated that CCR’s total power con-

sumption is around 80,000 kW. Thus, the TASA can save

around 5,330 kW power consumption.

Table 3 shows the environmental effect of power con-

sumption. The left column shows the power sources; the

second column shows the CO2 emission of different power

sources [32]. The right column shows the power source

distribution in New York state [33]. Based on Table 3, we

can coarsely estimate that CCR costs around 33,000 kg

CO2 emission every hour, and TASA can reduce 2,130 kg

CO2 emission per hour. The emission produced over a

year’s timespan equates to about 37 thousand midsize cars

[34]. We also consider the average temperatures in a data

center, which relates the system reliability. Compared with

FCFS, the average temperature reduced by TASA is

17:9�F:

8.2.2 Job response time

We have reduced power consumption and have increased

the system reliability, both by decreasing the data center

temperatures. However, we must consider that there may

be trade offs to be considered, such as an increased

response time.

Table 3 Environment effect of power consumption

Power source CO2 emission (g/kWh) Power source distribution (%)

Oil 881 16

Coal 963 14

Natural gas 569 22

Nuclear 6 29

Hydroelectric 4 17

Wind power 3–22 B2
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The response time of a job jobj.t
res is defined as job

execution time (jobj.t
req) plus job queueing time

ðjobj:t
start � jobj:t

arriveÞ, as shown below:

jobj:t
res ¼ jobj:t

req þ jobj:t
start � jobj:t

arrive ð23Þ

To evaluate the algorithm from the user’s point of view, the

job response time indicates the time it takes for results to

return to the users.

As TASA intends to delay the scheduling of jobs to

compute nodes that are assumed to be too hot, it may

increase the job response time. Figure 4 shows the

response time of the FCFS, and Fig. 5 shows the response

time of TASA.

In the simulation, we calculate the overall job response

time overhead as follows:

overhead ¼
X

1� j� J

jobj:t
res
tasa � jobj:t

res
fcfs

jobj:t
res
fcfs

ð24Þ

In the simulation, we obained an overhead of 15.2%,

which means that we reduced the maximum temperature by

6:67�F and the average temperature by 17:9�F in CCR’s

data center by paying cost of increasing the job response

time by 15.2%.

8.2.3 Data center utilization

Another important performance metric is the data center

space utilization. Data center space utilization indicates

how much percent of total resources are busy at any spe-

cific point in time. The system utilization, which is affected

by the policy workload placement, has an important impact

on the cooling cost. For certain system utilization, different

workload placement policies, for example, in our context

TASA and FCFS have different cooling costs, which has

been discussed above.

Since our simulation uses the same workload as input

for TASA and FCFS, the simulations for TASA and FCFS

have the same overall system utilization. However, in

different time periods, TASA and FCFS have different

system utilization, as shown in Fig. 6. Here, the blue line

shows the data center space utilization scheduled by the

FCFS, and the red line shows the data center space utili-

zation by the TASA. We can see that the data center space

utilization under the FCFS and the TASA are in alternative

trends: during certain periods, the data center space utili-

zation under TASA is higher than that of FCFS; in the

subsequent period, the data center space utilization under

the FCFS is higher than that of the TASA. This can be

explained as follows:

• When some jobs arrive at a data center, the TASA tries

to distribute them to different compute resources to

reduce a temperature increase. This means more

resources are busy leading to a higher data center

space utilization.

• As jobs may fill up compute resources in a data center,

some resources reach the maximum temperature

(125:5�F), TASA delays the job submission and let

resources cool down. However, FCFS does not consider

the data center temperature and continues to schedule

jobs to resources. This leads a higher data center space

utilization.

Fig. 4 Job response time of FCFS

Fig. 5 Job response time of TASA
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8.2.4 Compute performance versus Green metrics:

a tradeoff

It is clear that we can reduce the compute nodes’ temper-

atures in a data center by increasing the task response time.

Obviously there is a tradeoff between them. Table 4 shows

our simulation results of TASA by setting different redline

values for a data center, hence, verifying a tradeoff

between reduced average temperature and increased task

response time.

9 Conclusion

Nowadays, energy-aware management of data centers is

becoming more important in the context of Cloud and

Green computing. Thermal-aware resource management of

data centers can offer various benefits, like reducing

cooling cost and increasing reliabilities of computing

resources, thus promoting an environmental conscious

computing paradigm. In this paper, we have developed an

ANN-based temperature prediction implementation, which

is lightweight and suitable for real-time scheduling sce-

narios. This paper thereafter presents a method for data

centers to reduce the temperatures in a data center, based

on our ANN temperature predication. The algorithm is

evaluated through a simulation based on real operational

information from CCR’s data center. Test results and a

performance discussion justify the design and implemen-

tation.
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