
A Parallel Data Assimilation System

and its

Implications on a Metacomputing Environment

by

Gregor von Laszewski

B�S� University of Bonn� Germany� ����

M�S� University of Bonn� Germany� ����

Diplom Informatiker

Abstract of Dissertation

Submitted in partial ful	llment of the requirements of the degree of

Doctor of Philosophy in Computer and Information Science

in the Graduate School of Syracuse University

October ���

Abstract

Grand challenge applications are a major motivation to advance research in scienti	c com�

puting� theoretical computer science� computer architecture� and other 	elds�

Even though a lot of research has been done while parallelizing climate models� little has

been done in the area of atmospheric data analysis�

The 	rst contribution of this thesis is the analysis of a production code for four dimensional

data assimilation� Whether the speci	cation of an e�cient parallel algorithm is possible�

was evaluated� Second� a parallel algorithm has been developed utilizing MIMD distributed

message passing machines� Strategies to further optimize the algorithm are given� One of the

parallel algorithms speci	ed� can be implemented in a similar manner on di
erent parallel

computing architectures� utilizing data parallel and message passing parallel architectures�

A major impact of the dissertation is the de	nition of a deterministic quality control al�

gorithm� which is an integral part of the assimilation system� This new algorithm will be

incorporated in a future production version of the assimilation system�

The other contributions of the dissertation are based on the design of a metacomputing

environment simplifying the speci	cation and instantiation of parallel programs on diverse

computing platforms� Programming the components of the metacomputer is achieved with

the help of a graphical user interface� The interface allows one to design programs in the

data�ow concept� In contrast to other approaches� it proposes the use of a dynamical data�ow

model instead of a static data�ow model�

The dynamical data�ow concept enables one to facilitate loosely coupled and tightly coupled

components of the metacomputer� The di
erentiation between tightly and loosely coupled

metacomputer components guarantees the generation of e�cient message passing programs

and a simple job distribution facility for jobs to be issued in the metacomputing environment�

Simplicity and intuition has been used for the design of the interface to allow a small learning

curve� Due to the generality of the data�ow concept� a program designed with the environ�

ment can be translated to di
erent programming paradigms�

A Parallel Data Assimilation System

and its

Implications on a Metacomputing Environment

by

Gregor von Laszewski

B�S� University of Bonn� Germany� ����

M�S� University of Bonn� Germany� ����

Diplom Informatiker

Dissertation

Submitted in partial ful	llment of the requirements of the degree of

Doctor of Philosophy in Computer and Information Science

in the Graduate School of Syracuse University

October ���

Approved

Date

c� Copyright ���

Gregor von Laszewski

Contents

Preface xvii

Acknowledgment xviii

� Introduction �

��� Research Objectives �

��� Organization of the Dissertation �

� Data Analysis in Atmospheric Science �

��� Climate Modeling �

��� Data Analysis �

��� Optimal Interpolation ��

��� Quality Control ��

��� Applications of Data Analysis ��

��
 The Operational NASA Four Dimensional Data Assimilation System � � � � � ��

��
�� The NASA Assimilation System ��

��
�� Model Resolution ��

��
�� The NASA Optimal Interpolation Algorithm � � � � � � � � � � � � � � ��

��
�� Quality Control ��

��
�� Optimal Interpolation ��

��
�
 Minivolume Concept ��

��
�� Data Inputs ��

��
�� Incremental Analysis Update ��

v

� Imposed Constraints for the Parallelization of the Assimilation System ��

��� Software Engineering Problems ��

��� Software Metric Analysis ��

��� Software Engineering Choices �

� A Parallel Objective Analysis System ��

��� The Parallel Programming Models ��

��� The Data Domains of the Analysis System ��

��� Loadbalance and Databalance ��

��� Coordinate Systems and Data Domains ��

����� Coordinate Systems based on Model Variable and Grid Domain � � � ��

����� Coordinate Systems based on the Minivolume Distribution � � � � � � ��

����� Coordinate Systems based on the Observational Domain Distribution ��

��� Functional Decomposition ��

����� Loop parallelization ��

����� Computational Irregularities �

��
 Data Domain Decompositions �

��
�� A Generalized Speci	cation for Decompositions � � � � � � � � � � � � ��

��
�� Overlap region ��

��
�� Memory Considerations ��

��� Load Imbalance ��

����� Dynamic Load Balancing ��

����� Geographical Static Decompositions � � � � � � � � � � � � � � � � � � �
�

����� Data Balanced Decompositions �
�

����� Cyclic Decomposition �
�

����� Random Scattered Decomposition �
�

��� Evaluation of the Data Domain Decomposition Schemes � � � � � � � � � � � �
�

��� Future and Related Research �
�

����� Modifying the Functional Decomposition � � � � � � � � � � � � � � � �
�

����� Loop Restructuring �

����� Dataparallel Assimilation Systems �
�

����� The ECMWF Box Distribution �
�

vi

����� Alternatives to OI ��

	 Deterministic Quality Control
�

��� Physical Interpretation of the Quality Control Problem � � � � � � � � � � � � ��

����� Optimization in the Report Generation � � � � � � � � � � � � � � � � � �

��� Future Research ��

� Experimental Results
�

�� Hardware Used for the Experiments ��

�� The Dataset Used for the Performance Analysis � � � � � � � � � � � � � � � � ��

�� Experiments Based on Version ��� of the Assimilation System � � � � � � � � ��

���� Performance on a RS
��� ��

���� Performance of the Parallel Algorithm � � � � � � � � � � � � � � � � � ��

�� Experiments Based on Version ��� of the Assimilation System � � � � � � � � ��

���� Sequential Program Analysis and Performance � � � � � � � � � � � � � ��

���� Performance Comparison of the Parallel Version ��� and ��� � � � � � ��

�� Comparison of the Di
erent Domain Decompositions � � � � � � � � � � � � � ��

 Metaproblem� Metacomputing� and Data�ow Concept �

��� Problems � Theory � Solution � Resources ���

��� Grand Challenge Problems ���

��� Metaproblems ���

��� Metacomputer ���

��� Motivation and Requirements for the Metacomputing Environment � � � � � � ���

��
 Data�ow Concept ���

� The Interface and Software Layer of the Metacomputer ��	

��� Metacomputing Editor ���

����� A Tightly Coupled Metacomputing Environment � � � � � � � � � � � ���

����� A Loosely Coupled Metacomputer ���

��� Dynamic Resource Management ���

��� The Metacomputing Library ���

��� The Metacomputer Resource Monitor ���

vii

��� On Demand Publishing ���

��
 Data�ow� a Multiparadigm Program Notation � � � � � � � � � � � � � � � � � ���

��� Related Research ��

����� Visual Programming ��

����� Metacomputing ���

��� Advantages and Problems with Metacomputers � � � � � � � � � � � � � � � � ���

��� Current State and Future Research ���

� Conclusion �		

��� Implications of the Grand Challenge Application on the Metacomputing En�

vironment ��

��� Future Avenues of Research ���

A Abbreviations �	�

B Program and Code Examples ���

B�� Generating Tightly Coupled Applications with the Metacomputing Environment�
�

B�� Generating loosely Coupled Applications with the Metacomputing Environment�
�

B���� Remote Script Language �
�

B���� The Java Classes for Remote Computer Handling � � � � � � � � � � � �
�

B���� Scheduling �
�

viii

List of Figures

��� Space and time scales of an earth climate system� � � � � � � � � � � � � � � � �

��� The memory and speed requirements of some grand challenge problems in

WORDS and FLOPS� �

��� Typical distribution of observations for the determination of an initial state� ��

��� Schematic closeup of a typical distribution of observations for the determina�

tion of an initial state� The area of in�uence is shown for the grid point in

the middle� ��

��� Overview of the Integrated NASA Goddard Data Assimilation System� � � � � �

��
 The data assimilation cycle� ��

��� The modules of the OI algorithm� The details of the SLP analysis are shown�

The MIX and HUV have the same functional decomposition as the SLP analysis� ��

��� Center of the minivolumes for the sample problem� � � � � � � � � � � � � � � ��

��� Typical distribution of sea level observations as used for the objective analysis� ��

���� Typical distribution of moisture observations as used for the objective analysis� �

���� Typical distribution of HUV observations as used for the objective analysis� � �

��� Comparison of the software metric size S of the di�erent programs � � � � � � ��

��� Comparison of the software metric control coupling l of the di�erent programs

�number of calls and external references� ��

��� Comparison of the software metric data coupling l� of the di�erent programs

�common block variables 	 calling arguments� � � � � � � � � � � � � � � � � � ��

��� Comparison of the software metric control �ow F of the di�erent programs

�conditions
 loops
 and jumps� ��

ix

��� Mappings from the physical domain to the grid point domain � � � � � � � � � ��

��� Classi�cation of the spatial coordinate mapping for the optimal interpolation ��

��� Possible data distributions� �a� striped distribution
 �b� 	�c� blocked distribu�

tion
 �d� irregular �igloo
 distribution ��

��� The de�nition of an overlap region� ��

��� Irregularities in the overlap region� ��

��
 In each processor
 the entire model variables and only the necessary observa�

tions are stored� ��

��� In each processor
 only the necessary model variables and observations are

stored� ��

��� Load imbalance caused by the calculations performed at the di�erent pro�les� ��

��� Timings for the calculation of the statements for the set of minivolume at a

particular location on the globe� The times are sorted by their value� � � � � � ��

���� Dynamical loadbalance strategy with the help of �oating tasks� � � � � � � � �
�

���� Block�cyclic distribution �
�

���� High level �owchart of the optimal interpolation algorithm� �a� original al�

gorithm �b� suggested change for a parallel algorithm� � � � � � � � � � � � � �

���� An example of a decomposition obtained by the ECMWF box decomposition

scheme� ��

���� The hierarchical decomposition of the ECMWF box decomposition scheme�

The process is iterated for each box
 as long as it contains more than ���

observations� ��

��� Illustration of the quality control problem� The �rst two rows show examples

for the acceptance of observations for di�erent orders of the observation in the

input� The last row shows the acceptance when two processors are used
 while

traversing the observations in the same order like the �rst row� � � � � � � � � ��

�� Fractions of the computational intense parts of the sequential assimilation

program
 Version ���� ��

�� Striped data decomposition onto �� processors� � � � � � � � � � � � � � � � � � �

�� Data balanced striped decomposition onto �� processors� � � � � � � � � � � � � �

�� Striped data decomposition onto �� processors� � � � � � � � � � � � � � � � � � �

x

�� Data balanced striped decomposition onto �� processors� � � � � � � � � � � � � �

�
 Striped data decomposition onto �� processors� � � � � � � � � � � � � � � � � � �

�� Data balanced striped decomposition onto �� processors� � � � � � � � � � � � � �

�� The calculation time vs� the number of processors used for the HUV analysis

using the striped decomposition� ��

�� The speedup vs� the number of processors used for the HUV analysis
 using

the striped decomposition� ��

��� The calculation time vs� the number of processors used for the HUV analysis

using the data balanced decomposition� ��

��� The speedup vs� the number of processors used for the HUV analysis
 using

the data balanced decomposition� ��

��� Fractions of the computational intense parts of the sequential optimal inter�

polation algorithm for the Versions ���
 and Dataset B� � � � � � � � � � � � � ��

��� Fractions of the computational intense parts of the sequential optimal inter�

polation algorithm for the Versions ���
 and Dataset B� � � � � � � � � � � � � ��

��� The CPU times for the HUV quality control �QC� and the optimal interpola�

tion �OI� while using �� processors� Both use a cyclic domain decomposition� ��

��� The CPU times for the HUV quality control �QC� and the optimal inter�

polation �OI� while using �� processors� The OI uses a block�cyclic domain

decomposition� ��

��
 The range of the CPU times for the HUV quality control �QC� and the optimal

interpolation �OI� while utilizing �� processors and using the cyclic �C� and

the block�cyclic �B�C� decomposition� �

��� The comparison of the di�erent load balancing strategies for the HUV optimal

interpolation for larger numbers of processors� The legend is given in the text� ��

��� The comparison of the di�erent load balancing strategies for the HUV optimal

interpolation for smaller number of processors� The legend is given in the text� ��

��� The dependencies between problem
 theory
 resources and solution� � � � � � � ���

��� The problem pyramid� ���

��� The MIMD Architecture
 a heterogeneous computing network
 and a metacom�

puter� ���

xi

��� Metacomputer from the user point of view� ���

��� Essential parts of a metacomputer for operators
 developers and users� � � � � ���

��
 The geographical distribution of the metacomputing components as utilized in

the NASA Four Dimensional Data Assimilation Project� � � � � � � � � � � � ��

��� The window shows the building blocks used in the global program structure

�tightly coupled metacomputing program�� ���

��� The window shows how the program is represented after the parallel program

blocks have been introduced� ���

��� The window shows the selection of the machines participating in the execution

of the program� ���

��� The window shows the load meter to control dynamic load balancing while

executing the code� ���

��� The window which speci�es the machines on which the module should be avail�

able
 where the source code is located
 and what graphical representation the

node should have� ���

��
 The module selection with a listbox� ���

��� A snapshot from the running application
 augmented by the current load on

each machine and the processes currently active �the ones marked with big

circles�� ���

��� De�nition of data able to �ow between process objects� The data object is a

simpli�ed data object as used in the NASA project� � � � � � � � � � � � � � � ���

��� De�nition of a process object using data objects on its inputs� � � � � � � � � ��

���� Dynamical selection process during program execution � � � � � � � � � � � � � ���

���� The multiple purpose of the parallel programming environment while creating

and executing parallel programs� ���

���� A loosely coupled metacomputer program� ���

���� The list of jobs submitted to the supercomputer� � � � � � � � � � � � � � � � � ���

���� The list of jobs submitted to the metacomputing environment� � � � � � � � � ���

���� The job submission form for supercomputers operating in batch mode� � � � � ���

���
 The details of the loosely coupled metacomputer� � � � � � � � � � � � � � � � � ���

���� Di�erent paradigms expressed in a data�ow graph � � � � � � � � � � � � � � � ���

xii

���� Di�erent paradigms expressed in a data�ow graph � � � � � � � � � � � � � � � ���

���� The WWW Metacomputer� ���

���� A WWW interface for the on Demand calculation of the �DDAS� � � � � � � ���

xiii

List of Tables

��� Code Analysis of the Optimal InterpolationAlgorithm as used in Four�Dimensional

Data Assimilation �

��� Dyadic icosahedral spherical triangulations ��

�� Some Performance characteristics of a single Alpha and SP� node� � � � � � � ��

�� Performance of the HUV analysis on a Cray C��� � � � � � � � � � � � � � � � ��

�� Performance of the Sequential Program ��

�� Comparison of the runtime of the versions ��� and ���� Di
erent decomposi�

tions on �� processors are used� ��

xiv

List of Programs

��� The objective analysis algorithm of the operational NASA data assimilation

system� ��

��� The quality control driver algorithm� ��

��� The gross check algorithm� ��

��� The buddy check algorithm� ��

��� Optimal interpolation algorithm ��

��
 The minivolume based optimal interpolation algorithm � � � � � � � � � � � � ��

��� The parallel gross check algorithm� ��

��� The parallel buddy check algorithm� ��

��� The parallel optimal interpolation algorithm� � � � � � � � � � � � � � � � � � � ��

��� The presort algorithm� �

��� The program for a global controlled dynamical load balance algorithm� � � �
�

��
 The program for the �oating task load balance algorithm� � � � � � � � � � � �
�

��� The parallel OI algorithm looping over minivolumes and vertical levels� � � �
�

��� The modi	ed gross check algorithm� ��

��� The modi	ed buddy check algorithm� �

��� An example formulation in a CSP like program� � � � � � � � � � � � � � � � � ���

��� An example formulation in a message passing like program� � � � � � � � � � � ���

��� An example formulation in a Data�ow like language with no program counters ���

��� An example formulation in FORTRAN�� with program lines� The functions

B and C are executed in the order determined by the compiler� � � � � � � � � ���

��� An example formulation in FORTRAN�� with program lines� The functions

B and C are executed in the order determined by the compiler� � � � � � � � � ���

xv

��
 An example formulation in HPF���� In HPF ��� there is no easy way to

incorporate task parallelism� HPF ��� will provide a special directive ON

HOME� ���

xvi

Preface

To my parents�

Diese Arbeit ist meinen Eltern gewidmet� Ich bin Ihnen dankbar f�ur Ihre Unterstuzung
 ohne

die es mir nicht m�oglich gewesen w�are nach Amerika zu kommen und
 weder diese Arbeit zu

beginnen
 noch erfolgreich beenden zu k�onnen�

xvii

Acknowledgment

First� I would like to thank my advisor� Professor Geo
rey C� Fox� for his valuable discussions

and advices� as well as� his inspiring lectures at the Computer Science Department� I am

grateful� that he gave me the opportunity to explore� in depth� di
erent 	elds in computer

science� as well as� computational science�

The dissertation would not have been possible without the cooperation of several research�

ers at Northeast Parallel Architectures Center�NPAC� and at Goddard Space Flight Cen�

ter�GSFC� in Greenbelt� MD�

I am grateful to Miloje Makivic for his support and valuable comments during the duration

of the NASA Four Dimensional Data Assimilation Project�

In the Data Assimilation O�ce at GSFC� I am grateful to Peter Lyster for his guidance�

the many helpful comments and fruitful discussions� as well as� his support in many other

aspects� I would like to thank Mike Seablom� who provided me with version ���s of the

sequential optimal interpolation algorithm and shared with me his o�ce at GSFC for over

half a year� He helped me get acquainted with the many undocumented lines of the source

code� I am grateful to David Lamich for providing the new version ���mv of the OI code and

a consistent input data set� and James Stobie for his e
orts in improving the software quality

control at DAO� Both were valuable sources of information� I would like to thank all others

which helped to improve my understanding of the di
erent algorithms available at DAO� e�g�

Arlindo DaSilva� Ying Guo� and Steve Cohen�

I am especially grateful to Richard B� Rood for his support and hospitality during several

visits at NASA Goddard Space Flight Center as part of the Universities Space Research

Association �USRA��

At NPAC� I am thankful to the systems sta
 for providing me with the necessary demanding

computational resources and the enormous amount of disk space to store the input data sets�

Facilities from the Northeast Parallel Architectures Center� Cornell Theory Center� Maui

High Performance Supercomputer Center� Goddard Space Flight Center� and the Jet Pro�

portion Laboratory were used to conduct the experiments�

This project has been funded by NASA High Performance Computing and Communications

�HPCC� Earth Science Project�

xviii

xix

xx

Chapter �

Introduction

In the last decade� dramatic advances in software and hardware have changed the landscape

for computing� Today� personal computers have reached a performance level which could have

only been dreamed of� a couple of years ago� The increase in processor speed is accompanied

by an increase in available memory to economical prices� New graphic cards let a PC

perform at almost workstation speed� for graphics applications� On the high end� vector�

supercomputers are outperformed by distributed memory parallel architectures�

Besides the development in hardware� the changes in the software engineering are marked

by the acceptance of object oriented programming concepts and languages in the software

design� Even Fortran�� has been superseded by a new standard for which mature compilers

were introduced during the last years� Incooperating a module concept� already introduced

in modern computer languages decades ago� will simplify de	ning reusable software compon�

ents� The introduction of vector constructs is especially of interest for the high performance

computing community� It enables the user to design programs suitable for vector and MIMD

parallel computers� A further key event� in the last few years� is the standardization of High

Performance Fortran�HPF� � New language constructs� supporting the distribution of data in

an e�cient and transparent way� make it possible to further simplify parallel programming

and utilize the new and relatively inexpensive MIMD computers� in a more or less� portable

way�

Computer networks have evolved from local area networks� over medium area networks� to

Wide area networks� The hardware base has been established for the distribution of inform�

�

� �� Introduction

ation in a global �World Wide Web�� The World Wide Web �WWW� has established itself

as a functioning computing environment� accessible by the ever increasing number of online

users� Starting from the desire to provide a framework for exchanging data between scient�

ists� it has reached the potential to become the computing platform of the future� Hardware

advances in the network technology� like the introduction of the ATM technology �Asynchron�

ous Transfer Mode�� provide the necessary backbone for the information exchange between

computers� Today� it is important to reduce the latency between communicating computers

further� and to increase the bandwidth of the connections on the Internet� in order to avoid

congestion on the net�

Currently� the WWW is most frequently used for exchanging data� and allowing online users

to access information stored at remote sites� The well known fact that computers are idle

during o
 peak hours� provides an enormous resource of computational power� Accessing

the unused CPU cycles in an e�cient way and distributing data on which calculations are

performed� is a topic of ongoing research at many institutions� The utilization of the resources

of the WWW can be expanded not only to the PC level� but also to the level where several

supercomputers build the computational nodes� The facilities managing the resources of

many cooperating computers is known as the metacomputing environment� The cooperating

components of the metacomputing environment are referred to as themetacomputer� Without

doubt� a functioning metacomputer will in�uence many di
erent research 	elds� The more

resources are available to the scienti	c community� the bigger the problems are to be solved

or the faster solutions can be achieved�

The development of this new infrastructure has been strongly driven by the scienti	c re�

search community� One of the problems scientists face is solving grand challenges����� Grand

challenge problems are problems which have to be solved on parallel computers� if at all�

Combining several supercomputers available on the WWW will provide more computational

resources for researchers involved with grand challenge applications�

An example of such a problem� is the development of a Four Dimensional Data Assimilation

System as used in atmospheric science� as well as� oceanography� It is used to 	nd initial

conditions for climate and weather models� and to verify the quality of a climate model� in

regards to real observed data during the past decade� The 	eld of data assimilation is as old

as the de	nition of a numerical climate model�

Only recently� su�cient parallel computational resources are available to impact the 	eld of

���� Research Objectives �

data analysis and climate modeling� With the increased computational power� more reliable

forecasts are possible� In the near future� it is predicted that the data assimilation will gain

more and more importance� Thus� the need for faster assimilation systems will follow� This

can be achieved by developing an e�cient parallel algorithm� Once a parallel program is

written and the data is produced� it has to be distributed to other researchers� The WWW

is an ideal communication media to do this�

��� Research Objectives

The acceptance of massively parallel MIMD machines in the computer science research and

industry communities is based on economical feasibility and good performance� It is widely

accepted that massively parallel algorithms can outperform existing algorithms executed on

vector supercomputers�

Even though a lot of research has been conducted while parallelizing climate models� little

has been done in the area of atmospheric data analysis� Besides using parallel program�

ming paradigms unfamiliar to the atmospheric scientist� the new computing environments

are too complex to employ them easily� The variety of di
erent systems makes it even more

complicated for an atmospheric scientist�

The Dissertation has the following objectives�

First� a very popular data analysis method is analyzed on its feasibility of parallelization� If it

is possible to 	nd a parallel algorithm� it should be simple but scalable� Problems connected

to the parallelization methods should be outlined� in order to support the parallelization of

other assimilation strategies�

Second� a method for simplifying the future development of parallel codes in the 	eld of

atmospheric data analysis and other grand challenge projects should be found� The simpli	c�

ation should be based on specifying a parallel algorithm� which can be mapped onto di
erent

computing platforms� The handling of the computing platforms should be simpli	ed�

��� Organization of the Dissertation

Due to the interdisciplinary research performed� this dissertation consists of two parts� Each

part begins with a small introduction followed by the research conducted�

� �� Introduction

We begin by presenting in Chapter � the motivation for the data assimilation in atmospheric

science� This helps the reader to get acquainted with the technical vocabulary used in

atmospheric science� A simple mathematical model describing the major concepts of the data

assimilation algorithm� is transferred into high level code fragments� The code fragments

are used in later chapters as basis for the parallelization� Issues related to the quality of the

observation data� which are an essential part of the calculation� are explained� The algorithm

parallelized is used in the NASA Data Assimilation O�ce� for production� Special properties

and di
erences between the general formulation of the assimilation system and the production

version� are outlined�

Chapter � deals with software engineering issues connected to the sequential and the planned

parallel data assimilation algorithm� Constraints imposed or desired by the NASA Data

Assimilation O�ce are collected� The analysis of the source code and the evaluation of the

available resources show that many of the constraints are impossible to ful	ll� The analysis

motivates changing future project approaches by incooperating better software standards for

the code development� One result from this analysis� is the desire to simplify the task of

a programmer� which ultimately leads to the design of the meta�computing environment as

introduced in Chapter ��

In Chapter �� possible parallel algorithms for the assimilation system are explored� Essential

for the derivation of an e�cient parallel algorithm� is the analysis of the physical domains

and the data domains� on which the calculations are performed� Functional and data de�

composition are employed at the same time in the presented algorithms� Di
erent domain

decompositions are analyzed� Regular� irregular� static and dynamic decompositions for the

di
erent domains are discussed� Future research for the other parallelization strategies are

introduced� Task and data parallel algorithms are considered� Pointers to similar other

parallel assimilation systems� as found in literature� are given�

Chapter � analyzes a problem inherent with the assimilation system� which was not considered

previously� The problem is based on the nondeterminism of the quality control algorithm

as used in the assimilation system� A deterministic algorithm is presented� which has been

recently introduced to the NASA Data Assimilation O�ce� motivating the future development

of a quality control algorithm based on the results presented here�

Chapter
 presents performance data obtained with di
erent decomposition algorithms� as

introduced in Chapter �� Timings for di
erent sequential and parallel machines are depicted�

���� Organization of the Dissertation 	

The second part of the dissertation� deals with the limited resources available to solve grand

challenges� A metacomputing environment is designed� which simpli	es the execution and

program development on supercomputers�

In Chapter �� a general concept of metaproblems is described� An essential part of the

research conducted� dealt with resource limitations and 	nding solutions to circumvent them�

Dealing with a grand challenge problem and the many di
erent computing resources used

for the program execution� motivates the design of a metacomputing environment�

Chapter � introduces the concept of the components of the planned metacomputing envir�

onment� Besides the development of e�cient massively parallel programs to solve a grand

challenge� the environment in which the program is executed should be transparent and

intuitive for the user of heterogeneous supercomputing environments� The classi	cation of

loosely coupled and tightly coupled metacomputing environments is introduced� based on

the granularity of the parallelism� embedded in the problem� to be solved� Design issues for

a user interface are presented which ful	ll both requirements� incooperating multiple pro�

gramming paradigms and a programming paradigm based on the data�ow concept� Related

research� actively pursued at many di
erent institutions� are pointed out� The current state

of a prototype implementation and further improvements are presented�

Chapter � presents the accomplished goals and conclusions of this dissertation� Further

improvements for a parallel assimilation system� as well as� the metacomputing environment

are discussed�

Chapter �

Data Analysis in Atmospheric

Science

��� Climate Modeling

The precise prediction of weather and climate is an essential part of our daily life� The state

of the atmosphere changes every moment� Deriving hourly� daily� seasonal and long term

forecasts� helps to prepare for the changes in the state of the atmosphere� The di
erence

in the space and time scale phenomena of the earth climate system are of large variety

�Figure �����
��� On the smallest scale� turbulence is studied� while on the larger scale�

changes in the climate and the CO� values are examined� The region of interest for weather

and climate models ranges from about �� km to �
���� km� the circumference of the earth�

The time scale of interest ranges from a few hours� to months� years� and for long running

CO� analysis� even longer�

For all of them� it is desirable to derive methods which can predict the behavior of the atmo�

sphere at the di
erent scales� A precise forecast enables one to determine proper preventive

actions governed by the future atmospheric condition� The di
erent demands in space and

time is also the reason for deriving di
erent computational simulation models� Weather fore�

cast models are used for medium scale and length atmospheric events� like the occurrence

of tornados����� The results of the simulation are presented to us daily over numerous TV

cable channels� Large scale climate models provide the opportunity to study long term at�

���� Climate Modeling

10 10 10 10 10

1

10

100

1000

10000

2 4 6 8 10

Turbulence

Convection

Mesoscale
Weather
Systems

Climate
CO

2Global
Weather
Systems

Ocean
Mixed
Layer

Ocean
Circulation

Minute Day Year Century

Time in seconds

H
o

ri
zo

n
ta

l S
ca

le
 in

 k
m

Soil
Erosion

Figure ���� Space and time scales of an earth climate system�

� �� Data Analysis in Atmospheric Science

mospheric events� like global warming���� Due to the similar nature of climate and weather

forecast models� many overlaps exist between them� Often� weather forecast models are based

on a limited and smaller scaled climate model simulation�

Unfortunately� the atmosphere is the most variable component of an earth climate system�

Elaborate models are necessary to describe the behavior of the atmosphere����� ����� Not

only do climate models contain complicated equations� but also perform calculations on large

amounts of data sets� Thus� computers with enormous computational power and storage

capacity are needed to calculate a prediction of only small complexity� Climate modeling is

classi	ed as one of the grand challenge problems���� because of its scienti	c value and the

amount of computational resources necessary to pursue the calculation �Figure ����� The

calculation cannot be performed on any single existing computer in su�cient time� Due to

the complexity of the calculation and the large storage volume� climate modeling is even one

of the most challenging applications from the large scale grand challenge problems�

Airfoil
Model

Weather Prediction (48h)

Weather Prediction (72h)

Financial Modeling

3D Plasma Model

Climate Model
Ocean Circulation Model

Human Genom Project

Quantum Chromodynamics

100
MFLOPS

1
GFLOPS

10
GFLOPS

100
GFLOPS

1
TFLOPS

1
PFLOPS

1 MW

10 MW

100 MW

1 GW

10 GW

Speed

M
em

or
y

Figure ���� The memory and speed requirements of some grand challenge problems in
WORDS and FLOPS�

���� Data Analysis �

��� Data Analysis

To clarify the role of data assimilation in relationship to climate modeling� a more detailed

analysis of the 	eld of meteorology is necessary�

The main problem in meteorology is how to obtain a valid forecast� Early in the development

of the science of meteorology� three steps have been distinguished�

�� The �initial� state of the earth has to be determined�

�� Laws which predict the new atmospheric state have to be determined�

�� The forecast is obtained while applying the laws to the initial state�

These three steps are in�uencing each other directly� The forecast will be unreliable without a

precise initial state� even if the governing equations describing the atmosphere are as accurate

as possible� The best initial data will be worthless� if the equations describing the atmospheric

model are inaccurate� Furthermore� only small errors should be introduced while applying

the mathematical evaluation process on the initial condition� with the help of the governing

equations� Obviously� a perfect forecast of the atmosphere is not possible due to its chaotic

nature� The goal is to be as precise as possible�

A major step towards an automated forecast system has been achieved by Richardson� in

his ground breaking publication����� He used a 	nite di
erence form to integrate forward in

time� obtaining a forecast from an initial state �originally published in ������ The di
erence

scheme is applied on a regular latitude�longitude grid of 	xed size�

A set of di
erent variables are used to describe the governing equations� e�g� pressure� height�

the three components of the wind �often abbreviated as u�� v�� and z�component�� and many

more� Since these variables are de	ned for the whole domain� the term �eld is used for an

array of variables of the same type� Variable values in the vertical are referred to as pro�les�

Unfortunately� the initial data in Richardson�s 	rst forecast calculation was incomplete� The

values of the 	eld were not de	ned at all grid points of the domain� The forward integration

can only be achieved after all values for the 	elds have been de	ned� The question arises�

How are the initial values for the computational grid determined� when the actual

value at the grid point is unknown�

�
 �� Data Analysis in Atmospheric Science

A method had to be derived to 	ll in the missing values� Richardson analyzed the existing

observation values subjectively and estimated the missing values at several grid points� This

subjective analysis method was used for a long time� re�ecting the fact that the experience

of the scientists interpreting the data had a large subjective in�uence on the quality of the

initial solution� Since then� the subjective analysis method has been replaced by numerical

algorithmswhich can be executed by computers� In order to stress the fact that these methods

are not anymore relying on the experience of a scientist� the term objective analysis is used�

Unfortunately� the term objective is somewhat confusing� It does not mean that the method

is perfect or without any subjectivity �it has been developed by scientists and represents a

subjective method for solving the problem�� but it does re�ect the fact� that the subjective

analysis method by a scientist is replaced by a computing device� In today�s forecast systems�

many values for the grid are still missing and have to be estimated� even with the increased

number of observation devices available today�

To quantify this problem� a typical distribution of the locations of all available observations

during a six hour time interval is shown in Figure ���� In this realistic example� regions exist

with no available observation data� even though satellites� ships� and airplanes are used to

obtain the data� A schematic closeup is shown on the left side of Figure ���� In this Figure�

the values at the grid points are unknown� The observations are used to obtain the values�

Many possible solutions for obtaining the initial values have been introduced in literature��
��

��� Optimal Interpolation

One of the most successful and often used objective analysis methods� is a technique called

optimal interpolation� This technique was introduced by Eliassen���� and Gandin����� It uses

a statistical process based on mean square minimization to obtain the missing values for the

computational grid� The idea behind optimal interpolation is to take a 	rst guess for the

	elds and observations� Then� for each grid point� actual observations are used in order to

obtain an analysis increment� based on the weighted sum of all observations in the vicinity

of the point�

In order to obtain the 	rst guess 	elds at the grid points� the model is integrated once forward

in time� The 	rst guess observations are determined by an interpolation step from the 	elds

towards the actual observation locations�

���� Optimal Interpolation ��

-80

-60

-40

-20

0

20

40

60

80

-150 -100 -50 0 50 100 150

La
tit

ud
e

Longitude

Figure ���� Typical distribution of observations for the determination of an initial state�

? ?

Figure ���� Schematic closeup of a typical distribution of observations for the determination
of an initial state� The area of in�uence is shown for the grid point in the middle�

�� �� Data Analysis in Atmospheric Science

In practice� a cut�o� distance is used allowing only observations up to a 	xed distance to be

included for the update� This is shown schematically on the right side of Figure ���� The

cut�o
 strategy will be described in more detail in Section ��
�� and ��
���

First� a simpli	ed mathematical formulation of the optimal interpolation algorithm is given�

The description follows the univariant case� which has the property that no correlation exists

between the variables of one 	eld to another 	eld� Let�

Ng be the number of observations� e
ecting a particular grid point g�

Ag be the resulting analysis at grid point g�

Fg be the 	rst guess value at the grid point g�

Fi be the 	rst guess value for the i
th observation�

Oi be the i
th observed value� and

Wgi be the yet undetermined weight function�

Let�
� �
denote the statistical averaging process� and let�

�
�Ag ��

A
g �

T
�
�
�
�g��g�T

�A
�
�
�g�

T
g

�A
�

where �Ag is the error at the grid point g for 	eld A� Then� the optimal interpolation algorithm

can be derived as follows�

Ag � Fg �

NgX

i��

Wgi�Oi � Fi� � �����

where Ag � Fg speci	es the analysis increment or correction� and Oi � Fi speci	es the

observation increment or innovation� Transforming Equation ����� in terms of errors� yields

to

�Ag � �Fg �

NgX

i��

Wgi��
O
i � �Fi � �����

Then�

�
�g��g�

T
�A

�����

can be minimized with respect to the weights�

���� Optimal Interpolation ��

�

�W

�
�g��g�

T
�A
�
 �����

�
�g�

T
j

�F
�

NgX

i��

Wgi�
�
�i�

T
j

�F
�
�
�i�

T
j

�O
� � �����

In the Equation ������ correlations between the observations and the 	rst guess errors are

neglected� The errors are assumed to be uncorrelated and unbiased� To complete the calcu�

lation� it is assumed that the forecast error covariances from the previous equation can be

estimated by an empirical 	t�

In the univariate case� the model and observed error correlation can be approximated as

follows�

�
�i�

T
j

�F
w �Fi �

F
j �

F
ij

�
�i�

T
j

�O
w ��O���Oij

where � and � are functionals dependent on the observation positions� their di
erence� and

the observed variable� An exact speci	cation of these complex functions and their derivation

can be found in ���� �
� ��� Similarly� let�
�
�g�

T
j

�F
be approximated by

�
�g�

T
j

�F
w �Fg �

F
j ��d�

Then� we obtain in a 	nal form

�Fg �
F
j ��d�� �z � �

PN
i��Wgi ��Fi �

F
j �

F
ij � ��

��O�Oij� �z ��

bg Ag

���
�

One can now solve this system of linear equations for each grid point� in order to obtain the

missing weights�

Agx � bg � �����

�� �� Data Analysis in Atmospheric Science

This is done with the help of a Cholesky factorization��
��� As mentioned earlier� the op�

timal interpolation process can also be used to allow observations of one kind of variable to

in�uence the analysis of another one� This process is known as multivariate analysis� In

the multivariate case� the correlation terms and the weights in the Equation ����� become

matrices instead of vectors� For a complete derivation of a multivariate optimal interpola�

tion algorithm� we refer to ��
�� The extensive parameter set� as used in an operational OI

algorithm� is described in �����

��� Quality Control

Besides using the optimal interpolation strategy� it is of utmost importance to ensure the

quality of the observations which are considered in the actual analysis� A network of vari�

ous observation instruments gathers data about the atmospheric condition� Generally� the

instruments are divided into three classes�

Instruments of class � measure observations taken at a single observation location� Com�

mon examples of such instruments are thermometers� and devices measuring humidity�

Class � instruments can even be placed in radiosonds to measure values at di
erent

height or pressure levels�

Instruments of class � sample an area or volume rather than an observation point� Com�

mon examples are radars measuring precipitation and winds via Doppler shift�

Instruments of class � determine wind velocities from Lagrangian trajectories� Here� a

physical target is followed remotely and the velocities are determined with the help of

the displacement of the target� Examples for such instruments are radiosond balloons�

and also cloud elements tracked with pattern recognition techniques from geostationary

satellites�

Each of the instruments have di
erent characteristics introducing errors into the observed

value or variable� Fortunately� the characteristics of an instrument and its error can be

predetermined� on average� for each instrument type� In order to eliminate instrument errors�

the characteristics are an important input of the actual data analysis� To avoid variations of

�The matrix is symmetric and positive de�nite

��	� Applications of Data Analysis �	

the initial data and the actual predicted atmospheric state� it is necessary to check the input

observations and correct or reject erroneous data from the analysis� Certain errors can be

corrected quite easily� leading to an overall improved quality of the analysis� In ��
�� details

about the numerous errors of the di
erent instruments can be found�

��� Applications of Data Analysis

Besides 	nding values to initialize a climate model� data analysis can be used in a much

broader sense� It can be used to 	nd and improve new and existing climate models� em�

phasizing the increased importance of this branch in atmospheric science� It starts with the

collection of a su�ciently large data base of past observations on the earth� These observa�

tions are then transfered to a representation conforming with the model �atmospheric 	elds��

Comparing the results obtained from the forecast and the data analysis� enables one to 	nd

di
erences between the model and the observations obtained in reality� The di
erences can

be studied and used to improve the model such that a more reliable forecast will be achieved�

In case a model has been veri	ed as su�ciently accurate� a long term prognosis can be run�

Providing the data and the assimilation system with an integrated climate model is one of

the goals pursued at the NASA Data Assimilation O�ce �DAO�� at Goddard Space Flight

Center �GSFC������

��� The Operational NASA Four Dimensional Data Assimila	

tion System

����� The NASA Assimilation System

In this section� the speci	c details of the operational assimilation system are described� as

used at DAO�

The assimilation system provides researchers with the ability to forecast the state of the atmo�

sphere� based on a data set� collected over the past ten years� The NASA Four Dimensional

Data Assimilation System�DAS� constitutes of independent program modules� as shown in

Figure ���� First� data observed by satellites� radiosonds� weather balloons� airplanes� and

many other sources are prepared for input� A quality control check is performed to eliminate

�� �� Data Analysis in Atmospheric Science

wrong or erroneous data�

After the quality control� the objective analysis is performed� The objective analysis � hence�

forth called the analysis � involves the use of statistical weights to combine the model grid�

point data and the observations to obtain a best estimate for the state of the atmosphere�

Then� the model calculation is performed����� A general circulation model �GCM� � hence�

forth called the model � is used to generate a six hour forecast�

10

20

0

Data Preparation Quality
Control

Oceanic Land-Surface

Kalman
Smoother

Global Optimal
Interpolation

Optimal
Interpolation

Objective
Analysis

Model

Atmospheric Chemistry
Transport

Eulerian
Grid Point

Semi
Lagrangian

van Leer / Prather
 Advection

Prather
Advection

Data Output

Long Term
Forecast

Figure ���� Overview of the Integrated NASA Goddard Data Assimilation System�

At the DAO� di
erent strategies for the analysis are in use� as well as under development�

For example� a multivariate optimal interpolation algorithm���� �
�� a global analysis al�

gorithm� called the Physical�space Statistical Analysis System �PSAS����� ���� and the Kal�

man Filter���� ���� are among the data assimilation strategies� Currently� a method called

optimal interpolation algorithm �OI� is used as part of the operational integrated data assim�

ilation system����

���� The Operational NASA Four Dimensional Data Assimilation System �

At present� one six hourly analysis incorporates approximately ������� observations� In ten

years� the number of observations is expected to increase in at least two orders of magnitude��

Data is interpolated from non�uniform observation locations to a regular latitude�longitude

grid via the multivariate optimum interpolation �OI� analysis technique����� The OI algorithm

uses statistical estimates to determine appropriate relative weighting between noisy observa�

tions and a somewhat inaccurate 	rst guess� obtained with a forecast by the model� This is

done in order to minimize the resulting error in the analysis and forecast�

The DAS analysis cycle consists of performing

�� the initialization�

�� the model forecast� and

�� the data analysis�

These steps are iterated for every
 hour interval on the data and 	elds available at the time

�Figure ��
�� The state of the 	elds from the past� present� and future� are important for the

calculation and evaluation�

The process of iterating and obtaining the results for the calculation is referred to in literat�

ure as Four Dimensional Data Assimilation� Three dimensions represent the physical space�

while the forth dimension is given by the time� The method performing the objective ana�

lysis �the data analysis� is called Objective Assimilation System� or simply the Assimilation

System� The assimilation system refers only to the data preparation� the quality control and

the objective analysis method� The model is not included�

����� Model Resolution

A problematic issue in climate modeling� is the resolution used for the grid representation� In

case the grid is dimensioned wrong� an error based on its representation is introduced� This

error is referred to as the error of representativeness� If the scale of the grid is too big� e
ects�

such as the well known lake e�ect snow in Syracuse� would not be detected� Therefore� it

is desirable to design a model which contains a high number of grid points over the earth�

This concludes that grids with big gaps between the grid points� introduce a high error in the

�For current and near future demands� ������� observations are considered�

�� �� Data Analysis in Atmospheric Science

00

06

12

Observations
Time

Analysis
Data

Initialization

Prediction

Analysis
Data

Initialization

Prediction

Analysis
Data

Initialization

Prediction

Initialization

Figure ��
� The data assimilation cycle�

calculation� On the other hand� the calculation performed on a computer will be much less

time consuming with a smaller grid� A careful selection has to be made to choose the correct

grid size and the desired resolution accuracy� They are inversely proportional to each other�

accuracy � gridsize �
�

resolution

The resolution of the grid can be chosen arbitrarily in the production code� Usually resolutions

of � � ���� ��� � � ���� �
� or � � � � �� are used� because these grids are compromises

between speed and accuracy� and are used at other institutes to achieve comparable results�

The 	rst two numbers re�ect the distance� in degrees� between a grid point in longitude

and latitude direction� The last number re�ects the number of horizontal levels in the 	eld�

Therefore� one can obtain a grid of about ��� ���� ��� ��� ���� �
� and �� � �� � ���

respectively� In the NASA code� the vertical levels correspond to the pressure measured in a

��coordinate model� In this coordinate representation� the di
erent height levels are parallel

to the surface level� In contrast to a z�coordinate model� where the height is speci	ed by the

geometric position�

The grid representation for the analysis and the model is di
erent� Currently� the objective

analysis based on the OI uses � coordinates� while the model uses z�coordinates� Special

���� The Operational NASA Four Dimensional Data Assimilation System ��

routines allow the transformation of the 	eld variables between the di
erent representations�

����� The NASA Optimal Interpolation Algorithm

The OI algorithm used in the data assimilation system is split in three separate modules�

as depicted in Figure ���� The surface�level�pressure �SLP� analysis� the moisture�vapor

�MIX� analysis and the height�u�wind�v�wind �HUV� analysis are di
erentiated� The logical

structure of the separate parts are similar� They distinguish each other through di
erent

parameters and equations describing the atmospheric condition� which is analyzed in each

part� The HUV and MIX analysis modules have the same program �ow as the SLP analysis�

Initialization

SLP Analysis

MIX Analysis

HUV Analysis

Postprocessing

Read the data

Quality Control

Optimal Interpolation

Update the fields

Buddy Check

Gross Check

Figure ���� The modules of the OI algorithm� The details of the SLP analysis are shown�
The MIX and HUV have the same functional decomposition as the SLP analysis�

Without loss of generality� only the SLP analysis is shown on the right side of Figure ����

While the SLP analysis is done on a two dimensional domain� HUV and MIX are performed

in the three dimensional domain� The computational demand for the HUV analysis is the

largest due to the amount of data in�uencing the big three dimensional domain� Since there

is only few data available for the MIX analysis� the time spent for this analysis is the smallest�

In order to specify a parallel algorithm for the optimal interpolation� it is 	rst necessary to

describe the function of the separatemodules� with the help of high level programdescriptions

�Figures ��� � ����� Each of the di
erent analysis parts consists of a

�
 �� Data Analysis in Atmospheric Science

�� data input routine� to read the necessary observations in order to perform an accurate

prediction�

�� quality control algorithm� to exclude and correct erroneous observation data�

�� optimal interpolation algorithm� to perform the calculation given in Equation ��� for

each grid point�

The resulting high level description is displayed in Program ����

Program ��� The objective analysis algorithm of the operational NASA data assimilation
system�

� proc Objective Analysis based on OI
� � SLP analysis�
� Read in the observations for �SLP�
� Perform Quality Control �SLP�
� Perform Optimal Interpolation �SLP�
� � MIX analysis�
� Read in the observations for �MIX�
� Perform Quality Control �MIX�
	 Perform Optimal Interpolation �MIX�

�
 � HUV analysis�
�� Read in the observations for �HUV�
�� Perform Quality Control �HUV�
�� Perform Optimal Interpolation �HUV�
�� end proc

����� Quality Control

First� the quality control algorithm is considered� The quality control is an essential part of

the assimilation system at NASA� The internal strategy of the quality control uses a simple

averaging process� similar to the derivation of the weights for the optimal interpolation�

Program ��� describes the program �ow for the quality control of the observation data� In

line � and �� interpolation algorithms are used to obtain the appropriate values at the location

of the observation� Presently� the quality control algorithm consists of two further steps� the

gross�check and the buddy�check �Line �� and ����

���� The Operational NASA Four Dimensional Data Assimilation System ��

Program ��� The quality control driver algorithm�

� proc Quality Control
� foreach observation do
� if observation has invalid location
� then mark observation as invalid
� end if
� end foreach

� Obtain the �rst guess values at the location
� of the valid observations�
	 Interpolate the forecast errors to the

�
 observation locations�
�� call Gross Check
�� call Buddy Check
�� end proc

Program ��� The gross check algorithm�

� proc Gross Check
� Th � Tolerance
� foreach valid observation do
� if variable is not in allowed range
� then mark observation as invalid
� end if
� if observation is �still� valid

� then � � variableO � variableF

	 if �� 	 Th���
O�� � ��F ���

�
 then fail� mark observation as suspect
�� end if
�� end if

�� end foreach
�� end proc

�� �� Data Analysis in Atmospheric Science

Program ��� The buddy check algorithm�

� proc Buddy Check
� foreach suspicious observation do
� Search for the set S of all valid observations in a particular
� radius arround the data point�
� analyzed value � Perform univariate sucessive correction
� method at the location of the observation with the help of S
� � � observation� analyzed value
� if � is in tolerance level� � � kThk
	 then mark observation as valid

�
 end if
�� end foreach

�� end proc

The gross�check eliminates obvious errors� dependent only on the values at the location of the

observation� A test is performed� based on the observation error variances �O and forecast

error variances �F �

�� 	 Th���
O�� � ��F ��� � �����

where � is the di
erence between an observation and the interpolated background 	rst guess

value� and Th is a subjectively de	ned tolerance value varying with height� The high level

code description of the gross check is shown in Program ����

The buddy�check eliminates errors which depend on the values of all the observations in the

vicinity of the location� A univariate successive�correction method performs the analysis

at each location� speci	ed by a suspicious observation� Then� the di
erence between the

suspect observation and the analyzed value are subjected to Equation ������ The observation

is accepted if Equation ����� is not satis	ed�����

����� Optimal Interpolation

After the quality control is completed� the optimum interpolation algorithm is applied and

the matrices� as given in Equation ������ are solved �Program ����� The term matrix solve is

sometimes used alternatively to the term optimal interpolation to stress the fact� that it can

���� The Operational NASA Four Dimensional Data Assimilation System ��

be replaced by another solving method� di
erent from the optimal interpolation�

Program ��	 Optimal interpolation algorithm

proc Optimal interpolation algorithm
foreach gridpoint g

Collect the data in the vicinity of this gridpoint
foreach Vertical level

Calculate covariance matrix Ag

Solve the linear equation Agx � bg
Store the result in the �elds

end foreach

end foreach
end proc

New values for the 	elds are stored and the algorithm is terminated when the equations for

all grid points have been solved� The optimal interpolation is completed at this point� The

resulting 	elds will be used as input to a prediction algorithm to determine the next state of

the variables �of the model��

To limit the size of the covariance matrices for the Cholesky factorization� a cuto
 radius

of about �
��km is used� In addition� there is an upper bound of �� observations for the

number of observations considered in the factorization� A sophisticated rule based decision

process� which in turn is dependent on empirical data� decides which observations are used�

in case more than �� observations are in a region of in�uence�

����� Minivolume Concept

One very important di
erence between the optimal interpolation algorithm� as speci	ed in

Section ���� and the operational system� is the use of so called minivolumes� In the original

formulation of the algorithm� the covariance matrices are computed for each grid point� Since

the di
erence in the covariance matrices of one grid point and the neighboring grid points is

rather small� the covariance matrices are determined for a group of grid points� laying in a

small latitude�longitude�height�pressure� box� Only when the geographical distance between

the gridpoints is large� substantial di
erences in the covariance matrix occur� The term

minivolume optimal interpolation algorithm is used to describe this algorithm� Since the setup

�� �� Data Analysis in Atmospheric Science

of the covariance matrix is rather time consuming� the introduction of minivolumes decreases

the calculation speed drastically� Unfortunately� it reduces the quality of the solution in

contrast to the original algorithm������

The current setup has the minivolumes distributed in the way as depicted in Figure ����

The reason for more minivolumes in the low latitude bands is based on the fact that the

Cartesian latitude�longitude coordinate space on the earth does not preserve the property of

equal distance �see Section ��� for more detail�� If one maps the Cartesian coordinate system

to a spherical coordinate system� dense regions of coordinate grid points would exist around

the pole� In this case� the calculation would be unnecessarily slowed down without any

precision gain� The choice of the coordinate system is de	ned by DAO� It has the property

that it generates high quality solutions� in a reasonable time� The speed up for setting up the

covariance matrices of the minivolumes� distributed as shown in Figure ���� and the gridpoint

is as follows�

Let� l denote the number of levels in the grid domain� Then� the number of minivolumes used

in the operational system is currently ���
�d l�e� In the gridpoint OI algorithm� the number

of covariance matrix generation is either� about ���� ��� l or about ��� ��� l� This gives

a speedup of about �� for the larger grid� and �� for the smaller� to setup the covariance

matrices�

The outline of the minivolume based optimal interpolation algorithm is shown in Program ��
�

Program ��� The minivolume based optimal interpolation algorithm

proc Minivolume based optimal interpolation algorithm
foreach minivolume m

Collect the data in the vicinity of this minivolume
foreach Vertical level

Calculate covariance matrix Am

foreach gridpoint g � current minivolume m
Solve the linear equation Amx � bg
Store the result

end foreach
end foreach

end foreach
end proc

���� The Operational NASA Four Dimensional Data Assimilation System �	

-80

-60

-40

-20

0

20

40

60

80

-150 -100 -50 0 50 100 150

La
tit

ud
e

Longitude

Figure ���� Center of the minivolumes for the sample problem�

-80

-60

-40

-20

0

20

40

60

80

-150 -100 -50 0 50 100 150

La
tit

ud
e

Longitude

Figure ���� Typical distribution of sea level observations as used for the objective analysis�

�� �� Data Analysis in Atmospheric Science

-80

-60

-40

-20

0

20

40

60

80

-150 -100 -50 0 50 100 150

La
tit

ud
e

Longitude

Figure ����� Typical distribution of moisture observations as used for the objective analysis�

-80

-60

-40

-20

0

20

40

60

80

-150 -100 -50 0 50 100 150

La
tit

ud
e

Longitude

Figure ����� Typical distribution of HUV observations as used for the objective analysis�

���� The Operational NASA Four Dimensional Data Assimilation System �

����� Data Inputs

Besides the speci	cation of the OI algorithm� it is important to know more about the prop�

erties of the data sets on which the algorithm operates� For many scienti	c applications

a correlation exists between the density of the data and the time for the calculation for a

subregion of the domain� This is the reason for load imbalance in many applications�

The distribution of the observations for the SLP� MIX� and HUV analysis are shown in

Figures ��������� The data for the SLP analysis consists of observations taken from the surface

of the globe� including weather stations� ships� and others� The data for the MIX analysis

consists of all data useful for the determination of the moisture�vapor calculation� Presently�

there is not much moisture�vapor data available� but with improvements in technology and

additional measurements� more data is expected soon� The HUV analysis uses data from

satellites� balloons� airplanes and other sources� to obtain the 	elds in di
erent horizontal

layers� From the 	gures� it is clear that the observation data is quite di
erently distributed�

Naturally� one expects more observations on the continents at sea�level pressure� due to the

availability of many observation stations over land� Big regional gaps in the HUV analysis

data are apparent because there is simply no satellite covering this particular area� or a

satellite has not passed over the region in the
 hour interval� With the start of new satellites

at the turn of the century� this situation will be improved�

����	 Incremental Analysis Update

A unique feature of the analysis system� as implemented at NASA� is the use of an incremental

update algorithm� As in other assimilation systems� an analysis is performed every
 hours�

Using an incremental update� the analysis increments are not directly added to the 	rst guess

	eld� A model integration is restarted � hours prior to the analysis time� The integration is

performed over the next six hours using the analysis increment added as a constant forcing

term in the model equations� Then� the integration is extended for the next � hours to provide

a 	rst guess for the next analysis time� The incremental update improves the analysis� e�g��

in terms of accuracy and noise control�

A useful term to describe the time at which observation values are taken� are the so called

synoptic times� Surface and radiosond observations are taken regularly at synoptic times��
��

They are �� and �� GMT �Greenwich mean time� for radiosonds� and ��� ��� ���� ��� ��

�� �� Data Analysis in Atmospheric Science

GMT for surface observations� Satellite observations are recorded continuously� They are

asynoptic� The incremental update algorithm makes use of the fact that a more up to date

observation data set is available during the calculation�

Chapter �

Imposed Constraints for the

Parallelization of the Assimilation

System

Usually� imposed constraints on the problem and programhave to be ful	lled while paralleliz�

ing grand challenge applications� These constraints are often determined by the development

team in order to guarantee the maintenance of the code in the future� Thus� besides the

development of a theoretically sound algorithm� practical constraints have to be considered

during the program design phase� This is especially true for atmospheric science applications�

where only an actual running and maintainable code will be useful�

The following constraints were imposed by the DAO for a parallel data assimilation algorithm�

�� Structural Equivalence should be maintained� The parallelization should be done

without major code restructuring and changes in the algorithmic �ow�

�� Correctness of the program should be tested� This is done via exact numerical com�

parisons between the outputs generated by the sequential algorithms on a Cray super�

computer and the parallel target machine running the parallel code� This includes the

reproduction of the results on the same input data�

�� Portability of the parallel code� The code should be run on many machines to make

it available to a larger community� Furthermore� ANSI Fortran �� is the programming

��

�
 �� Imposed Constraints for the Parallelization of the Assimilation System

language for the parallel code�

�� Simplicity of the solution� The resulting algorithm should be easy to understand�

�� Target machine Constraints� The code should run on MIMD machines� If possible�

it should also include SIMD machines�

� Ergonomic Constraints

�a� Linear speedup should be achieved� While using more processors� a near linear

speedup should be obtained to make the algorithm scalable for machines with

larger numbers of processors�

�b� Minimization of Development Cost�Time� The code should be developed as

quickly as possible�

�c� Minimization of the maintenance Cost�Time� The code should have low

maintenance costs�

In general� the constraints of simplicity� portability� and correctness are advantages for many

projects� Achieving linear speedup can be an essential factor for the actual usability of the

code on larger parallel machines�

Nevertheless� the constraint of the structural equivalence between the sequential and the par�

allel code can hinder the development of better� but structurally di
erent� correct parallel

algorithms� In the case of the objective analysis� it was chosen because of the limited man�

power available to develop the code� The programming language Fortran is used for the

code development for three reasons� First� the development team at DAO is familiar with

Fortran� Second� the speed of Fortran is assumed to be superior to other languages in the

	eld of atmospheric science� e� g� C and C��� Third� ANSI Fortran�� is available on most

computers� thus enabling portability�

Because� the constraints were not carefully chosen� they were impossible to ful	ll� This was

mainly due to the design of the original sequential code� One major practical problem in the

parallelization was the internal structure and software quality of the existing code�

The constraint to use ANSI Fortran�� was violated by the DAO itself� because the sequential

code was not even written in ANSI Fortran��� It used vector constructs� dynamical allocated

arrays and compiler directives for Cray Fortran�� compilers� Instead� ANSI Fortran�� has

���� Software Engineering Problems ��

been accepted as the programming language of choice� making it possible to use the code

fragments which rely on vector constructs and dynamically declared arrays�

One of the biggest problems was to prove� that the result of sequential algorithm was de�

pendent on the order of the observations� This would make a byte by byte comparison of the

results� obtained from a parallel and the sequential algorithm� impossible� Chapter � explains

why the algorithms behave di
erently� Thus� the di
erence between the 	elds calculated with

di
erent algorithms� should be as small as possible�

��� Software Engineering Problems

Programsused in atmospheric science are often very complex� Usually� they are of substantial

size and have evolved over a number of years� Many domain specialists are responsible for

the program generation and code maintenance� These specialists normally do not apply

software engineering or software quality assurance practices� Thus� many codes are very

di�cult to handle and maintain�
��� The assimilation system code is no exception� As the

following analysis will show� the code is worse than other codes known from atmospheric

science� Consequently� future codes should be developed in a more strict and controlled

environment� This is necessary because the parallelization of the sequential codes will even

increase the complexity� as well as� the maintenance problems� Besides the validation of

the program correctness� a substantial amount of documentation should be provided to ease

future maintenance� Even though this appears as an additional cost in the beginning� it will

pay o
 in future�

Because of its long history and the large number of programmers involved in the algorithmic

development� the data assimilation system is very complex and can be considered as a legacy

code� Thus� the sequential code was quite complicated� and a parallelization would take a

considerable amount of time due to lack of documentation�

Another major problem� was the actual development stage of the sequential code� The 	rst

version of the code was buggy� While porting the sequential code with parallel extensions on

di
erent MIMD machines� many bugs in the original program could be revealed� thus� having

implications on the improvement of the the actual sequential production version of the code�

A big problem for the portability of the code was the data input and output� The data

handling was designed only for one speci	c computer platform�making use of internal features

�� �� Imposed Constraints for the Parallelization of the Assimilation System

of the 	lesystem� Driver routines� which allowed testing and program veri	cation were not

available� The original �modi	ed� version of the code worked on ASCII data� which was

completely insu�cient for the code development due to size of the data and the time spent in

the initialization�

As an immediate result from the research conducted� changes in the program development

and more strict software engineering methods are currently under implementation at DAO�

to prevent problems while parallelizing future codes� The DAO has developed new standards

for writing FORTRAN code and started implementing a software quality control process for

the validation of the program correctness������ as a result of this analysis�

��� Software Metric Analysis

The following software metric analysis is especially directed towards coding practices often

found in atmospheric science� A simple way of comparing codes is given�

Formally� computer software can be characterized by internal and external characteristics�����

The internal characteristics include the size and the control �ow complexity� The external

characteristics contain measurements for the maintenance of the code by other researchers�

It is extremely di�cult to evaluate the characteristics of a code and compare them with other

existing codes� Nevertheless� a general idea can be obtained for the control �ow complexity

while using measurements used by other researchers in the atmospheric science community�

Such measurements� speci	cally used for the FORTRAN atmospheric codes�
��� are displayed

in the Figures �������� The following software metrics are distinguished�

Data coupling l � is the number of variables used in a particular subroutine� l � f �

g� where l is the measurement for datacoupling� f is the number of variables in the

COMMON blocks �global variables� for the routine� and g is the number of arguments

to the function or subroutine�

Control coupling l� � is the count of the number of calls to other subroutines� added to the

number of references to external user de	ned functions�

Size S � is a measurement for the size of the subroutine� It contains augmented counts

of conditional statements� iterations loops� and jumps �RETURN� GO TOS�� S �

���� Software Metric Analysis ��

a � ��b � c � �d�� where a is the number of uncommented lines� b is the number of

conditions� c is the number of iteration loops� and d is the number of jumps�

Control �ow complexity F � evaluates the number of binary decisions in a subroutine��
��

Naturally� the metrics only indicate a problem when its value is high in contrast to a com�

parable code� The code in question might be more complex than necessary�
���

Figures ������� contain the values for the codes from ECMWF� CSRIO� and BEST �����

In addition� the values for the major subroutines of the analysis system codes are marked�

These routines are similar in function to routines found in the other codes������ The following

routines from the DAO code are displayed�

glassim is the main driver routine which includes many more subroutines than depicted in

Program ����

zuvcov is the generation procedure for the covariance matrices �Section ���� for the HUV

analysis

solvdr is the routine which solves the matrices and corresponds to the high level description

of the optimal interpolation algorithm �Program ��
��

zuvanl is the quality control for the HUV analysis �Program �����

It is clear that the DAO code is considerably more complex in size� control coupling� and

control �ow complexity� In the case of data coupling� it is comparable with the other programs�

Unfortunately� there is not su�cient data currently available to compare the external charac�

teristics of the codes� In comparison with the CAPS storm prediction code����� ���� the DAO

code rates far below� The CAPS code documentation is available for each of the routines�

The sequential parts of the program have also been redesigned in consideration of the imple�

mentation on MIMD and SIMD supercomputers����� The DAO did not encourage a complete

program redesign� due to lack of manpower� The lessons learned from the parallelization of

the DAO code� and its poor characteristics� motivated a change towards the complete new

development of an alternative to the current objective analysis code� The new code will pro�

duce better results in comparison to the OI� but it will be slower����� Table ��� summarizes

some properties of the optimal interpolation and quality control code� as used in the current

objective assimilation scheme� This analysis is typical for many scienti	c codes�

�� �� Imposed Constraints for the Parallelization of the Assimilation System

0

200

400

600

800

1000

1200

ECMWF CSIRO BEST DAO

S

zuvanl
solvdr

zuvcov

glassim

Figure ���� Comparison of the software metric size S of the di�erent programs

0

10

20

30

40

50

ECMWF CSIRO BEST DAO

l’

zuvanl

solvdr

glassim

zuvcov

Figure ���� Comparison of the software metric control coupling l of the di�erent programs
�number of calls and external references�

���� Software Metric Analysis �	

0
20
40
60
80

100
120
140
160
180
200

ECMWF CSIRO BEST DAO

F

solvdr
zuvanl

zuvcov

glasim

Figure ���� Comparison of the software metric data coupling l� of the di�erent programs
�common block variables 	 calling arguments�

0

10

20

30

40

50

60

70

ECMWF CSIRO BEST DAO

l

zuvanl

solvdrglassim

zuvcov

Figure ���� Comparison of the software metric control �ow F of the di�erent programs
�conditions
 loops
 and jumps�

�� �� Imposed Constraints for the Parallelization of the Assimilation System

Table ���� Code Analysis of the Optimal InterpolationAlgorithm as used in Four�Dimensional
Data Assimilation

Grand Challenge
�NASA�

Legacy code yes

Number of programmers very high

Development cost high

Number of Lines
����

�large�

Input�Output not portable

Code quality poor

Documentation poor

Programming paradigm sequential

Programming Language Fortran

Computational load high

Data volume high

wall�clock time
important very

Machine precision high

Parallelization vectorization� medium
potential MIMD � high

��� Software Engineering Choices

Some of the above established requirements can be overcome while using appropriate software

engineering tools� For the parallelization� the following tools were useful�

Fortran�� and HPF� For the computational core of the main program� Fortran�� is used�

In addition� it will be possible to transfer major parts of the Fortran�� program to

HPF once the compilers are more stable�

C�C��� C�C�� is used for some of the data redistribution tools� because data abstraction

and the development of software libraries are easier in an object oriented programming

language����� We believe that the incorporation of mathematical data structures in the

language �as suggested by the ANSI C�� committee� will enable easier combination

of Fortran and C��� No performance loss is expected for the parallel algorithm�

���� Software Engineering Choices �

This is due to the fact that the C�C�� routines are only used for intercommunication

procedures� Interfaces to Fortran are provided� Nevertheless� most of the libraries exist

in Fortran�� to ful	ll the requirement of a pure Fortran program�

LAPACK� Where possible the LAPACK and BLAS libraries are used because fast optim�

ized versions of the libraries exist for most machines� This boosts the performance of

the algorithm drastically�

Message Passing� For the intercommunication library� the standard Message Passing In�

terface �MPI� is used����� The routines used for message passing are chosen to be as

simple as possible� so that a replacement of the underlying message passing library is

easy� Therefore� a port to PVM��� ��� is easily possible while replacing the elementary

message passing calls� Due to the design and extensions of the message passing librar�

ies used� the use of heterogeneous computing environments is also possible� MPI will

provide an e�cient interface to supercomputers�

Portability� Due to the design strategy introduced here� a highly portable program can be

designed to run on the current and the next generation of supercomputers�

Chapter �

A Parallel Objective Analysis System

��� The Parallel Programming Models

The program analysis from Chapter � is an essential part of the de	nition of a parallel

program for the existing sequential data analysis system� The constraints and requirements

have a great in�uence in the de	nition and speci	cation of a 	nal parallel code�

Ultimately� it would be desirable to obtain a fast code running on as many parallel machines

as possible� Thus� it is useful to consider a parallel abstraction model� which is supported

on as many machines as possible�

The abstraction models for most of the existing parallel machines are either based on the

message passing model or the data parallel model���� ��� In a message passing program�

parallelism is expressed explicitly with the help of communicating processes� Each process

works independently and can exchange messages with other processes� In a data parallel

program� parallelism is expressed implicitly� The data is divided amongst the processors� A

programworking on the data is assigned to each processor� In contrast to the message passing

model� the data parallel model supports the view of a global array� where each array element

can be accessed by each processor� Using global arrays can make the parallel programming

task much easier�

The introduction of High Performance Fortran �HPF� allows one to simplify the program

development on architecturally di
erent machines� While SIMD machines support data par�

allelism� MIMD machines primarily support message passing paradigms� HPF provides the

opportunity to use standardized data parallel programming constructs on MIMD and SIMD

��

���� The Data Domains of the Analysis System ��

machines� Hence� a HPF program will run on many di
erent machines� An evaluation of the

performance and usability of existent HPF compilers� at the beginning of the parallelization

of the analysis system� showed that they would not be mature enough to pursue the project�

Thus� the development of a message passing parallel algorithm is justi	ed� An experimental

HPF implementation of the quality control algorithm is described in����� Today� HPF com�

pilers are more stable� They can be used for larger projects���� and are a viable alternative

to message passing programs for many problems�

One of the research goals conducted was to 	nd out if a program representation can be found

which supports the message passing� but also� the data parallel programming paradigm� This

is important to guarantee the portability of the algorithm on actual supercomputers� which

usually have only a limited life span� The 	nal parallel data analysis program can support

both paradigms� since it is developed with both programming models in mind�

In this Chapter� the domain and functional decompositions are introduced� Obtaining good

domain decompositions� as well as� good functional decompositions of the program� is the key

issue of specifying an e�cient parallel algorithm� Once the domains and the functions per�

forming the calculations on the domains are determined� a message passing parallel program

can be derived�

��� The Data Domains of the Analysis System

First� it is necessary to distinguish between the physical domain and the spatial domain� For

our purpose� the physical domain is represented by the earth and the atmosphere around

it� The spatial domain is represented by the locations on the earth� on which a numerical

calculation is performed� Data domains represent the input and output data used for a

calculation in the spatial domain�

Thus� for the OI algorithm four data domains are distinguished�

Model variable domain � The model variables de	ne the state of the atmosphere� In at�

mospheric science� the model variables are referred to as �elds� The domain is speci	ed

by a longitude�latitude grid�

Grid domain � The grid domain speci	es the locations on which an interpolation is per�

formed� For the data assimilation system� each gridpoint has a set of model variables

�
 �� A Parallel Objective Analysis System

which are stored in the model variable domain�

Observational data � The observational data is gathered before each analysis step is in�

voked� The domain is speci	ed by coordinates in the latitude longitude grid� as well

as� a height �pressure� coordinate�

Minivolume domain � In the case of the minivolume OI� the determination of the covari�

ance matrices are only performed at the location of the center of the minivolumes� In

the case of the grid point OI� the covariance matrix is determined for each gridpoint�

For the parallelization of a program� the identi	cation of data domains and their mapping

onto a parallel machine is necessary� It is helpful to know which properties are connected

with the data� distributed over the domain� Often� regular and irregular distributions of data

over the spatial domain are distinguished� In case the data is regularly distributed� it is

sometimes possible to 	nd straight forward parallel algorithms� which perform at times even

e�ciently�

Thus� the data domains of the analysis system are 	rst speci	ed and their properties in

di
erent coordinate systems are analyzed� This is motivated by the hope to 	nd a regular

representation� which leads to an e�cient parallel implementation�

��� Loadbalance and Databalance

To establish a simple way of describing and evaluating the di
erent domain decompositions�

the following simple abstraction model of a parallel computer is used� The model is based

on a set of P � fp�� ���� png processors� A set of data D � fd�� ���� dmg is distributed onto the

processors in an exclusive way� where m� n� The size of each data item can be di
erent�

The time of a calculation on each processor depend on�

�� the array index of the data in the data set �for the DAS� this is the geographical location��

�� the amount of data assigned to a processor�

�� the value of the data�

�� the data assigned to neighboring processors�

���� Coordinate Systems and Data Domains ��

In parallel computing� it is essential to obtain the results of the calculation on all processors

at approximately the same time� The calculation is load balanced� Loadbalance ensures

high e�ciency� In many applications� the domain decomposition is the key factor towards

obtaining loadbalance�

Many times loadbalance can be achieved while mapping an equal amount of data to each

processor and performing the calculations associated with the data� This is the case� when

the calculation does not depend on the value of the data� It can help to specify a coordinate

system in which the data is regularly distributed and domain decompositions are easy to 	nd�

Furthermore� it should be determined whether a coordinate system can be found� which uses

signi	cantly less space for a representation of the physical domain� in order to save memory�

Time might be saved while performing fewer calculations on the smaller grid domain� It has

to be assured that the accuracy of the representation of the physical domain does not su
er

while using a smaller domain�

��� Coordinate Systems and Data Domains

����� Coordinate Systems based on Model Variable and Grid Domain

In the DAS� the model variables are used in the optimal interpolation and the quality control

algorithm� Examples for di
erent mappings from the physical domain onto di
erent spatial

domains are displayed in Figure ���� In the case of the OI� the calculations are performed

on a grid� hence� the term grid point domain is used equivalently to the term spatial domain�

The properties of the underlying coordinate system in which the calculation is performed�

has an impact on the regularity of the distribution� To show this fact� four physical domain

representations are compared� a Cartesian latitude�longitude coordinate system� an irregu�

lar latitude�longitude coordinate system� a spherical coordinate system� and an icosahedral

coordinate system�

Cartesian Latitude�Longitude Coordinate System

Many climate models are de	ned in a Cartesian latitude�longitude coordinate system� A

regular mesh� in the form of a grid� is embedded onto the surface of the earth�

�� �� A Parallel Objective Analysis System

Physical Domain

Grid Point Domain

Cartesian Latitude-
Longitude Grid

Icosahedral
Grid

Irregular Spaced
Latitude-Longitude Grid

Figure ���� Mappings from the physical domain to the grid point domain

At NASA� a regular latitude�longitude�pressure coordinate system is used� where the pressure

corresponds to the height� Thus� it is especially valuable to 	nd a good decomposition for

this representation� Consequently� all model variables are de	ned on each location of the

grid� They are regularly distributed in relationship to the Cartesian grid� but irregularly

distributed in relationship to the physical domain� the earth� This leads to more gridpoints

at the poles than at the equator�

Irregular Latitude�Longitude Coordinate system

To ease the problem with the di
erent density of the spatial domain in relationship to the

physical domain� an irregular coordinate system can be used� It has fewer points at the poles�

An irregular coordinate system has been used for the de	nition of the minivolume based OI�

Internally� it is regularly distributed in each of a number of latitude stripes �Figure �����

Nevertheless� the overall distribution of the minivolumes is irregular for the spatial domain

and the physical domain�

���� Coordinate Systems and Data Domains ��

Spherical Coordinate system

Since the physical domain of the earth is a sphere� it can be advantageous to keep certain

calculations in polar coordinates� An example for this� is the calculation of the di
erence

between two locations� The great circle formula in the Cartesian space introduces a number

of trigonometric operations� This is not necessary in polar coordinates where the di
erence

between two points can be derived while using multiplications and additions�

Icosahedral Coordinate System

A way to improve the spatial and physical representation is to map the atmospheric 	elds

and the minivolumes into an icosahedral grid�
�� �� ����� Here� the distance between grid

points is almost preserved����� Minivolumes and model variables are distributed regularly

over the physical domain� In the traditional sense �Fortran��D�HPF�� this distribution has

to be regarded as irregular because the domain is represented by the nearest neighbor graph�

Graph partitioning algorithms can be employed to 	nd appropriate mappings for the grid

points to the processors����� ���� ���� ���� ��
��

The icosahedral grid has the advantage of signi	cantly reducing the storage space for the

atmospheric 	elds� For a ����� grid� ������ points are maintained resulting in ������ grid

points�

An icosahedral grid is constructed from an icosahedron ��� faces and �� vertices�� A grid is

obtained by dividing the edges of the icosahedral into equal lengths and create new smaller

equilateral triangles in the plane� and then project on the sphere���
��� Di
erent schemes

are possible� which result in the same number of points on the sphere� There are � � ��n�

nodes and ��n� faces in the kth re	nement of the triangulation� where n � �k� Table ���

shows the properties of the re	nements� where h is the maximum arclength of any edge in

the triangulation� The arclength representing � degrees is approximately ����� and for ���

degrees it is approximately ������ They are close to the the icosahedral grid with ������

points�

Hence� while using the icosahedral grid representation� a �� reduction in the number of

model variables can be achieved� This does not only reduce the volume for storing the model

variables� but does also reduce the number of computations necessary�

�� �� A Parallel Objective Analysis System

Table ���� Dyadic icosahedral spherical triangulations

k n Nodes Faces h

� � �� �� �����
� � �� �� ��
��
� � �
� ��� ����

� �
�� ����� ���
�
� �
 ���
� ����� �����
� �� ������ ������ �����

� ����
� ������ �����

For a Cartesian grid with �� variables� ����� MWords are used for storing one variable of

a 	eld� During the calculation� the data assimilation is carried out over the past ten years�

Hence� an atmospheric 	eld can be stored in�

��� �
�days� �
�

day
� �����MWords � ����GWords

Using the icosahedral grid� only ���� GWords are necessary for storage� Currently� new

algorithms are under development using icosahedral grids as a basis representation for climate

models and assimilation systems�����

����� Coordinate Systems based on the Minivolume Distribution

Previously� it was pointed out that the minivolumes are irregularly distributed over the

sphere� Using a coordinate system based on the location of the minivolumes can simplify

the domain decomposition of the calculations associated with a minivolume� Reducing the

spatial domain to minivolume based coordinate system� reduces the number of calculations

necessary� Nevertheless� the forward integration of the model will lead to inaccuracies�
�� ����

����� Coordinate Systems based on the Observational Domain Distribu

tion

The observational domain is signi	cantly di
erent from the model variables and the grid

domain� As seen in Figures ��������� the observational data is clearly irregularly distributed

��	� Functional Decomposition �	

over the latitude�longitude grid� For the quality control algorithm� a regular decompositions

can be found while mapping an approximately equal number of observations on each pro�

cessor� It would be useful� if the observations close to each other are mapped onto the same

processor� since a search in the vicinity of a point is conducted� Thus� it reduces the amount

of data stored on each processor� The same applies to the OI algorithm� Di
erent coordinate

systems can be helpful for the determination of the distance between two coordinates�

��� Functional Decomposition

Two levels of functional decomposition have to be considered� First� the sequential program

is divided into the three modules SLP� MIX and HUV analysis� Each module consists of a

quality control step and the application of an optimal interpolation algorithm�

Second� the modules for quality control and optimal interpolation iterate over di
erent do�

mains� In correspondence with the data domain analysis� the loops are iterated over the

observations �quality control� and the mini volumes �optimal interpolation�� Each location

in the domain is associated with a calculation�

����� Loop parallelization

As mentioned before� the data domains on which the main loops of the quality control and the

matrix solve work are di
erent� While the iteration for the quality control is pursued over

the irregularly distributed observation data� the matrix solve is performed over the model

variables in small minivolumes�

The data dependencies in the main loops for quality control and optimal interpolation� enable

one to perform each iteration independently� Though� this kind of calculation is often referred

to as embarrassingly parallel� it should be noted that due to the irregularities of the domain�

the decomposition is not embarrassingly simple�

Thus� the original abstract formulation of the SLP� MIX and HUV algorithms �Programs ����

���� can be quite easily modi	ed to re�ect a functional decomposition� The new formulation

adds a constraint of processor locality for

	 each observation� in the case of the quality control�

	 each minivolume� in the case of the matrix solve�

�� �� A Parallel Objective Analysis System

to the calculations attached within the loops �Programs ���������

To avoid redundant calculations� each calculation at the location of a minivolume�observation

is assigned to only one processor� The resulting mapping of minivolumes�observations to

processors is referred to as data domain decomposition�

����� Computational Irregularities

On each location� a calculation is performed� The time spent for the calculation depends on

multiple factors� Its duration is di�cult to predict� Thus� even if a regular representation of

the domain can be found� load imbalance is introduced due to the di
erent time needed to

perform the calculation on each location�

The result of a calculation and the time to obtain the result depend on�

�� the location in the atmosphere�

�� the number the observations in the vicinity� and

�� the values of the observations�

Due to the extensive number of input parameters �in table form�� an exact �quantitative�

derivation of a performance prediction function is impractical� Nevertheless� a qualitative

performance analysis� as shown in Section ���� can be obtained�

��� Data Domain Decompositions

Many di
erent data domain decompositions are possible� Only the most useful decomposi�

tion� in regards to data and load balance� are considered�

The di
erent domain decompositions� used in actual implementations of the parallel optimal

interpolation and quality control algorithm� are classi	ed in Figure ���� Distinguished are

regular versus irregular decompositions� and dynamic versus static decompositions� Static

decompositions are known before runtime� while dynamic decompositions are generated at

runtime�

In spite of the fact that the locations of the minivolumes are not known at compile time�

because they are stored in an external 	le� Static and dynamic decompositions can be dis�

���� Data Domain Decompositions �

Program ��� The parallel gross check algorithm�

� proc Parallel Gross Check
� Th � Tolerance
� foreach observation � processor do

� if the variable is not in allowed range
� then mark observation as invalid
� end if
� if observation is �still� valid

� then � � variableO � variableF

	 if �� 	 Th���
O�� � ��F ���

�
 then fail� mark observation as suspect
�� end if
�� end if

�� end foreach

�� Update the validity on all processors

�� end proc

Program ��� The parallel buddy check algorithm�

� proc Buddy Check
� foreach valid observation � processor do

� Search for valid observations in a particular
� radius around the data point�
� analyzed value � Perform univariate successive correction
� method at the location of the observation with the help of S
� � � observation� analyzed value
� if � is in tolerance level� � � kThk
	 then mark observation as valid
�
 end if
�� end foreach

�� Update the reacceptance on each processor

�� end proc

�� �� A Parallel Objective Analysis System

sp
at

ia
l d

om
ai

n
de

co
m

po
si

tio
n

ba
se

d
on

 th
e

di
st

ri
bu

tio
n

of
 th

e

bl
oc

k
cy

cl
ic

st
ri

pe
d

. . .

m
od

el
 v

ar
ia

bl
es

st
at

ic
dy

na
m

ic

ir
re

gu
la

r
re

gu
la

r

ig
lo

o

ir
re

gu
la

r
re

gu
la

r

fl
oa

tin
g

bl
oc

k
fl

oa
tin

g
ig

lo
o

cy
cl

ic
bl

oc
k

st
ri

pe
d

m
in

iv
ol

um
es

st
at

ic
dy

na
m

ic

re
gu

la
r

ir
re

gu
la

r

ig
lo

o

re
gu

la
r

ir
re

gu
la

r

fl
oa

tin
g

bl
oc

k
fl

oa
tin

g
ig

lo
o,

cy
cl

ic
,

bl
oc

k-
cy

cl
ic. . .

st
ri

pe
dob

se
rv

at
io

ns

st
at

ic
dy

na
m

ic

ir
re

gu
la

r
re

gu
la

r

bi
se

ct
io

n
(c

oo
rd

in
at

es
)

da
ta

ba
la

nc
e

fo
r

m
od

el
 v

ar
ia

bl
es

m
in

iv
ol

um
es

ob
se

rv
at

io
ns

+ - -

+ - -

+ + -

- + -

+
- - -

- - -

+ - -

+ - -

su
bc

la
ss

es
of

 1
,2

1
2

- + -

- + -

+
- - -

- +
- -

- - +

- - +

. . .

3
su

bc
la

ss
of

 3bl
oc

k-
cy

cl
ic

- + -

re
gu

la
r
. . .

ir
re

gu
la

r

cy
cl

ic
(a

rr
ay

)

Figure ���� Classi�cation of the spatial coordinate mapping for the optimal interpolation

���� Data Domain Decompositions ��

Program ��� The parallel optimal interpolation algorithm�

� proc Parallel Optimal Interpolation
� foreach minivolume m � processor

� Collect the data in the vicinity of this minivolume
� foreach Vertical level
� Calculate covariance matrix Am

� foreach grid point � current minivolume
� Solve the linear equation Amx � bg
� Store the result
	 end foreach

�
 end foreach
�� end foreach

�� Forward the stored result to the processor writing the data

�� end proc

tinguished for the minivolume based decompositions� This is because the minivolumes are

static during all calculations�

First� decompositions based on the distribution of the model variables are explained� Model

variables are speci	ed in the Cartesian Coordinate system� The straight forward approach is

to divide the regular latitude�longitude coordinate system in stripes or blocks� Each processor

is assigned a block and performs the calculation on its block of data�

Figure ��� shows sample block decompositions of the model variables� The sphere �a� divides

the earth into stripes of equal latitude width� The spheres �b� and �c� introduce longitude

bands� in addition to the latitude bands� Because the block decomposition �c� does not pre�

serve equal areas on the latitude�longitude grid� an example is given where a better physical

decomposition is achieved� This decomposition is shown in sphere�d�� and is referred to

by atmospheric scientists as igloo decomposition� In the igloo decomposition� less latitude�

longitude blocks exist towards the pole than� e�g�� at the equator� The model variables are

irregularly distributed with this decomposition�

Similar to the model variables� the minivolumes can be decomposed� In the extreme� where

a minivolume is de	ned on each of the gridpoints� it is equivalent to the model variable

decomposition�

Decompositions based on the geographical distribution of the observations are all dynamical�

	
 �� A Parallel Objective Analysis System

a) b) c) d)

Figure ���� Possible data distributions� �a� striped distribution
 �b� 	�c� blocked distribution

�d� irregular �igloo
 distribution

Dynamic decomposition strategies are explained in more detail later�

A static cyclic or block decomposition based on the position of the observation in memory is

possible� instead of using the geographical location of the observations�

To evaluate the decomposition strategies� Figure ��� shows the quality of the databalance

obtained by the di
erent decompositions for the di
erent domains� A ��� indicates good

databalance� ���� bad databalance� and ���� not as bad databalance�

Of special interest are the decompositions emphasized by a frame� Even though experiments

with most other decompositions have been performed� their results are omitted� because

	 they achieve poor load balance�

	 or are more complex than other equally well load balanced schemes�

����� A Generalized Speci�cation for Decompositions

To allow experimentation with several domain decompositions� the original program has been

extended in such a way� that a decomposition strategy can be used as input parameter to the

program� The actual program does contain constraints of the form � processor� as used in

the high level program description� This is done with the help of a set of functions speci	ed

���� Data Domain Decompositions 	�

for each decomposition strategy d� The 	rst function is a location function
d� It maps points

from the coordinate space into the processor space�

d�x� y�
� p � Processors

where p is a processor in the set of all processors� and �x� y� is a location in the latitude�

longitude coordinate system� In case three dimensional decompositions are considered� an

additional height�pressure� parameter can be speci	ed�

d�x� y� h�
� p � Processors

Since two di
erent domains are used for the quality control and the optimal interpolation�

two di
erent location functions are possible� This can be distinguished by an additional

index to the function� indicating the domain on which the function is de	ned�

Od �x� y� h�
� p � Processors and

Gd �x� y� h�
� p � Processors �

where O indicates the observation domain� and G� the grid or minivolume domain�

The second function returns the set of all points in a processor� determined by the domain

decomposition� To distinguish between the observation and the minivolume decomposition�

the function �Od is used for the observations� and the function �
G
d is used for the minivolumes�

respectively�

�Od �p�
� set of observations assigned to processor p�

�Gd �p�
� set of grid points assigned to processor p�

Since a calculation can depend on observations located in other processors� the de	nition of

an overlap is useful� The overlap �Od �p� is the set of all observations which are needed for

the calculation� but not assigned to the processor p� In the case of the NASA assimilation

system� all observations which are �
��km of any observation in �Od �p�� but are not included

	� �� A Parallel Objective Analysis System

in �Od �p� itself� are included in the overlap� It should be noted that an observation can be

in overlaps of di
erent processors� For obtaining the 	rst guess values� an overlap region on

the grid domain exists� The overlap is de	ned by �Gd �p��

Besides the speci	cation of these functions� a set of redistribution routines are provided�

which automatically extract and redistribute the required observations onto the di
erent

processors� For future implementations� more sophisticated redistribution libraries for this

task can be found in���� �
��

����� Overlap region

Now� that a better understanding of the distribution is provided� a closer look at one of

the processors will explain the relationship between the regions assigned to di
erent pro�

cessors �Figure ����� Each processor is responsible for all calculations assigned to the mini�

volume�observation locations� which are embedded in its assigned geographical region� This

region is referred to as the interior region� To do so� each processor must have access to

�� the model variables embedded in the region�

�� the model variables in the overlap�

�� all observational data in the region� but also to the observations in an overlap region

with other processors�

The size of the overlap region is determined by the region of in�uence of the observation

points� The physical model� as described in Chapter �� uses only observations in a 	nite

vicinity of an observation� Global knowledge about all points is not necessary� The radius

of in�uence is chosen to be be �
�� km due to its good tradeo
 between the quality of the

solution and the limited number of points participating in the calculation� The observations

in the overlap region are all observations which are in �
��km distance from the observation

contained in the region� but are not assigned to the interior region�

Two cases occur for a minivolume�observation�

�� All necessary observations are embedded in the interior region assigned to the processor�

�� Some observations are located in neighboring processors� but are in �
��km of a point

in the interior region�

���� Data Domain Decompositions 	�

The 	rst case does not involve a change in the original sequential algorithm� For the second

case� the observations contained in the overlap regions have to be gathered before the cal�

culation is started� Gathering all observations� of all overlap regions between the di
erent

processors� before the actual calculation is performed� allows one to perform the calculations

of the main loops independent from each other� No data exchange is necessary� since all data

dependencies are resolved���
��

Observation

Region of Influence
Interior Region

Overlap Region

Figure ���� The de�nition of an overlap region�

To achieve high e�ciency� the number of elements in the overlap region should not be too

large in order to keep the ratio between the time spent for the calculation and the data

exchange as large as possible�

Many algorithms in literature �e�g� 	nite element methods� have regular sized overlap regions�

This is useful for the derivation of fast algorithms to gather all data in an overlap region� In

the case of the Parallel Optimal Interpolation �POI�� a simple Cartesian based range search

algorithm��
� can not be applied to determine the observations contained in the irregular

overlap regions� Figure ��� gives an example for the overlap region of a processor containing

the observation data over Europe� For low latitudes� at the equator� the search region is a

	� �� A Parallel Objective Analysis System

perfect circle� while it is distorted for high latitudes� On the poles� the search region has

a rectangular form� in regards to the grid domain� It contains all observations up to the

latitude� which is �
��km away from the pole�

high latitude search region

low latitude serach region

overlap region

Figure ���� Irregularities in the overlap region�

The number of observations contained in the overlap region is only known at runtime� The

search for data elements in the overlap region can be determined via a two step process�

Assume that the observations are sorted in longitudinal direction� Assume that the coordin�

ates are available� both in Cartesian form� and in the spherical coordinate system� The

observations in the overlap are obtained by the following two stage process�

�� Discard all observations which are �
��km away in longitudinal direction� This can be

done with a simple comparison�

�� For the rest of the elements� test if they are �
��km away from a point in the interior

region�

The 	rst step is performed to avoid the second� more expensive� calculation�

While regular overlap regions are well understood in computer science ���� ��
�� irregular

overlap regions are cause for active research�

��

����� Memory Considerations

The di
erent data distributions allow one �theoretically� to reduce the amount of data to be

stored in the di
erent processors� The original serial algorithm assumes that all variables in

���� Data Domain Decompositions 		

the di
erent domains are accessible�

For the parallel OI�POI� algorithms� di
erent classes are distinguished according to the

storage of the model variable and the observation data� Then� the following storage pattern

classes exist������

POI�global grid� global observation	� All model variables and observations

are stored in each processor�

POI�global grid� local observation	� All model variables are stored in all the

processors but each processor stores only the observational data which are

necessary for the calculation�

POI�local grid� local observation	� All processors store only the model vari�

ables and observations which are necessary for the calculation�

Figure ��
� In each processor
 the entire model variables and only the necessary observations
are stored�

Figure ���� In each processor
 only the necessary model variables and observations are stored�

Storage Pattern �Global Grid� Global Observation�

A straightforward way for parallelization is to store all the data available in each processor

�Figure ��
�� This scheme is well known as data replication� Each processor can work inde�

	� �� A Parallel Objective Analysis System

pendently on its assigned sub domain� once data dependencies are resolved� Load balancing

can be implemented without the need of restoring data�

The large amount of memory used in each processor and the high IO bandwidth for initial�

ization are among the disadvantages� A lot of data will not be used during the calculation�

causing unnecessary overhead�

Fortunately� there is enough memory available in current supercomputers to support this

strategy for the desired problem instances� In addition� it is expected that the production

version for the next few years will not have more then ������� observations� Preprocessing

in a separate program will ensure this �����

Storage Pattern �Global Grid� Local Observation�

To reduce the memory usage in each processor� only observations necessary for the calculation

are stored� Due to the smaller number of observations stored in a processor� the algorithm

used to determine observations in the vicinity of a point is signi	cantly faster�

The decision whether the observation is necessary� is performed with a special detection

algorithm� In certain domain decompositions� we can speed up the detection algorithm� while

presorting the data� with the help of a parallel recursive bisectioning algorithm����� ��
�� This

will help to improve the load balance between the di
erent processors� Program ��� shows

how to incorporate the sorting algorithm�

Program ��� The presort algorithm�

� proc Read observations
� Each processor reads a number of observations in parallel
� Presort the observations in parallel
� Redistribute the observations depended
� on the domain decomposition
� end proc

Storage Pattern �Local Grid� Local Observation�

The best algorithm� in terms of the memory requirements� is to store only the grid data

and observations necessary for the calculation in each processor �Figure ����� Because of the

��
� Load Imbalance 	

irregularities of the domains� it is quite a di�cult task to 	nd a good domain decomposition�

Unfortunately� the design of the existing program did not allow us to explore this strategy� A

complete redesign of the original sequential code is necessary to implement this strategy� This

was the original project approach� The development was stopped on initiative of NASA due

to the realization� that it was impossible task by only one programmer to do the sequential

and parallel program development� Nevertheless� it is worthwhile to consider this method in

future research because the model �GCM� can be implemented in this fashion� Therefore� a

sophisticated dynamical load balancing strategy is a good alternative�

��
 Load Imbalance

More information about the actual runtime behavior of the OI algorithm is provided in

Figure ���� Here� for each minivolume column the actual runtime of the loop is depicted�

The darker the area around the minivolume� the more time was needed to complete the

calculation�

The average CPU time for a calculation is �����s� while the standard deviation is ���
�s�

The minimum and maximum times are ����s and ����s� The times at the poles are ���� and

���� seconds� This introduces quite a big load imbalance� even if the poles are considered

separately� In case each minivolume�column would be calculated on a separate processor�

the machine can only be utilized with approximately

 e�ciency� Hence� it is desirable to

map an appropriate number of minivolume columns on a processor to increase the e�ciency�

In case the pole calculations are included� the maximal e�ciency possible is approximately

�� �

A better load balance can be achieved by using either irregular static decompositions or

dynamic load imbalance strategies�

The di
erences in the load distribution of the quality control depends on the number of

observations in the vicinity of the actual calculated observation�

����� Dynamic Load Balancing

In this part� we describe a dynamic load balancing strategy for the OI algorithm� Let� a

task consist of the generation of the covariance matrices for a column of minivolumes and

all matrix solves associated with this minivolume column� The straight forward approach is

	� �� A Parallel Objective Analysis System

-90

-60

-30

0

30

60

90

-180 -135 -90 -45 0 45 90 135 180
Longitude

La
tit

ud
e

Figure ���� Load imbalance caused by the calculations performed at the di�erent pro�les�

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000
Matrix solve for the minivolumes

C
P

U
 T

im
e

Figure ���� Timings for the calculation of the statements for the set of minivolume at a
particular location on the globe� The times are sorted by their value�

��
� Load Imbalance 	�

to design a dynamical load balance algorithm with central control �Program ����� A host

monitors the list of tasks� The calculations are performed in a set of slave processors� Once

a slave has 	nished its work� it sends the result to the host� Then� the host takes the next

task to be calculated from the task list and submits the work to the slave without work� This

is done� as long as� all tasks have been completed�

If the duration for calculating a task is small� in comparison to the time needed for the

submission of the task� then the previous algorithm will not perform e�ciently� Some of the

processors can not be utilized because the host can not serve the requests in time� To avoid

this situation� the tasks consist of columns of minivolumes and not a single minivolume�

A more general scheme can be derived by submitting a number of tasks instead of only a

single task� This avoids the expensive start�up time� existent in most MIMD machines� while

sending large messages instead of multiple smaller ones�

Another improvement can be made by using multiple hosts or a decentralized control� Pro�

gram ��
 shows an algorithm where each node includes the function of a host� Thus� the

control is distributed over the slaves� The actual host processor is only needed to gather the

results at the end of the calculation�

The domain is split into many small� but su�ciently large blocks� Once a processor is 	nished

with the calculation of its blocks� it looks for a processor which still has tasks to do� The

requesting processor interrupts the other processor and the task will be submitted� so that a

better utilization of the processors is achieved�

In practical use� �oating blocks build the tasks as depicted in Figure ����� Here� six processors

are used to solve a problem which is decomposed in �� blocks� The numbers in each block

specify at which time step a task is started� When a task is 	nished� a new task is started

at the current time� In the example� the processors � and � have 	nished their work at the

beginning of time step �� The processors � and � have more work than they can handle in

time step �� thus� the tasks are redirected to the processors � and ��

To make this algorithm e�cient� the cost to migrate a task to another processor should be

small� This is the case when data replication is used and the message consists solely of a

number assigned to each subregion� If more than one task is left in the region� the work is

equally split in half�

Similar strategies based on igloo or other decompositions can be derived� Many possible

algorithms and strategies for dynamical task scheduling can be found in literature��� ����

�
 �� A Parallel Objective Analysis System

Program ��	 The program for a global controlled dynamical load balance algorithm�

� proc Host

� Start up all slaves
� Decompose the domain in tasks t�� ���� tn
� Assign to each processor a task
� while Still tasks there do
� t � Next task from the task list
� p�Wait for a jobless slave
� r � Receive Result from p

	 Send the task t to p
�
 end
�� Terminate Nodes
�� Write result
�� end proc

��

�� proc Slave
�� while �terminate do
�� t � Receive Task from Host
�� r � Calculate task t
�	 Send to the host that the slave is jobless
�
 Send the result r to the host
�� end
�� end proc

��
� Load Imbalance ��

Program ��� The program for the �oating task load balance algorithm�

� proc Host

� Start up all slaves
� Decompose the domain in tasks t�� ���� tn
� Assign to each processor a number of tasks ti�p�� ���� tj�p�
� foreach p � Processors do
� Receive results from p

� end
� Terminate Nodes
	 Write result
�
 end proc

�� proc Slave
�� thread thread�
�� while �terminate do
�� foreach t � Local tasks
�� Remove t from the task queue
�� r� Calculate task t
�	 store Result r
�
 end

�� foreach �p � Neighboring Processors
 work received� do
�� Send request for work to neighboring slave p
�� �ta� ���� tb�� Receive Local tasks
�� work received � �ta� ���� tb� �� null

�� Include ta� ���� tb in the local task list
�� end
�� if there is no more work from the neighbors
�� then terminate� true end if
�	 end

�
 Send the results to the host
�� end thread

�� thread thread�
�� while �terminate do
�� if �another slave q requests work�
�� then if �still tasks there�
�� then send a number of tasks to the slave requesting work
�� else send null to q end if
�	 end if

�
 end
�� end thread

�� end proc

�� �� A Parallel Objective Analysis System

1 1 1

1 1 1

2 2

2 2

3

3 3

3 3

4 45 (5)

(5)

5

4 3 5

Processor 1 Processor 2 Processor 3

Processor 4 Processor 5 Processor 6

Figure ����� Dynamical loadbalance strategy with the help of �oating tasks�

����� Geographical Static Decompositions

For many applications the load imbalance can be reduced with the help of cleverly chosen

irregular static decompositions� While analyzing the load distribution of Figure ���� one

immediately realizes that a correlation exists between the number of observations� the outline

of the continents and the time to pursue the calculation on a minivolume column� One could

implement a strategy which 	nds a balance between�

	 the less time consuming calculations over the oceans�

	 the less time consuming calculations where no data points are available�

	 and the more time consuming calculations over the data rich continents�

The problem with a static geographical decomposition is that the observation data �and the

calculation time for each gridpoint� change hourly� daily and seasonally due to di
erent ob�

servation distributions and values� Static decompositions based on geographical information

can only be an approximation to a good decomposition�

��
� Load Imbalance ��

����� Data Balanced Decompositions

Since the correlation between data and load changes for each analysis� a good static load

balanced decomposition can only be estimated� Thus� the term data balanced decomposition

is more appropriate for classi	cation than using the term load balanced decomposition� In

other words� the data balance does not guarantee load balance�

Even though data balanced decompositions are more di�cult to obtain for the model variables

and model grid of the OI� they are easy to achieve for the observation domain of the quality

control� In the quality control� there exists a strong correlation between the number of obser�

vations and the execution time in the processor� Thus� instead of choosing a geographically

striped or block decomposition� one can chose a data balanced decomposition�

����� Cyclic Decomposition

Using a scattered decomposition can resolve the problem of load imbalance in many cases�

A special case is the cyclic decomposition� As the name indicates� all necessary calculations

are distributed in a cyclic fashion over the processors� in order to avoid geographical regu�

larities and irregularities of the domain� This is done under the assumption that the cyclic

decomposition spends� on average� the same amount of time on its computational tasks� thus

little or no load imbalance will occur�

This strategy can be employed� equally well� for the quality control and the OI� The only

exceptions are the calculations over the poles� which take longer time for the matrix to be

solved�

Thus� a two stage decomposition for a parallel OI is chosen� First� the domain is split into

three blocks� Two of the areas consist of the poles� while the rest of the physical domain

is placed in its own area� Each area is distributed in a cyclic fashion over the processors�

While the domain over the poles are cyclicly distributed for each vertical level� the rest of

the area is distributed in cyclic fashion for each minivolume column� Figure ���� depicts

this distribution� The distribution is referred to as block�cyclic distribution� Thus� the 	nal

decomposition is built upon�

�� an irregular block decomposition� and

�� a cyclic decomposition of each block� in either horizontal or vertical direction�

�� �� A Parallel Objective Analysis System

Communication between the blocks is unnecessary because the problem is transferred to an

embarrassingly parallel program with the help of data replication�

Furthermore� this decomposition is the basis for providing a load balanced HPF program�

As mentioned before� the disadvantage of this algorithm is the high memory overhead due to

data replication� Data replication is necessary to achieve high e�ciency� while reducing the

number of messages exchanged� Fortunately� the sizes of the problem instances considered

today� 	t well in the memory of a single node on state of the art supercomputers� and also

on heterogeneous workstation clusters�

irregular block
decomposition

hoizontal cyclic
decomposition

vertical cyclic
decomposition

vertical cyclic
decomposition

block-cyclic
decomposition

cyclic
decomposition

Figure ����� Block�cyclic distribution

����� Random Scattered Decomposition

For the cyclic decomposition� the number of processors has to be chosen carefully� The

number of points in the horizontal and the vertical direction on the grid should not be a

���� Evaluation of the Data Domain Decomposition Schemes �	

multiple of the number of processors� In this case� the algorithm will degrade to a simple

striped decomposition�

While using a random scattered decomposition� this problem is avoided� too�

In a random scattered decomposition� each location is assigned randomly to a processor�

This can be done by a random permutation on an arbitrary decomposition� which partitions

the domain in approximately equal parts�

��� Evaluation of the Data Domain Decomposition Schemes

A good decomposition of the domains is essential for the de	nition of an e�cient parallel

algorithm� Di
erent data decompositions for the quality control and the OI algorithm have

to be considered� Dynamic load balance enables one to provide an algorithm suited for

both� A static cyclic decomposition� with special treatment at the poles� provides a scalable

algorithm� The cyclic decomposition has the advantage that it provides a way to formulate

the algorithm in both�

�� message passing and

�� data parallel �HPF�

programming paradigms� Using both paradigms provides maximal portability on many ma�

chines� The disadvantage of high memory consumption is eased under the realistic assumption

that enough memory is available on a processing node�

��� Future and Related Research

����� Modifying the Functional Decomposition

Because the SLP and MIX data assimilation algorithms do not scale well with very high

numbers of processors� it would be desirable to include as much functional parallelism in the

code as possible� The original assimilation system is performed in three steps� as shown in

Figure ���� �a��

What would happen if the three steps� e�g� SLP�Analysis� MIX�Analysis� and HUV�Analysis�

are executed in parallel and not in sequential order�

�� �� A Parallel Objective Analysis System

The answer is obvious� It would enable a much better utilization of a parallel machine with

an even higher number of processors� One argument that supports the existence of such an

algorithm� is that in nature the physical processes happen in parallel and not in sequential

order� The PSAS algorithm���� does not distinguish between the in three di
erent modules

anymore�

Initialization

SLP Analysis MIX Analysis HUV Analysis

Postprocessing

Initialization

SLP Analysis

MIX Analysis

HUV Analysis

Postprocessing

Initialization

SLP Analysis MIX Analysis HUV Analysis

Postprocessing

Combine the
 Results

Initialization

SLP Analysis

MIX Analysis

HUV Analysis

Postprocessing

(a)

(b)

Figure ����� High level �owchart of the optimal interpolation algorithm� �a� original al�
gorithm �b� suggested change for a parallel algorithm�

����� Loop Restructuring

Taking into account that the data dependency between observations is only ���mb below and

under each horizontal layer� it is clear that a vertical decomposition is a natural extension of

the horizontal decomposition� It has the advantage of being much more 	ne grained than the

parallelization over a set of minivolumes� in the same pro	le� The extension to the parallel

program is depicted in Program ����

Another important consequence of the use of parallel computers is the increased computa�

tional power available� Thus� it is possible to eliminate the minivolume concept and perform

the optimal interpolation on each grid point with increased accuracy�

���� Future and Related Research �

Program ��
 The parallel OI algorithm looping over minivolumes and vertical levels�

� proc Parallel Optimal Interpolation
� foreach Vertical level � processor do

� foreach minivolume m � processor do

� Collect the data in the vicinity of this minivolume
� Calculate covariance matrix Am

� foreach gridpoint g � minivolume m do

� Solve the linear equation Amx � bg
� Store the result
	 end foreach

�
 end foreach
�� end foreach

�� Forward the stored result to the processor writing the data

�� end proc

����� Dataparallel Assimilation Systems

HPF

The algorithm for MIMD machines can be converted into an HPF algorithm� since the

parallelization is done over the loops� The necessary data exchange is performed before and

after the loops are executed�

In case the model variables are stored in all processors� the only addition to the program

would be to distribute the minivolumes and the model variables in an appropriate way�

If a cyclic decomposition is used� all observations should be stored on the processors� With the

use of the block decomposition� the observations can also be distributed in a block fashioned

way�

Nevertheless� one would have to obtain the dimensions of the region covered by the decom�

position for the model variables or minivolumes� in order to determine all observations in the

overlap� These observations should be stored in a separate list� The interior of the algorithm

has to be modi	ed for the search procedure which obtains all observations in a vicinity of a

location in the atmosphere� This irregularity is not supported while using the current HPF

standard� Nevertheless� INDEPENDENT loops provide enough semantical and syntactical

features� to formulate the algorithm in HPF�

�� �� A Parallel Objective Analysis System

The amount of work for rewriting the program in this way� requires far less work than

rewriting the the program for a parallel MIMD algorithm�

While using the cyclic decomposition� a representation of the algorithm is found which can

be implemented on SIMD� as well as� MIMD machines� The internal representation of an

HPF program would be analog to its message passing version�

Unfortunately� at the time of writing� the compilers were not stable enough to consider this

solution����� Stable compilers will be available soon� Extensions for irregularly distributed

domains will be especially useful� to describe more complex domain decompositions� Even

the implementation of an icosahedral distribution would be possible�

An experimental implementation of the quality control algorithm can be found in �����

Vectorized Optimal Interpolation Algorithm

The parallel algorithm for vector supercomputers�����
�� is analog to the parallel algorithms

introduced for the MIMD architectures� The vectorization takes place on the loops over the

minivolumes and observations� respectively�

Under the assumption that the observations are randomly distributed in memory� the vec�

torized program relates to the cyclic decomposition for the MIMD algorithm� In case the

minivolume list is reordered randomly in memory� the cyclic decomposition corresponds to

the vectorized quality control�

The current vectorized algorithm does not assume that the observational data� nor the mini�

volumes� are in a particular order� If the observation data is sorted by latitudes� the load

imbalance is in�uenced on newer models of vector processors� Newer vector supercomputers

are built using a number of processors� Each processor is responsible to calculate part of

the vector� In the case of independent loops� the vector can be mapped in chunks onto

each processor� The calculation can be performed analog to the MIMD striped bisection

decomposition for the quality control� and the striped decomposition for the minivolume OI�

Because of the di
erent times needed to perform a calculation at a location� load imbalance

is introduced and the e�ciency of the algorithm is reduced� One has to realize that data

locality� while accessing observations and model variables from the memory� is essential for

the e�cient usage of data caches�

Comparisons between the order of the problem domain and the data cache access have not

been conducted� since MIMD algorithms are in the foreground of this research�

���� Future and Related Research ��

A striped decomposition is especially of importance� due to the future availability of a Cray

C��� with �
 nodes� at NASA GSFC� Using a few number of processors based on a data

balanced decomposition for the quality control� can lead to superlinear speedup� as shown in

Section
�����

����� The ECMWF Box Distribution

At the European Center for medium Weather forecast� a di
erent optimal interpolation al�

gorithm has been previously parallelized for MIMD computers�
��� The motivating factor for

a domain decomposition is the unevenly distributed data� As described before� the availability

of the data varies from six hour to six hour period� and from day to day�

The method developed at ECMWF uses a box method� For each analysis step� the globe is

partitioned dynamically into about ���� boxes� dependent on the density of the observation

data� The 	rst box size is about
���
�� km� but uses the data of a box of about ���������

km� In case there are more observations included in a box than is given by a special threshold�

the box will be divided into four smaller boxes� This process will be iterated� as long as� the

number of observations in its box is not smaller than the threshold value�

An example of a partition obtained with the box algorithm is shown� in Figure ����� The

closeup in Figure ����� shows the iterative splitting mechanism� Here� a threshold of ���

observations is used� The domain can have up to two vertical levels� if there are more than

��� observations together in the upper or lower level�

The control of the distribution is performed by a global host supervising a farm of processors�

The host controls the work distribution to the node processors� Each node asks for work and

gets an assignment from the host �calculate a particular box with the help of its observation

data��

The algorithm was originally implemented on a Cray YMP� with � processors� Intercommu�

nication between processors has been achieved via 	les�

The box algorithm is similar in approach to the bisectioning algorithm� as introduced in

Section ������ The di
erence is that the bisection algorithm tries to keep the amount of data

better balanced for each node� Thus� a bisection based quality control algorithm will have a

better performance�

Incorporating the box algorithm on the NASA OI code would have the advantage of generating

boxes of prede	ned maximal size� Big grid blocks do not exist� as they can appear in the

 �� A Parallel Objective Analysis System

bisection algorithm at regions of sparse observations� Thus� in the case of the OI� the box

algorithm will have a better load balance under the assumption that the observation data

distribution is sparse� as in the SLP and MIX analysis� For the HUV analysis� the data is

dense in most regions� and the algorithms will have a similar performance�

The biggest disadvantage of the box algorithm is its central control� Congestion can occur

when there are too many nodes asking for work than the master can handle� The machine

would be strongly underutilized� To prevent congestion� multiple solutions are possible�

�� The calculations at each node should be large enough� such that� the fraction between

calculation time and communication time is as large as possible� Nevertheless� it can

occur that multiple processors are 	nished at the same time and have to wait in line

for their next job assignment�

�� The central roll of only one host can be relaxed� while partitioning the set of nodes and

providing each set with its own host� This can be done in a hierarchical manner� in

order to reduce communication between hosts��� �see Section�������

�� The elimination of the host processor and the generation of a completely decentralized

version of the OI �see Section�������

The decentralization can be achieved by an initial static mapping� as introduced earlier�

and by nearest neighbor communication of the workload between the nodes itself� Since the

nearest neighbor communication introduces further complications �e�g�� a node might have

no work� but its neighbors are still busy�� a static strategy is often preferable� in case the

load balance problem is small�

����� Alternatives to OI

Currently� many alternatives to the OI algorithm are under development� It includes methods

based on descent methods and Kalman�Bucy 	lters� The most similar algorithm to the OI

is the Physical space System Assimilation System �PSAS�� In contrast to the OI� PSAS sets

up the entire covariance matrix for all observation correlations and solves the large matrix at

once� No distinctions between the SLP� MIX and HUV analysis are necessary� Due to the

size of the matrix� the system can only be solved with state of the art supercomputers� The

���� Future and Related Research
�

experience gained from the OI algorithm and its parallelization has a large in�uence on the

development of the PSAS algorithm� As in some domain decompositions for the POI� PSAS

uses a bisectioning algorithm to distribute the observations equally onto di
erent processors�

Superobbing� like in N�body calculations� are used to reduce the data dependencies between

the observations� thus reducing the matrix to be solved� FORTRAN�� has been established as

programming language to express PSAS� More strict software methods have been employed�

� �� A Parallel Objective Analysis System

Figure ����� An example of a decomposition obtained by the ECMWF box decomposition
scheme�

> 451 observations
> 451 observations

<= 451 observations

Figure ����� The hierarchical decomposition of the ECMWF box decomposition scheme� The
process is iterated for each box
 as long as it contains more than ��� observations�

Chapter �

Deterministic Quality Control

One of the 	ndings of the research pursued� is the proof that the quality control� as provided in

the original data assimilation system� is not as good as previously thought� A new algorithm

could be derived and was introduced at ������ The decision has been made to modify the

existing quality control algorithm and provide a better version to be implemented in PSAS

at DAO�

The reason why this problem has not been discovered before� can be based on a lack of

documentation of the program and the complex structure of the source code� The requirement

of obtaining the exact numerical results between the parallel and the sequential code led to the

discovery� Unfortunately� at the time of implementing the parallel algorithm� the correctness

of the sequential algorithm was assumed by the originator team� Providing a new algorithm

which even produced a di
erent result was suspicious and a mistake in the parallelization of

the algorithm was concluded� Thus� it was necessary to take the original sequential algorithm

and rewrite it in such a way� that input and output is handled in the same way� like the parallel

algorithm� The comparison between this algorithm could provide the same numerical results

as the sequential algorithm� The di
erences between the parallel algorithm were slight�

but they were existent� A further modi	cation which emulates the parallel algorithm on

the sequential machine� showed 	nally the di
erences� After an extensive analysis of the

di
erences and the incremental debugging of the code� the error was located in the quality

control�

The solution of the quality control was dependent on the order of the observations

��

� 	� Deterministic Quality Control

in the input data�

The explanation for the invariance can be seen in the Programs ��� and ��� for the gross check

and buddy check� Once an observation fails or passes the quality control� this property is

marked in a global accessible array� This is done in the loops of the buddy and gross check�

Since the quality depends on the observations in the surrounding area� a data dependency has

been created between the instantiations of the statements included in the buddy�check loop�

One way to solve this problem is to postpone the rejection�reacceptance of the observations

until the loops are completely iterated�

This can be done with a simple data structure emulating a set� In the case of the grosscheck�

all rejected observations are included in the set of rejected observations�

In the second step� the buddy check loops over the set of rejected observations and tests if

they should be included in the set of reaccepted observations�

As shown in Programs ��� and ���� the sets are updated after the corresponding loop has

been iterated completely�

��� Physical Interpretation of the Quality Control Problem

The question arises about whether the misbehavior of the quality control algorithm should

be ignored because the di
erences are quite small in the test case we considered� In addition�

it should be found out if the problem magni	es� while parallelizing the sequential algorithm�

Figure ��� shows a physical explanation of the problem� in a real coordinate space� The 	rst

two rows represent a quality control cycle for the buddy check� They are iterated in di
erent

order� The last row shows how a parallel algorithm can e
ect the 	rst case�

Assume that there are two observations �� and �� which are accepted before the quality control

starts� A number of observations ������ are obtained in consecutive order� in close distance

to the observations� Let� the observations � to �� be referred to as the observation line� All

observations in the observation line are rejected� but should be included in the calculation��

Each of the observations is in the vicinity of at least a couple of previous observations� The

observations � and � in�uence only the 	rst couple of observations in the observation line�

�It can be a storm which has been not detected beforehand �last �	
h��

	��� Physical Interpretation of the Quality Control Problem
	

Program 	�� The modi	ed gross check algorithm�

� proc Gross Check
� Th � Tolerance

� terminate� false
� while ��terminate� do
� foreach valid observation � processor do

� if variable is not in allowed range
� then mark observation as invalid
� end if
	 if observation is �still� valid

�
 then � � variableO � variableF

�� if �� 	 Th���
O�� � ��F ���

�� then fail� mark observation as suspect
�� end if
�� end if

�� end foreach

�� Update the validity on all processors

�� terminate� Are no observations rejected in the loop	
�� end do

�	 end proc

Assume� the quality control iterates from observations ����� Then� a cascading e
ect oc�

curs� resulting eventually in the acceptance of the necessary observations �see 	rst row of

Figure �����

In case the loop is iterated in reverse order� only the observations closest to the observations

� and � are accepted�

In case this algorithm is parallelized and the observations are distributed on di
erent pro�

cessors� as depicted in the last row� the situation becomes even more problematic� The

cascading e
ect is stopped at the processor boundaries and the e
ect becomes worse�

A way to avoid this problem is to introduce an iterative quality control algorithm� During

each iteration of the loop� rejected observations are included in the set of rejected points�

The rejection is marked only after the loop is completed� This process will be iterated as

long as the set of rejected observations is not empty� For a parallel algorithm� it is necessary

to include a communication step between the loops� forwarding the new results to processors

� 	� Deterministic Quality Control

Program 	�� The modi	ed buddy check algorithm�

� proc Buddy Check
� terminate� false
� while ��terminate� do

� foreach suspicious observation � this processor do

� Gather all observations in the area around the suspicious observation
� analyzed value � Perform univariate successive correction
� method at the location of the observation with the help of S
� � � observation� analyzed value
	 if �is in tolerance level� � � kThk

�
 then just mark observation as reaccept

�� end if

�� end foreach

�� Include all reaccepted observations in the set of valid observations

�� Forward the result to the other processors�

�� terminate� Are no observations rejected in the loop	
�� end do

�� end proc

which have overlap regions �regions of vicinity between two observations�� In the practical

application� only ��� percent of the observations are expected to fail the gross check� Thus�

the communication step is limited and can be performed quite quickly� The analog strategy

can be applied to the buddy check�

This iterative quality control algorithm has two important properties�

�� It is speci	ed in such a way that the global structure between the sequential and the

parallel algorithm can be maintained�

�� The parallel algorithm will produce the same result as the new sequential algorithm�

����� Optimization in the Report Generation

Another important improvement is done in the algorithm which reports the results for the

analysis by the atmospheric scientist� This has been done before in a routine of complexity

O�n��� where n is the number of observations� This routine has been improved while using

	��� Future Research

better data structures� The complexity of the new algorithm is O�n�� The additional space

required is O����

��� Future Research

Most quality control failures take place in groups� To reduce the number of observations�

recognizing the fact that most of the statistical variances occur in geographical clusters�

techniques from pattern recognition can be employed to detect clusters of observations� The

speed of the quality control can then be increased� while performing separate quality control

instantiations on a cluster of observations� instead of the whole data set�

� 	� Deterministic Quality Control

.

accepted
not accepted

cascading effectinfluence of first and
second observation

acceptance

.
.

1
2

3
4

5
6

7
8

9
10

11

.
.

no influence of the first
and second observation no cascading effect only nearest neighbors

are reaccepted

B) C)

D) E) F)

1

2

3
4
5
6
7

A)

influence of first and
second observation

1

2

3

4

5

6

7

G)

1
2
3
4
5

H)

acceptance

I)

processor x processor y

processor xprocessor x processor yprocessor y

8
9

10
11

cascading effect
till processor

boundary

no cascading
effect

Figure ���� Illustration of the quality control problem� The �rst two rows show examples for
the acceptance of observations for di�erent orders of the observation in the input� The last
row shows the acceptance when two processors are used
 while traversing the observations in
the same order like the �rst row�

Chapter �

Experimental Results

In this chapter� the experimental results obtained with the sequential and parallel programs

for the assimilation systems are presented�

Several di
erent versions of the sequential assimilation system have been released by the

NASA Data Assimilation o�ce� The experiments reported here are based on two di
erent

versions of the code� They are known under the version numbers ���s and ���mv���� ���� We

refer to them from now on as Version ��� and Version ����

Version ��� is a slightly modi	ed version from the original data assimilation system� as used

in the production at DAO� This version has recently been superseded by Version ���� The

experiments for each version are listed separately in this chapter� A comparison between

their performance is given�

Findings obtained during the parallelization of Version ���� have a direct impact on the

parallelization strategy used in Version ��� of the assimilation system� This reduces the

software engineering e
ort drastically� First� some characteristics of the hardware platforms

as used for the experiments� are given�

��� Hardware Used for the Experiments

Di
erent hardware platforms were used to pursue the code development and the program

performance measurement� This includes a Cray C��� a vector�supercomputer� the SP�

MIMD parallel computer from IBM� and a DEC Alpha workstation farm� with a fast network

connection�

��

�
 �� Experimental Results

The DEC Alpha Workstation Farm at Northeast Parallel Architectures

Center

The DEC Alpha Workstation farm at NPAC consists of � DEC �������� systems� each with

� MB of memory� running DEC OSF�� v���� Each system has a FDDI interface� The

FDDI interfaces connect the systems over 	ber optic cable to a DEC Gigaswitch� Six of

the workstations have �
�MB swap space� while the two remaining ones have ���MB and

���MB swap� The size for the instruction and data cache is �KByte each� The performance is

enhanced by a secondary uni	ed cache of ���Kbytes� The worksations operate in time�sharing

mode�

The SP� at Northeast Parallel Architectures Center

The SP� at Northeast Parallel Architectures Center has �� nodes� fromwhich � are thin nodes

and � are wide nodes� The access to the wide nodes is restricted� The other computational

nodes are based on the IBM RISC System�
��� chip set� The actual model is a ��� with

�� MHz clock� also known as thin node �

�� The processor is also referred to as Power ��

The internal characteristics are a
� KByte data cache� a �� KByte instruction cache� and

a microchannel bus performing at �� Mbytes�sec� The main memory currently contains ��

Mbytes� An external disk of ���GB is available for each node� The nodes of the SP� operate

in time�sharing mode�

The DEC ��������Alphas and the RS
��� are rated individually� as depicted in Table
�������

Table
��� Some Performance characteristics of a single Alpha and SP� node�

DEC Alpha RS
���
Model �������� ���

SPECint�� ���� �����
SPECfp�� ����� �����
LINPACK ����x���� �� MFlops�s ����� MFlops�s
LINPACK ���x��� �
 MFlops�s ���� MFlops�s

���� Hardware Used for the Experiments ��

The SP� at Cornell Theory Center

The SP� at the Cornell Theory Center �CTC�� is the largest available IBM RS�
��� Scalable

POWERparallel System �SP�� The system has ��� processors and its peak performance is

advertised with over ��� giga�ops� Of the ��� processors� �� are wide nodes� The memory

capacities of the wide nodes range from ��
 megabytes to � gigabytes� Of the nodes� �
�

are thin nodes with ��� or ��
 megabytes of memory each� The Andrew File System�AFS�

is used to provide uniform access to the nodes� Each node has a local disk space� For large

numbers of processors� it is necessary to replicate the input data on the local disks in order

to avoid congestion to external 	leservers� If not done properly� it will lead to a failure of

AFS� All ��� nodes have an aggregate of �� gigabytes of memory �RAM� and ��� terabytes

of local �internal� disk space�

A mass storage in the form of a UniTree is available� employing high�speed transfers directly

between a network �HiPPI��attached RAID disk cache and a HiPPI�equipped SP� node�

The capacity of this mass storage system� measured in terabytes� is virtually unlimited� The

machine uses Easy�LL as batch operating system�

The SP� at Maui High Performance Computing Center

The SP� at Maui High Performance Computing Center has ��� nodes� with �� wide nodes�

of which � have �Gbyte memory and the rest have ��
 MByte� ��� of the nodes are thin

nodes� with either
� or ��� MByte memory� �
 Nodes of the SP� are used for interactive

work� The rest of the nodes are reserved� Like in Cornell� a UniTree provides mass storage

access�

The machine uses LoadLeveler as batch operating system�

The Cray C�
 at NASA Goddard Space Flight Center

The Cray C�� at Goddard Space Flight Center� has
 CPUs with a peak performance of �

GFlops per CPU� It has ��
MWords �here� a word is
� bit� central memory� Two Very HIgh

Speed �VHISP� channels are connected to a Solid�State Storage Device �SSD� containing ���

megawords �here a word is
� bit�� Five mass storage systems which can hold ���TByte

of data� are attached to the Cray� After the experiments were completed� the system was

upgraded to a J���� a J�� with �� processors� The machine uses NQS as batch operating

�� �� Experimental Results

system�

��� The Dataset Used for the Performance Analysis

Both versions of the data assimilation system are applied on problem instances provided by

the DAO for the program veri	cation� Two datasets have been generated�

The 	rst dataset was provided in ASCII form and has been converted into the appropriate

binary format for the machines used� The underlaying coordinate system is a � by � degree

latitude�longitude grid with �� height levels� resulting in a domain of �� � �
 � �� grid

points� ���
 Minivolume columns are distinguished� About ������ minivolumes divide the

grid points in small subregions� The total amount of observations is approximately ��������

This dataset was used for the 	rst experiments with the assimilation system of version ���s�

This dataset is referred to as dataset A�

With delivery of Version ���� a second dataset with �� vertical levels has been generated in

IEEE format� This dataset uses a coordinate system of � by � degrees� ���
 minivolumes

are used� This dataset is referred to as dataset B� The distribution of the observations have

been displayed in previous chapters �Figures ����� ���� and ������ It re�ects the observations

taken on January ��� ���� at the synoptic time ������ The distributions of the observations

are not signi	cantly di
erent form each other� since they are taken at the same synoptic time

during the same month�

��� Experiments Based on Version ��� of the Assimilation Sys	

tem

Initially� it was important to demonstrate that a parallelization of the algorithm is at all pos�

sible� Due to the programming style used in the original algorithm� a considerable amount of

time was spent to port the sequential code to other platforms� Currently� the code conforms

Fortran �� ANSI standard and will run on a Cray Y�MP� a Cray C��� DEC Alpha Worksta�

tions� and IBM RISC Systems
���� The latter� are of utmost importance because accounts

on state of the art systems with up to ��� nodes are available to the project�

Since the algorithmic concepts of the SLP and the MIX analysis are similar to the HUV

analysis� and the sealevel and moisture analysis use only �� of the total computation time�

���� Experiments Based on Version ��� of the Assimilation System ��

the emphasis has been to parallelize the HUV analysis� The parallel algorithms for SLP and

MIX look the same�

Nevertheless� since the number of observations and minivolumes is so much smaller �the SLP

analysis is performed only on the surface�� the algorithms are less e�cient for large numbers

of processors� For the MIX analysis� the sequential algorithm is used because the parallel

algorithm performs actually slower� due to the increased message passing overhead�

In the rest of the chapter� results are presented for the more time consuming HUV analysis�

����� Performance on a RS�

�����

QCREPORT

�����

GLASSIM

��	�

All Others

���

DELHUV

����

PINDX

���� VCORRO

Figure
��� Fractions of the computational intense parts of the sequential assimila�
tion program
 Version ����

Figure
�� shows the performance distribution of the most time consuming parts of the Version

���� based on dataset A� The routines depicted have the following semantics�

glassim is the main driver routine which includes many more subroutines than depicted in

Program ��������

�� �� Experimental Results

qcreport performs statistical operations during the quality control on the dataset and model

variables and prints the result�

vcorro performs the vertical interpolation of the observation errors�

pindx is an index function used to access observations� in the list of observations�

delhuv performs the HUV optimal interpolation without the quality control�

all other routines� including the MIX and SLP analysis and the HUV quality control� have

much smaller runtimes�

It was surprising to 	nd out� that the optimal interpolation algorithm did not consume most of

the CPU time� but a report generating routine which is an integral part of the quality control

algorithm� Following Amdahls Law� it was important to optimize this routine� Amdahl�s law

states ���� ���

If an inherently sequential component of a problem takes a fraction
 of the time

on a single node� then one can never achieve a speedup factor greater than �
�
� no

matter how many processors are used�

Since more than �� of the time is spent in programs which were initially not subject to a

parallelization� a speedup of � is maximal possible� Thus� it is clear that some e
ort had to

be redirected to improve the sequential program performance�

The original algorithm for the data report and analysis uses O�n�� computations on each

horizontal level to obtain statistical data� useful for atmospheric scientists to evaluate� While

introducing more sophisticated data structures and reordering the loops of the original al�

gorithm� an optimized version with complexity of O�n� has been derived� The performance

of the new quality control algorithm reduced the calculation time for typical datasets by over

�� on RISC machines�

The runtime for one instantiation of the optimal interpolation is ���� seconds� while it is ����

seconds for the quality control �including the report routines�� This does not relate to the

expected algorithmic performance of the quality control and the optimal interpolation� It is

expected� that the time for the quality control algorithm is only a fraction of the time spent

for the optimal interpolation�

���� Experiments Based on Version ��� of the Assimilation System �	

By optimizing many parts of the sequential programs� using Basic Linear Algebra Sub�

routines�BLAS�� removing unnecessary reporting routines� and invoking sophisticated com�

piler options during the compilation� the original time used for the HUV quality control and

the optimal interpolation algorithm could be reduced by an additional �� �

The results have been forwarded to the DAO and were used as supporting evidence� that a

restructuring of the sequential algorithm is necessary�

����� Performance of the Parallel Algorithm

The 	rst parallel algorithms� developed for the version ���� were based on striped spatial

domain decomposition of the model variables� as well as� the data balanced domain decom�

position of the observations� In each processor� only those observations are stored which are

needed for the calculation�

A comparison of the latitude bands generated with the striped and data balanced decom�

position is displayed in Figures
���
�� for ����� and �� processors� It is obvious that fewer

observations are located� e�g�� on the poles in contrast to Europe� Therefore� the data bal�

anced stripes on the poles are much larger than in Europe� Consequently� this leads to the

problem that di
erent numbers of minivolumes are assigned to the processors� Thus� load

balance is introduced for the matrix solve�

One limitation of these parallel OI algorithms� is that the ratio between overlap region and

actual computational region should be small� to provide a high degree of parallelism� For

both decompositions� this is the case for small numbers of processors�

The time used to perform the quality control is strongly correlated to the number of ob�

servations available in the region assigned to a processor� This motivates a task and data

decomposition based on a bisecting algorithm������ The bisection strategy distributes on

each processor an approximately equal number of observations�

While the strategy performs well for the quality control� it performs less e�cient for the

optimal interpolation� This is to be expected� since the time of performing the calculations

assigned to each processor depends on�

	 the number of observations in the processor� in the case of the quality control� and

	 the number of gridpoints� which are located in the interior region assigned to the pro�

cessor� in the case of the optimal interpolation�

�� �� Experimental Results

-80

-60

-40

-20

0

20

40

60

80

-150 -100 -50 0 50 100 150

La
tit

ud
e

Longitude

Figure
��� Striped data decomposition
onto �� processors�

-80

-60

-40

-20

0

20

40

60

80

-150 -100 -50 0 50 100 150

La
tit

ud
e

Longitude

Figure
��� Data balanced striped decom�
position onto �� processors�

-80

-60

-40

-20

0

20

40

60

80

-150 -100 -50 0 50 100 150

La
tit

ud
e

Longitude

Figure
��� Striped data decomposition
onto �� processors�

-80

-60

-40

-20

0

20

40

60

80

-150 -100 -50 0 50 100 150

La
tit

ud
e

Longitude

Figure
��� Data balanced striped decom�
position onto �� processors�

-80

-60

-40

-20

0

20

40

60

80

-150 -100 -50 0 50 100 150

La
tit

ud
e

Longitude

Figure
�
� Striped data decomposition
onto �� processors�

-80

-60

-40

-20

0

20

40

60

80

-150 -100 -50 0 50 100 150

La
tit

ud
e

Longitude

Figure
��� Data balanced striped decom�
position onto �� processors�

���� Experiments Based on Version ��� of the Assimilation System �

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25 30 35 40 45
Processors

T
im

e
in

 s

delhuv
zuvanl

Figure
��� The calculation time vs� the number of processors used for the HUV analysis

using the striped decomposition�

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45
Processors

S
pe

ed
up

delhuv
zuvanl

Figure
��� The speedup vs� the number of processors used for the HUV analysis
 using the
striped decomposition�

�� �� Experimental Results

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25 30 35 40 45
Processors

T
im

e
in

 s

delhuv
zuvanl

Figure
���� The calculation time vs� the number of processors used for the HUV analysis

using the data balanced decomposition�

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45
Processors

S
pe

ed
up

delhuv
zuvanl

Figure
���� The speedup vs� the number of processors used for the HUV analysis
 using the
data balanced decomposition�

���� Experiments Based on Version ��� of the Assimilation System ��

If large numbers of processors are used for the optimal interpolation� the time for setting up

the covariance matrix of a minivolume will dominate the calculation� instead of the time to

perform the Cholesky factorization�

The Figures
���
��� display the results for the most expensive computational parts of the

data assimilation system� They are the HUV quality control� abbreviated with delhuv� and

the HUV optimal interpolation algorithm� abbreviated with zuvanl���� ���� The timings and

the speedup obtained are depicted for both distributions with di
erent numbers of processors�

If small numbers of processors are used� a good speedup for both algorithms is achieved�

This is especially of interest� since one of the computers considered for operational use� is

based on several Cray computers connected via a HiPPI network�

For the data balanced decomposition� a superlinear speedup is obtained during the quality

control� This is motivated by the following facts�

�� To determine the neighbors in�uencing an observation� the modi	ed search routine is

used� The more data points are stored in a processor� the larger is the performance gain

while using the improved search algorithm� This is the case for large latitude bands�

as obtained while using few processors�

�� While increasing the number of processors� the search of observations in the overlap

region becomes more dominant and the speedup slows down�

The performance can be improved further� while introducing di
erent domain decomposi�

tions� For the rest of the chapter� all other experiments are conducted with Version ����

a block distribution� or even better� a cyclic distribution������

As expected� it is advantageous to use a domain decomposition which tries to achieve data

balance� Thus� the observations should be evenly distributed for the quality control� For

the optimal interpolation� the minivolumes should be equally distributed over the processors�

The reason why the performance of the domain decompositions� introduced so far� perform

less e�ciently for higher numbers of processors� is analyzed next�

�
 �� Experimental Results

��� Experiments Based on Version ��
 of the Assimilation Sys	

tem

Switching to the new version was necessary to improve the performance of the OI algorithm

drastically� Besides better performance� it is more stable� and produces better scienti	cally

sound results� The performance increment is obtained while using LAPACK routines for the

matrix solves� and linking the program with a machine optimized version of BLAS� Another

important change was to eliminate and rewrite certain diagnostic functions in the quality

control� The qcreport routine has been disabled for the production runs� The dataset B is

used for the experiments with the version ���mv �see Section
����

����� Sequential Program Analysis and Performance

Cray Execution Summary

Previously� a detailed analysis of the performance of the assimilation systemwas not available�

To compare di
erences between the code running on vector�supercomputers and MIMD�

parallel supercomputers� using message passing� a time consuming performance analysis on

the Cray C�� has been conducted� The performance data is obtained while using only one

processor and switching on all hardware performance monitoring capabilities�

Table
��� Performance of the HUV analysis on a Cray C���

CPU seconds �
�
� CP executing �����������
Million inst�sec �MIPS� ����� Instructions ����������
Avg� clock periods�inst ���

 CP holding issue

��� CP holding issue ����
�����

Inst�bu
er fetches�sec ��
�M Inst�buf� fetches �
�

�
�
Floating ops�sec ������M F�P� ops �����������
Vector Floating ops�sec ������M Vec F�P� ops ���
����
��
CPU mem� references�sec ������M actual refs �����������
avg con�ict�ref ���
 actual con�icts �
�
������
VEC mem� references�sec ������M actual refs ���������

B�T mem� references�sec ����M actual refs �������
�
I�O mem� references�sec ���
M actual refs ��
����
avg con�ict�ref ���� actual con�icts �����
�

���� Experiments Based on Version ��
 of the Assimilation System ��

Table
�� depicts the performance data of the assimilation system� as gathered on a Cray C���

The performance data on the Cray is obtained with the help of the hardware performance

monitoring �hpm� routine� A detailed description of the values shown in the table can be

found in the technical manual����� Most of the timing numbers depicted in Table
�� will not

be explained further� We leave those numbers in the table� in order to provide a complete

overview� The important numbers are the number of �oating point operations and instruc�

tions� as executed during the program run� The quality of the loop vectorization is speci	ed

by the Cray code analysis software as �medium��

Running the optimized assimilation system� modi	ed for a RISC machine� leads to reduced

performance on a Cray� The operational four dimensional data assimilation system �GOES

���� performs at ��
MFlops� This includes the quality control� the optimal interpolation

and the model forecast calculation� The objective analysis algorithm based on the optimal

interpolation �Version ���� performs inbetween �
����
MFLOPS� The modi	ed unoptimized

algorithm as run on a single processor of an MIMD machine performs with ���MFlops on

one processor of the Cray�
���

Performance of the Sequential Algorithm on RS�

 and Dec AlphaWorkstations

Table
�� shows the performance of the HUV analysis and the HUV quality control� as well

as� the routine reading in the observation data� All times are given in seconds� The runtime

of the sequential algorithm compiled with di
erent options on SP� nodes and DEC Alpha

workstations are displayed�

Table
��� Performance of the Sequential Program
SP� SP� SP� DEC Alpha DEC Alpha���

Node type thin thin wide
Compilation options �O� �pipa �O� �O� �O� �O�

Read Observations ���� ���� ����
���
���
Quality Control ����� ����� ����� ����
 �����
Optimal Interpolation
����� ������
���
�

���� ������
Total time

���� �
����
���
� ������
�����

Note �� all times are given in s
Note �� while aligning common variables� no performance improvement is achieved�
Note �� with �O� �math math library fast� not much improvement

�� �� Experimental Results

More interesting are the times for the SP� because of the availability of large the supercom�

puters based on the RS
���� Unfortunately� it is not possible to compile the OI code on an

RS
��� with loop restructuring ��O� and higher� without in�uencing the numerical stability

of the computation� Inlining� performed with the option �pipa improves the runtime about

�� � Since this compiler optimization step takes a long time during the compilation� the

timings given for the parallel code are obtained only with the optimization level O� on thin

nodes of an SP�� In case wide nodes should be available� the performance can be improved

by another �� � The increased performance does not in�uence the parallelization strategy

of the assimilation system�

The fraction of the runtime of the quality control and the optimal interpolation between

the RS
��� and the DEC Alpha is remarkable� While the quality control performs almost

twice as fast on the RS
���� the optimal interpolation is only slightly better �while using

optimization level ��� This can be explained by the fact that the quality control algorithm

uses less data� Cache mismatches and swapping are less frequently� The cache and swap

space in the Alphas is bigger than on the RS
����

����� Performance Comparison of the Parallel Version ��� and ��

As depicted in Figures
��� and
���� the new assimilation system has di
erent hot spots in

contrast to the older version on the SP�� In the old version� the times for the HUV quality

control and optimal interpolation were almost the same� In the new version the zuvanl

constitutes to �� of the total runtime of the algorithm� while the HUV quality control uses

only � � The total runtime could be improved by a factor of �� The runtime for the optimal

interpolation has been improved by a factor of about ��

An overall comparison of the speedup between the Version ��� and ��� is presented in

Table
��� Here� an SP� with �� nodes is used� Due to the limitations of the striped

decomposition� a result of Version ���� further decomposition strategies were explored for

Version ���� Nevertheless� the performance on �� processors using the striped and the cyclic

decomposition is almost the same for the optimal interpolation� Since domain decomposi�

tions� which do not maintain data balance� perform less e�cient for the quality control� they

have not been reimplemented and are not further considered�

To explain why the performance of the cyclic decomposition was not as good as originally

expected� Figure
��� displays the times each processor needs to complete its task� For

���� Experiments Based on Version ��
 of the Assimilation System ��

��

Sealevel Analysis
��

Moisture Analysis���

HUV�Quality Control

���

HUV�Optimal Interpolation

Figure
���� Fractions of the computational intense parts of the sequential optimal
interpolation algorithm for the Versions ���
 and Dataset B�

��

Sealevel Analysis��

Moisture Analysis
��

HUV�Quality Control

�	�

HUV�Optimal Interpolation

Figure
���� Fractions of the computational intense parts of the sequential optimal
interpolation algorithm for the Versions ���
 and Dataset B�

�� �� Experimental Results

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Processors Sorted by Time

C
P

U
 T

im
e

in
 s

OI, cyclic decomposition
QC, cyclic decomposition

Figure
���� The CPU times for the HUV quality control �QC� and the optimal interpolation
�OI� while using �� processors� Both use a cyclic domain decomposition�

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Processors Sorted by Time

C
P

U
 T

im
e

in
 s

OI, block-cyclic decomposition
QC, cyclic decomposition

Figure
���� The CPU times for the HUV quality control �QC� and the optimal interpolation
�OI� while using �� processors� The OI uses a block�cyclic domain decomposition�

��	� Comparison of the Di�erent Domain Decompositions �	

Table
��� Comparison of the runtime of the versions ��� and ���� Di
erent decompositions
on �� processors are used�

Version ��� ��� ��� ��� ���
domain Cart�Grid observation observation minivolume minivolume
Decomposition striped bisection cyclic cyclic bock�cyclic
databalance no yes yes yes yes

Quality control
Time in s ���� s �
��
�� � �
Speedup ��� ��
 ���� � �

Optimal Interpolation
Time in s ���� s ���� � ���� ����
Speedup ��� ! ��� � ��
 ��

better visualization� the times for the tasks assigned to the processors are sorted by their

value� Clearly� the timings for the two processors are signi	cantly di
erent� These processors

contain the polar regions which contain a larger linear system of equations to be solved�

Assigning fewer minivolumes to the processors containing the polar regions does not solve

the problem of decreased e�ciency� because the calculation time is dominated by the time to

conduct the calculations at the poles� The algorithm is not scalable� Maximal �� processors

can be used� The time over the poles are ���� seconds and ���� seconds� respectively� The

average time over the rest of the minivolume columns is approximately ��� seconds�

Decomposing the domain over the poles in vertical layers� generates smaller tasks� Hence�

better load balance is achieved �see Figure
����� The range of the computational load is

displayed in Figure
��
� with the help of a Box�Whisker diagram�

��� Comparison of the Di�erent Domain Decompositions

So far� the parallel algorithms for the assimilation system have been evaluated only while

using �� processors� in order to explain major properties of the algorithm� Since the cyclic

decomposition �applied on the observation domain� achieves very good results for the quality

control� it remains to 	nd good decompositions for the optimal interpolation�

The overall performance for di
erent domain decompositions for the optimal interpolation

�� �� Experimental Results

0

5

10

15

20

25

30

QC OI,C OI,B-C

Load Balance

T
im

e
in

 s

Figure
��
� The range of the CPU times for the HUV quality control �QC� and the optimal
interpolation �OI� while utilizing �� processors and using the cyclic �C� and the block�cyclic
�B�C� decomposition�

is shown in Figure
���� A closeup is depicted in Figure
���� giving the results for smaller

numbers of processors �up to ����

In the 	gures� the abbreviations S�B�C� and D� are used to distinguish the di
erent domain

decompositions� We specify

S to be a placeholder for the striped decomposition�

B to be a placeholder for the block decomposition�

C to be a placeholder for the cyclic decomposition� and

D to be a placeholder for the dynamical decomposition�

The block cyclic decomposition� as introduced in Chapter � can be extended to any one of

the regular decompositions� The 	rst letter indicates that the domain is decomposed in a

number of blocks� The second letter indicates which strategy is used to decompose the block

not containing the polar region� The third letter is used to indicate which strategy is used to

decompose the vertical levels over the polar blocks� Distinguished are�

��	� Comparison of the Di�erent Domain Decompositions �

0

25

50

75

100

125

0 25 50 75 100 125
Processors

S
pe

ed
up

SB-S-C

B
B-B-C

C

B-C-C

D

B-D-D

Figure
���� The comparison of the di�erent load balancing strategies for the HUV optimal
interpolation for larger numbers of processors� The legend is given in the text�

0

5

10

15

20

25

0 5 10 15 20 25
Processors

S
pe

ed
up S, B-S-C

B, B-B-C

C

D, B-D-D
B-C-C

Figure
���� The comparison of the di�erent load balancing strategies for the HUV optimal
interpolation for smaller number of processors� The legend is given in the text�

�� �� Experimental Results

B�S�C � the block�striped�cyclic decomposition� the vertical levels of the poles are cyclicly

distributed� while the rest of the domain is decomposed in latitude stripes�

B�B�C � the block�block�cyclic decomposition� the poles are cyclicly distributed� while the

rest is decomposed in blocks�

B�C�C � the block�striped�cyclic decomposition� the vertical levels of the poles are cyclicly

distributed� as well as� the rest of the domain� and

B�D�D � the block�dynamic�dynamic decomposition� everything is distributed dynamically�

For small numbers of processors� we obtain the following results�

�� The dynamic B�D�D decomposition performs the best�

�� The static B�C�C decomposition performs almost as well�

�� The simple cyclic C decomposition outperforms all striped and block decomposition

�S�B� algorithms�

�� Geographical load imbalance on the spatial domain is the reason for the di
erence

between the cyclic and the striped and block decomposition�

�� For the striped decomposition an upper boundary of �� processors exists� after which

no performance increase is noticeable� This is due to the fact that for our test case

the distance between the minivolumes in latitude direction is larger than the assigned

latitude stripes�

� Since the computational tasks for a small number of processors are large� the vertical

decomposition over the poles does not lead to big improvements� Thus the curve

for the block decomposition is almost the same as the one for the block�block�cyclic

decomposition� The same is valid for the two striped decompositions�

Due to the simplicity� of the cyclic decomposition and the ability to transfer it into other

programming paradigms� we recommend to use this decomposition instead of the dynamic

load balance strategy�

For larger numbers of processors� we obtain the following results�

�One of the requirements of NASA DAO

��	� Comparison of the Di�erent Domain Decompositions ��

�� In case� the polar regions are not decomposed in horizontal layers� the runtime is dom�

inated by the calculations performed at the poles� An upper boundary of �� processors

can be used before the calculation time is dominated by the poles�

�� The poles should be decomposed vertically�

�� The static B�C�C decomposition performs well� even with high numbers of processors�

�� As for small numbers of processors� the dynamic B�D�D decomposition performs the

best�

In case even more processors are used� the performance of the dynamic load balance algorithm

will decrease� This can be changed while using a hierarchical load balance algorithm or an

algorithm with decentralized control�

At this point of the parallelization� other parts �like the input and output� become dominant

and consume a considerable amount of calculation time in contrast to the parallelized parts

of the algorithm� It is more cost e
ective to spend time on the restructuring and recoding

these sequential parts of the assimilation system� then spending time to improve the well

parallelized quality control and optimal interpolation� Again� Amdahl�s law motivates this�

Chapter �

Metaproblem� Metacomputing� and

Data�ow Concept

�� Problems 	 Theory 	 Solution 	 Resources

Humans have the abilities to detect and solve problems� Solving a problem is a challenging

task� Generally� it involves the formulation of a theory and strategy to 	nd a solution based

on the availability of limited resources�

One can abstract the dependencies between theory� problem� resources and solution� as shown

in Figure ���� Multiple dependencies exist between problem� theory� solution� and resources�

Three obvious dependencies are�

�� To develop a solution� a theory and resources are necessary�

�� Resources are necessary to abstract the problem and formulate a theory for solving the

problem� Developing a theory poses a problem in itself� and requires a solution�

�� To assign resources� in order to develop a solution or a theory� can pose a problem�

Often� it is necessary to subdivide a problem into smaller problems because the subproblems

might be easier to solve� Solving each of the subproblems and combining the result will lead

to a solution for the original problem� Theories� and solutions for each of the subproblems�

have to be established in order not to distort the original problem� Usually� the sum of all

���

��� Problems � Theory � Solution � Resources �
�

Problem

Resources Solution

Theory

Figure ���� The dependencies between problem
 theory
 resources and solution�

Solution

Problem

Theory

Problem

Theory

Problem

Solution

Theory

Resources Resources
Solution

Solution

Figure ���� The problem pyramid�

�
�
� Metaproblem� Metacomputing� and Data�ow Concept

resources used for the subproblems can not exceed the overall available resources� Figure ���

shows an example of some of the dependencies� in case the original problem is split into two

subproblems�

Dealing with limited resources introduces complex dependencies between the solution of one

subproblem� with another subproblem� One way to relax this situation� is to provide a large

number of resources� Unfortunately� many restrictions on the availability of resources are

present in real life problems and their solutions� This is especially true for high performance

computing problems�

For a computational task� a theory and a model to solve the problem have to be established�

When the resources are too restrictive� a good solution might not be found� Dealing with

the problem of limited resources is an integral part of high performance computing

�� Grand Challenge Problems

A special class of problems are the grand challenge problems� For grand challenge problems�

the current computational resources of one single computer are not su�cient to achieve a

solution of the problem in acceptable time�� State�of�the�art supercomputers are in use and

under development to 	nd solutions to subproblems of the original grand challenge problem�

The combination of the solutions obtained on one or more machines are combined to obtain

an overall answer�

The considered solutions for grand challenge problems are bound by the limited resources�

Most importantly� large memory and many processing units of high speed are required�

Since both resources are of limited availability� compromises in the program design have to

be considered�

�� Metaproblems

From the computational and computer science point of view� a classi	cation of complex prob�

lems is introduced in ���� ���� Applications for solving complex problems are distinguished�

The applications are classi	ed into � classes�

�Time can also be considered as a resource�

��� Metacomputer �
�

Synchronous applications tend to be regular and are characterized by algorithms employing

simultaneous identical updates to a set of points�

Loosely synchronous applications are iterative or time�stepped� but unlike synchronous

applications� employ di
erent evolution�update� procedures which synchronize macro�

scopically�

Embarrassingly parallel applications employ complex algorithms� but can be parallelized

because the evolution of di
erent points is largely independent�

Asynchronous applications are hard to parallelize problems with no natural algorithmic

synchronization between the evolution of linked irregular data points�

Metaproblems are a hybrid integration of several subproblems of the other four basic ap�

plication classes�

�� Metacomputer

The metacomputer is a natural evolution of existing computing technology� Often� Flynn�s

well known classi	cation is used to categorize parallel computers according to the instruction

and data stream����� Here� the MIMD � Distributed Memory �Multiple Instruction Multiple

Data� architectures are of special interest �Figure ����� It is important to note that the

memory is an integral part of each processing unit� The memory is local to each processing

unit� Data is exchanged via message passing� Multiple Instructions can be executed on Mul�

tiple Data �MIMD�� Examples of real MIMD computers are numerous �SP�� Hypercube� and

many more����� ��� ����� The intercommunication between the processing units is achieved

via a high performance interconnection network�

In contrast to stand�alone MIMD supercomputers� heterogeneous computing environments

consist of a number of di
erent processing units� Often� the processing units are o
�the�shelf

workstations connected via a fast network �Ethernet� ATM�� The user of the heterogeneous

computer is aware of the di
erent machines and has to incorporate the knowledge about

the distributed resources in the design of the program� Operating systems are available and

under development to provide a better and automated resource management����� ����

The new development in computational and computer science is to

�
�
� Metaproblem� Metacomputing� and Data�ow Concept

Interconnection Network

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

MIMD
Architecture

Heterogenous
Computing

Network

Metacomputer

Interconnection Network

SGI
Workstation

SUN Sparc
Workstation

RS6000
Workstation

Linux
Workstation

Resource Management

Interconnection Network

Mass
Storage

WWW

IBM SP2
Workstation

Farm
Intel

Paragon
Cray C90

Graphics
Workstation

Other
Networks

User User User User User User User User

Figure ���� The MIMD Architecture
 a heterogeneous computing network
 and a metacom�
puter�

��� Metacomputer �
	

User

User

Processing
Unit

Metacomputer

User

User

User

User

UserUser

User

User

Figure ���� Metacomputer from the user point of view�

Metacomputing
Environment

Metacomputing
Public Library

UserDeveloper

Hardware

Software

Interface

Operator

Metacomputer
Hardware

Metacomputing
Resource
Monitor

Metacomputing
Resource
Manager

Metacomputing
User Library

Metacomputing
Editor

On-demand
Publishing

Figure ���� Essential parts of a metacomputer for operators
 developers and users�

�
�
� Metaproblem� Metacomputing� and Data�ow Concept

Internet

JPL

MHPCC

SP2

SP2

SP2

C90
Y/MP
Silo

NPAC

CTC

GSFC

Paragon
T3D

Alpha
(CM5)

Figure ��
� The geographical distribution of the metacomputing components as utilized in the
NASA Four Dimensional Data Assimilation Project�

�� add more� and inherently di
erent resources� to a heterogeneous computing environ�

ment�

�� add supercomputers as processing units to the network� and

�� simplify the programming and usage of the increasingly more complex computing plat�

form�

This collection of state�of�the�art computers and technology is referred to as ametacomputer����

���� For the user� the metacomputer acts like a single computer� Ideally� a user should not

know from which hardware the metacomputer is built upon� The user should be able to

formulate the solution to a problem in his or her favorite programming paradigm� The pro�

gram� is then executed in the black box metacomputer� with minimal supervision from the

user �Figure ����� A clever resource management strategy utilizes the available resources�

best suited to execute the program� The resource manager is an essential part of the meta�

computer� Due to its generality� a metacomputer provides the computational resources to

��� Metacomputer �

solve metaproblems�

Figure ��� shows an example of the hardware components of a metacomputer� These hardware

components have all been utilized in the NASA Four Dimensional Data Assimilation Project�

The physical location of the hardware components of a metacomputer can be in the same

building� in di
erent cities� and even on di
erent continents� The resources available for the

NASA project are distributed in the United States �Figure ��
� and include the island of

Hawaii�

To employ a functioning metacomputer� it has to be installed� maintained and updated� Thus�

besides users� operators and application developers have to be distinguished�� This leads to

the more complex picture of a metacomputer� as depicted in Figure ���� The distinction

between a user and a developer is based on the fact� that a user can not easily incorporate

new software into the publicly available software library�

A metacomputer will not function correctly if one does not provide appropriate tools for

using� extending and monitoring the metacomputer� The inclusion of these tools to the

metacomputer provides the metacomputing environment� As depicted in Figure ���� a meta�

computer environment consists of a hardware� a software and an interface layer� The success

of using metacomputers will depend strongly on the metacomputing environment� e�g� the

interface layer� The following parts should be incorporated in the design of a metacomputer

environment�

Hardware Layer

� Processing units are usually workstations� supercomputers� and PC�s�

� Communications Hardware or Network� consists of high and low bandwidth

networks� like Ethernet� ATM� and token ring�

Software Layer

� Communications Software is the high level software which allows the communic�

ation over a network� e�g� TCP�IP� sockets� MPI� and http�

� Resource Managers are responsible for distributing the resources of the metacom�

puter appropriately� This is done with the help of load balance strategies� parti�

tioners� task schedulers� domain decomposers� and batch operating queues�

�In literature a user is often referred to as a developer�

�
�
� Metaproblem� Metacomputing� and Data�ow Concept

Interface Layer

� User Support Facilities help the user to facilitate the metacomputer� It provides

scienti	c visualization� data �ow editors� and programming languages�

� Metacomputing Public Library contains the source code or the precompiled code

for di
erent machines in di
erent programming paradigms� Performance data is

stored with the library�

� Metacomputing User Library has a similar function as the public library� but is

organized and maintained by the user instead of being publicly distributed with

the system�

� Operator Support Facilities help the operator to control and supervise parts of

the metacomputer� It includes network monitors� utilization and load balance

analysis monitors� tools for authorization and security� tools for the incorporation

of new resources� and tools to perform trouble shooting�

The main requirements users� operators� and developers pose to a metacomputing envir�

onment are� ease of use� portability� maintainability� expandability� reusability� and fault

tolerance�

In the following sections� we will concentrate on the speci	cation of tools which enable the

use of a metacomputing environment� The motivation for these tools arose from the practical

experience gained at NASA GSFC and at NPAC with diverse grand challenge applications

and software environments����� ���� �����

First� we will concentrate on the developer and user� The developer provides the software

resources necessary for an application to be executed on the metacomputer� The user applies

the tools developed� and constructs its own applications� which are not necessarily publicly

accessible to others� The distinction between users and developers is useful because of their

di
erent security aspects�

An appropriate program editor should provide an easy to use interface to a program library

for the users and developers� The automatic maintenance of resources should be suppor�

ted� to ease the task of integrating existing computational facilities into the metacomputing

environment for an operator�

�	� Motivation and Requirements for the Metacomputing Environment �
�

Since the success of the environment will be dependent on the interfaces provided� a top down

approach is followed starting from the graphical user interface�

Other projects ���� pursue a bottom up approach� The SNAP project pursued at NPAC

will provide an infrastructure of low�end� but widely usable� applications and technology�

One of the components planned� is the development of an interface to automatically control

computations to be distributed on the resources of the WWW� Messages can be exchanged

with the di
erent computers on the WWW� thus forming a truly heterogeneous computing

platform� The GUI environment introduced here� will be able to utilize the low�end interface

and incorporate it without the users knowledge� The interface does not change� Thus� the

bottom�up approach of SNAP� and the top�down approach for designing the user interface�

are viable additions to each other� The lessons learned form the GUI environment can be

used in the forthcoming WebFlow project at NPAC��
� ����

�� Motivation and Requirements for the Metacomputing En	

vironment

The motivation for the development of a metacomputing environment arose from the rather

complex problem of parallelizing the NASA Four Dimensional Data Assimilation System�

Insight into the operation and resources of the DAO have been gathered during an extended

research period of
 months� at GSFC� The experience gained from parallelizing the 	rst

version of the code� and the interaction with the atmospheric scientist� revealed that there

is a need to simplify the access of parallel computing� This is also true for other 	elds in

scienti	c computing�

After analyzing the departmental resources� it became quickly clear that only a limited period

of time is available to teach parallel programming paradigms to the scientists� This also

includes the practical use of a parallel system� Using graph �owcharts helped to explain

certain aspects of the di
erent programming paradigms� Atmospheric scientists are used to

the data �ow concept� because many concepts in atmospheric dynamics are illustrated with

the help of directed graphs� In atmospheric dynamics� parallelism is implicitly represented

in these graphs� Thus� it is most natural to use the graph concept to express parallelism and

formulate parallel programs�

This is not a new idea and has been incorporated in many programming languages� as well

��

� Metaproblem� Metacomputing� and Data�ow Concept

as� visual programming interfaces� An example for a task parallel programming language

can be found in �
�� ���� Here� the design of a parallel program is often initiated by deriving

the tasks and their dependencies to obtain a task graph� The task graph is then transformed

to a textual form by hand�

The new idea is to use the concept of data�ow�
�� in a more general way� With the help of

data�ow concepts� many di
erent programming paradigms can be combined into one pro�

gram� The information about which programming paradigm is used� is hidden from the

users� thus enabling a uniform interface for multiple programming paradigms� Besides the

support for explicit message passing� task parallelism and data parallelism should be suppor�

ted� Providing the data�ow programming paradigm� enables the programmer to transfer the

�ow representation into the di
erent parallel programming paradigms�

An important part of the environment is to guarantee that previously written subroutines and

programs can be integrated into the metacomputing environment� They can be sequential

programs� as well as� parallel programs and can follow di
erent programming paradigms� It

is essential to support the integration of programming languages like Fortran� Fortran��� C�

C��� and others� to achieve acceptance in the scienti	c community� Integrating HPF���� ���

will be of advantage in the future�

Furthermore� the metacomputing environment should enforce more strict software engineering

techniques� in order to force some programmers to provide a documented code�

For now� we summarize the requirements of the graphical user interface� evolved from grand

challenge applications�

Paradigm Flexibility is needed to support multiple parallel and sequential programming

languages� as well as� multiple programming paradigms� This includes� e�g�� sequential

programs� task parallel programs� and data parallel programs�

Expressiveness is needed� Supporting multiple programming paradigms increases not only

the �exibility� but also the expressiveness� In addition� the graphical display of functions

increases the readability and expressive power of a program� in contrast to its textual

form�

Ease of use is needed to motivate the user to learn a new programming environment which

has more expressive power than the tools she or he used before�

��� Data�ow Concept ���

Portability is needed to incorporate the large amount of di
erent hardware� from which the

metacomputing environment is built�

Extendibility is needed to include new procedures in the library� accessible by the user� A

user should be able to maintain its own library�

Restrictiveness is needed to incorporate software engineering standards for the document�

ation of the code� A guideline should be provided on how to document a given module�

Input and output parameters should be described� If possible� resource requirements

about space� time� and complexity should be speci	ed�

Execution Flexibility is needed to update of the environment at runtime� This is done on

two levels� A� The update of graphical icons to represent the state of the calculation�

B� The modi	cation during the program run to incorporate new solutions and programs

to the actual running application�

A more controversial requirement will help in using the system in a real life setting�

Resource Restrictiveness is useful to specify a particular mapping of the program to a

given hardware con	guration�

The last requirement usually contradicts the concept of a �black box� metacomputer� where

the resources are distributed� without the knowledge of the user� via the help of the resource

manager� Nevertheless� it is important to note� that certain resource and paradigm restric�

tions are known to the the user and developer� in advance� The knowledge of mapping a

particular module to an appropriate machine can improve the overall performance of the

program drastically� because it provides viable information to the resource manager� If the

information is not available� the resource manager will make the decisions independently�

Next� the important concept of data�ow and its use in literature is described in more detail�

because it is integral part of the metacomputing environment�

�� Data�ow Concept

The term data�ow has di
erent meanings depending on the context in which it is used �
�� ����

In software engineering� it refers to the �ow of information between data processing units�

���
� Metaproblem� Metacomputing� and Data�ow Concept

Already in ��

� the term data�ow has been used in the context of parallel computing�����

Besides the theoretical acceptance of data�ow models in the late
��s and early ���s�����

data�ow had also an impact on computer architecture designs���� ����

In general� a program is evaluated with the help of a computing model� In the case of a von

Neuman machine� the computing model is control��ow oriented� A program is evaluated step

by step in a processor� The control is transfered from one command to the next command�

The operands of the commands are fetched into a 	xed memory location �the registers�� Then�

the command is executed on the contents of the registers�

In contrast to the control��ow model� a data �ow model is based on the �ow of data� The

program is speci	ed in a data�dependency graph or data �ow graph� Usually the nodes

represent operations� while the edges represent dependencies between the operations�

The main di
erence between control��ow and data�ow computing models� is the fact that

the program execution in

�� control �ow programs� �corresponds to the instructions in motion operating on data at

rest��

�� data�ow programs� �corresponds to data in motion being processed by operations at

rest�
����

Several� data�ow models are distinguished in literature�
��� In the data�driven data�ow

model� values�tokens� are produced and consumed by the nodes of the data�ow graph� A

token is generated and sent to an output edge� An operation associated with a node can

only �re when all its input edges have a token�� This simple statical data�ow model can be

expanded with the help of a queue for each edge� In addition� each token gets an identi	cation

tag� A node 	res as soon as it recognizes tokens with the same tag on its input edges� This

data�ow model is known as the classical dynamical model� The dynamical model is necessary

to express asynchronous parallel computational tasks� It allows one to use loop parallelism

and recursive parallelism� dynamically at runtime�

A slightly di
erent view of data�ow is sometimes used in parallel computing� Here� a process

graph in which data �ows from one processor to the next� is used to express parallelism� Un�

der the abstraction that its inputs input data are consumed and its output data are produced�

	In contrast to the data driven model� is the demand driven model� which �res only when there is a
demand for the result� and all tokens at its input edges are known�

��� Data�ow Concept ���

this graph is referred to as a data�ow graph� Such a data�ow model can be implemented

in several di
erent ways� The easiest abstraction model uses synchronous channels between

the processing nodes� as introduced in ����� Nevertheless� we 	nd this abstraction model too

restrictive because it guarantees only synchronized �ow of data between the processing units�

Thus� it is similar to the classical static data�ow model� To increase the amount of paral�

lelism� a dynamical data �ow model can be achieved via the introduction of asynchronous

channels�

An asynchronous channel has the ability to transmit a number of messages �tokens� without

maintaining the order on the arrival of the tokens� A �time� tag is attached with each token to

identify tokens with matching tags for the operation� In case the number of tokens available

is too large� the producer of tokens has to be stopped� When no matching tokens are in the

input bu
ers dead�lock occurs� The static data��ow model avoids this problem by allowing

only one token at a time at any input edge� Many solutions to a possible deadlock prevention

are possible� Fortunately� the application motivating the development of the metacomputing

environment does not cause any deadlocks� even if asynchronous channels are used�

Representation

Usually� the nodes in a software engineering data�ow model are functions� In many graph

representation only the functions are depicted as nodes� Data is implicitly forwarded via the

edges� Thus� in these data �ow models a memory location or an assignment to a particular

unit is not speci	ed directly but implicitly�

Since the data mapping and domain decomposition are essential parts of parallel program�

ming� it is desirable to represent the processes� as well as� the data �memory� with nodes�

The values of the data stored at the memory nodes can be forwarded� via the messages� to the

process node� Thus� a data node can be viewed as a special process node with the identity

function�

This graph is referred to as a data�process��ow graph� The processes have to be executed on

real machines� and the data has to be mapped into the memory of the machines� A mapping

between the data nodes and the process nodes to the real machines is necessary� We call

the graph� which includes the mapping onto a real machine� the enhanced data�process��ow

graph�

One problem of data�ow programming models� is the complexity arising in order to express

���
� Metaproblem� Metacomputing� and Data�ow Concept

the parallel program in written form� Firing rules and matchings have to be generated�

To introduce the usually rather unfamiliar concept of data�ow programming to non computer

scientists� will cause problems� A graphical program editor� hiding most of the details for

specifying matching and 	ring rules� is most useful� Thus� the program editor should not only

allow the speci	cation of data and process nodes� as well as� their �ow dependencies� but also

the speci	cation of the mapping of data and process nodes to a real computer architecture�

This visual data�ow editor is introduced in the next chapter�

Chapter 	

The Interface and Software Layer of

the Metacomputer

In this chapter� the components of the interface layer and software layer of the metacomputing

environment are explained �Figure ����� A prototype implementation of a graphical user

interface �GUI� for the metacomputer developer and user� is introduced� It is referred to as

the metacomputing editor� The input speci	ed with the help of the metacomputing editor

is based on the data�ow concept� Besides the metacomputing editor� the resource manager

and the computing libraries are described� On demand publishing and a resource monitor

provide other interfaces to the metacomputer� Advantages and disadvantages of the existing

prototype are analyzed� and future improvements are listed�

The metacomputing editor� introduced in this chapter� can be used for multiple tasks� Even

though the tasks are quite di
erent in nature� the same principles are used to visualize them

with the help of graphical concepts� Distinguished are

�� tightly coupled metacomputers�

�� loosely coupled metacomputers�

�� and metacomputers which are a combination of both�

The ultimate goal is to incorporate tightly and loosely coupled metacomputers in one envir�

onment� Currently� their usage is separated�

���

��� �� The Interface and Software Layer of the Metacomputer

A tightly coupled metacomputer� is a metacomputer which makes use of software techno�

logy� enabling the fast communication between processing elements� Examples are message

passing programs generated for MPI� PVM� or others� The parallel programs generated with

the tightly coupled metacomputing environment editor are usually of medium grain� The re�

source allocation for programs generated in such a way� involves the determination regarding

which processors or workstations are best suited for the program execution� Grand challenge

applications have a de	nite need for such an application development environment� to reduce

the software engineering costs involved�

A loosely coupled metacomputer� is a metacomputer which combines the usage of several

supercomputers� or workstation clusters� A process executed on one of the machines is called

job� Message exchange between the components is done with the help of 	les� Instead of

using blocking send and receive commands� asynchronous communication is established with

the help of a probe command� The probe command checks for the existence of the 	le or

place holder associated with the message� This is very much like the concept known from

MPI���� �����

This kind of system is useful� when

�� the messages to be sent are infrequent�

�� the time between two messages is assumed to be long�

�� the messages to be sent are long�

�� the processes use a lot of CPU time� and

�� the message passing overhead is small�

Both tightly and loosely coupled problems occur in the NASA project� and are addressed

separately�

The special requirement for a tightly coupled metacomputer is the speed of communication

and computation� The special requirements for a loosely coupled metacomputer is the e�cient

usage of the computing resources� The communication time is important� but is usually

much smaller than the computation time� Communication is usually a secondary issue� Fault

tolerance� has an increased importance in such a distributed �meta�computing environment�

���� Metacomputing Editor ��

��� Metacomputing Editor

In the following sections� the GUI for the tightly and loosely coupled metacomputer are

introduced� The interface shares common features and uses the same front�end of the GUI�

	���� A Tightly Coupled Metacomputing Environment

To ful	ll the requirement of ease of use and �exibility� the metacomputing editor allows

the speci	cation of a parallel program with the help of a visual graph representation������

Nodes and edges of the graph are drawn in an interactive window� The functions to be

assigned to the nodes and edges can be speci	ed in an arbitrary programming language�

The environment is able to generate stand alone programs� but also program modules which

can be reused later� They are included in a module library� If the user� is an authorized

developer� the module can be integrated in the standard set of modules accessible by other

users� Otherwise� they are accessible with the help of a WEB server which is write accessible

by the user and read accessible by others� The programs and modules which are speci	ed

with the metacomputing editor are compiled on a set of speci	ed target machines� The visual

system forces the programmer to use a more strict and regulated method of programming�

in regards to providing documentation of the modules and the programs� Hence� the code

produced by the environment is ultimately more easy to maintain� and problems existing with

poorly documented legacy codes are avoided�

Even though the original environment has been 	rst designed in ���� for the NASA Four

Dimensional Data Assimilation System� it will be useful for many other application programs�

During the parallelization of grand challenge problems� several steps could be distinguished�

The steps� which are not only typical for grand challenge problems� are�

�� Design the global program structure� keeping in mind the parallel nature of the problem�

�� Specify the function of the blocks which build the global program structure�

�� Convert program blocks which are of concurrent nature� into parallel blocks�

�� Map the parallel and sequential blocks on a real architecture�

�� Run the parallel program and observe performance statistics�

��� �� The Interface and Software Layer of the Metacomputer

Following this program design� the visual editor should support all phases of the parallel

program development�

The Figures ������
 show the practical use of the metacomputing editor for the NASA Data

Assimilation System� Figure ��� displays the logical division of the objective analysis al�

gorithm�

Data is generally shown in rectangles� while processes or tasks working with data are displayed

in circles� Dependencies between data and tasks are displayed with the help of directed edges�

For better visualization� colors are used in addition to the obvious form distinction�

Once the processes with concurrent nature are de	ned� they are introduced into the process

graph� as shown in Figure ���� A parallel process is visualized with multiple circles� while

data distributed in an exclusive way is visualized with multiple rectangles� An example for

such distributed data is the block distribution� as known from HPF�

The de	nition of data objects �owing between process objects can be done graphically

in a selection window containing all available data types� In addition� a straight forward

textual representation of the messages is possible� and can be speci	ed with a standard text

editor�

An example for the textual representation of a FORTRAN data object� is shown in Fig�

ure ���� Here� a simpli	ed data structure from the NASA code is displayed� Due to its

simplicity� the representation of data objects for di
erent languages is very close to the lan�

guage standard� The native names for datatypes� as well as� block statements are used to

support the de	nition�� To allow custom designed datatypes to be elements of a data object�

it is advisable to de	ne them previously as data objects with the help of the metacomputing

editor�

In general� the de	nition of data objects is similar to a RECORD� as known from several

Fortran�� extensions� Fortran��� and the struct command in C� The de	nition of a data

object will generate the necessary routines allowing communication between the data objects

and the process objects� The user will implicitly use these commands while drawing arcs

from one process to the next process�

Figure ��� shows the usage of a data �ow object in a process de	nition� The indirection of

the data �ow is marked with the special keywords IN DATA and OUT DATA� The keyword

PROCESS is introduced to distinguish between subroutines and processes� A data�ow pro�

�For C these are the braces f� g� and int� �oat� double� and many more�

���� Metacomputing Editor ���

Figure ���� The window shows the building blocks used in the global program structure �tightly
coupled metacomputing program��

��
 �� The Interface and Software Layer of the Metacomputer

Figure ���� The window shows how the program is represented after the parallel program
blocks have been introduced�

���� Metacomputing Editor ���

Figure ���� The window shows the selection of the machines participating in the execution of
the program�

��� �� The Interface and Software Layer of the Metacomputer

Figure ���� The window shows the load meter to control dynamic load balancing while ex�
ecuting the code�

���� Metacomputing Editor ���

Figure ���� The window which speci�es the machines on which the module should be available

where the source code is located
 and what graphical representation the node should have�

��� �� The Interface and Software Layer of the Metacomputer

Figure ��
� The module selection with a listbox�

Figure ���� A snapshot from the running application
 augmented by the current load on each
machine and the processes currently active �the ones marked with big circles��

���� Metacomputing Editor ��	

DATA OBJECT OBSERVATIONS

INTEGER NoOfObservations"
REAL x�NoOfObservations�"
REAL y�NoOfObservations�"

REAL temp�NoOfObservations�"
REAL pressure�NoOfObservations�"

END DATA OBJECT

Figure ���� De�nition of data able to �ow between process objects� The data object is a
simpli�ed data object as used in the NASA project�

cess is an independently executed program which waits for the instantiation as soon as its

parameters are available� Thus� with only very limited extension to the original sequential

programming language� in this case Fortran� task parallel programs can be de	ned easily

and naturally� More interesting problems can be thought of� while sending dynamical data

structures as found in irregular problems� For future research� we point out that the exten�

sion of the data �ow concept with actual programs as data� will enable the distribution of

programs similar to the distribution of data� Special care has to be taken in order to solve

security and byte order issues� By choosing Java as the language� in which the processes are

speci	ed� the problem of the di
erent byte order is avoided� Furthermore� Java provides the

mechanism to send programs from one computing node to the other�

The additions to the native language are similar to those introduced to task parallel pro�

gramming languages like FortranM or CC������ �
� ���� Thus� it is possible to generate�

with an appropriate translator� a FortranM or CC�� program for 	ne grain parallelism� as

well as� a data�ow driven program for coarse grain parallelism� This is based on only one

representation of the program� Hence� one can interpret the program �ow of the enhanced

data�process�graph in multiple program paradigms�

After the processes and the data objects are de	ned� they have to be mapped onto a real

computer to be executed� Restrictions during the code development �e�g�� the code can only

��� �� The Interface and Software Layer of the Metacomputer

PROCESS huv �IN DATA OBSERVATIONS�
IN DATA MODEL in� OUT DATA MODEL out�

#� Quality Control
do i���NoOfObservations
call buddy check
call gross check
end do
#� Matrix Solve
do i���NoOfGridpoints
call set up the matrix
call solve the equations
end do

END PROCESS huv

Figure ���� De�nition of a process object using data objects on its inputs�

be compiled on one machine and is not portable�� may limit the number of choices for the

mapping� To minimize the overall wall�clock time of the program execution� dynamic load

balancing is used to map the problem on the di
erent processors and�or computers� based

on their current load�

To support this strategy� a process monitor keeps track of the status and usage of the ma�

chines� Figure ��� shows an example of some system variables monitored to support the

mapping strategy� Here the CPU Load� Load Average� and Swap Load are displayed� The

load monitor helps to display performance bottlenecks of the parallel program during its

execution on the machines� while collecting a time space diagram� The user of the metacom�

puter might 	nd it more useful to incorporate the state of the computation in a performance

window� as shown in Figure ���� The active processes at a given time are displayed with a

circle around them� To give information about possible congestion� the messages in a message

queue for one process module are added with small circles on the arc between producer and

consumer�

In the example depicted� all processes are mapped to an SP� and the graphical output is

���� Metacomputing Editor ��

viewed on a SPARC workstation� In case the processes are written in a portable way and

compilation on other machines is possible� di
erent process�machine mappings could be used�

The dynamical execution of a program is driven by two factors�

�� The software modules available for the di
erent hardware platforms�

�� The availability of a computational resource�

�� The utilization of the computational resources�

Figure ���� illustrates the process responsible for making the selection of the hardware and

software used to execute the program on existing hardware platforms�

In many scienti	c programs� a problem is solved many times for similar instances of data�

They do not lead to substantial di
erences in the execution time� The information about the

execution time on di
erent machines is stored in a database� This can either be achieved

via direct measurement� or a performance prediction analysis algorithm� Once the suspected

execution time for a particular machine con	guration is stored in the database� the information

about the current utilization of the machine is used to predict the real time performance of

the program� In case several choices of software and hardware mappings are available� the

one with the shortest execution time is chosen� Hence� the selection not only includes a

hardware mapping� but can also include the usage of completely di
erent algorithms to solve

the �meta�problem� best suited for the selected computer�

Internal Structure

Figure ���� shows the multiple purpose of the metacomputing editor� As mentioned before�

the editor is used to simplify generating parallel programs or transferring a sequential pro�

gram into a parallel� Additionally� it can be used to supervise the execution of a sequential�

as well as� a parallel program�

Internally� several layers exist to interface with low level message passing routines� For the

current implementation� a port to MPI is under development� While providing interfaces

to di
erent languages and message passing libraries� a wide variety of software support can

be granted� On top of the communication library� a Parallel Support Library provides the

necessary functions� to simplify parallel programming for distributed vectors� The parallel

vector routines are necessary for the NASA DAS and can be reused by other similar scienti	c

��� �� The Interface and Software Layer of the Metacomputer

Software Hardware

Machine
Selection

Software
Selection

Predicted
Performance

MachinesProgram

Performance
Measurement

Performance
Database Utilization

Figure ����� Dynamical selection process during program execution

���� Metacomputing Editor ���

P
ar

al
le

l P
ro

g
ra

m
 G

en
er

at
io

n

P
ar

al
le

l P
ro

g
ra

m
 In

vo
ca

ti
o

n

Sequential Program Invocation

Sequential Program

Parallel Program

Program Execution

Interactive
Parallel Programming

Environment

Parallel Support Library

FORTRAN C/C++ Java

PVM MPI WEB

Message Passing Interface

others

Figure ����� The multiple purpose of the parallel programming environment while creating
and executing parallel programs�

codes������ It is possible to integrate other standard libraries� like ScaLAPACK����� to

enhance the function of the middle layer of the metacomputing editor�

While the original prototype of the metacomputing editor was developed in Tcl�Tk� Perl� CGI

and Python� the current implementation of the interface� is based on Java���� ���� ���� ��� ����

This simpli	es the expansion towards theWWW driven usage of the interface� as suggested in

the MetaWeb project����� Using Java also reduces the number of software packages involved

in the core implementation of the computing environment� thus making the environment

better maintainable�

Even though Java is supposed to be platform independent� the usage of threads is currently

not� On di
erent platforms� preemptive or non�preemptive scheduling is used� Writing

programs with a non�preemptive scheduling strategy is easier� It would be desirable for Java

to provide a method switching between the scheduling policies� so that one can establish

a uniform program for all platforms supporting Java� Furthermore� a serious bug while

��
 �� The Interface and Software Layer of the Metacomputer

launching runtime processes exists in several versions of Java� thus preventing reliable usage

on some platforms�
��� We expect that the current version of Java ������� will be changed to

overcome these problems�

To demonstrate the �exibility of the data �ow concept and visual programming� another

important utilization of the metacomputing editor is introduced in the next section�

	���� A Loosely Coupled Metacomputer

The previous example was based on the medium grained problem for the NASA DAS� The

resulting program had to be executed with the highest possible speed� thus the environment

was used to produce a message passing parallel program based on MPI� The program is then

executed on a supercomputer in stand alone fashion� No corporation is necessary between

supercomputers� other than forwarding the result to the workstation where the graphical

display is performed� The resulting message passing program is usually run in batch operation

on the supercomputer� thus interactive program control is not available� A method has to be

derived to incorporate computing resources operating in batch and in time sharing mode�

We classify typical usage of a supercomputer in grand challenge applications in three groups�

�� Executing large massively parallel jobs in batch operation�

�� Executing large massively parallel jobs in time sharing�

�� Executing a number of jobs built from the 	rst two categories�

Figures ����� ���� show an example of a program designed for a loosely coupled metacom�

puter� The task of the program is to use some input data� process it with a program� forward

the output to another program and show the result of the overall calculation on a terminal

�Figure ������ Program A is mapped onto a DEC Alpha workstation farm� while program B

can be alternatively mapped onto the SP��s from NPAC� Cornell� and Maui� A uniform job

description form� as displayed in Figure ����� is used to specify di
erences for each machine

due to the 	le system and user accounts� as well as� the di
erences in the batch program op�

erating at the di
erent sites� For machines running in time sharing mode� it is not necessary

to 	ll out such a form �NPAC SP��� After the batch jobs have been properly de	ned� the

program can be executed� A queue list is used to supervise the running jobs on the di
erent

���� Metacomputing Editor ���

Figure ����� A loosely coupled metacomputer program�

machines �Figure ������ Each job is assigned a unique identi	cation and can have input and

output data dependencies with other jobs� �e�g� a job has to wait for the completion of the

jobs given in the input dependency list� before it can be started�� Once a job is completed�

the state is updated in the job list and dependencies with other jobs are resolved� Jobs which

do not depend on any other jobs �their dependencies are resolved�� are then submitted for

execution� Once the job is running on the particular machine� the queue list is updated again�

The selection of jobs and their execution is repeated� until all dependencies are resolved� It

is a straight forward implementation of a classical dynamical data�ow concept using global

control�

Internally� the data�ow graph is converted to a sequence of shell commands which are ex�

ecuted in a special Java thread� The thread is responsible for scheduling and supervising the

��� �� The Interface and Software Layer of the Metacomputer

Figure ����� The list of jobs submitted to the supercomputer�

���� Metacomputing Editor ���

Id Dependency Status Command

3 1,6 Waiting Maui: Start Optimal Interpolation
1 - Running Cornell: Copy File to Maui MHPCC
2 - Running Syr.: Copy File to Maui MHPCC
4 3 Waiting Maui.: Copy File to Syracuse
5 4 Submitted Syr.: Prepare Graphical Output
6 1 Waiting Maui: Start Quality Control
12 11 Waiting Cornell: Start Optimal Interpolation

CP ~/4dda/observations.dat maui:~/run

Job 1

 current anticipated time of completion: 30s
 no network failure encountered
 the machine tsunami in Maui is up

Figure ����� The list of jobs submitted to the metacomputing environment�

��� �� The Interface and Software Layer of the Metacomputer

Figure ����� The job submission form for supercomputers operating in batch mode�

���� Metacomputing Editor ��	

Batch Job
Generator

Graph
Editor

Batch
Queue

Batch
Server

Batch
Client

Job Server

User

local machineremote machines

Figure ���
� The details of the loosely coupled metacomputer�

parallel jobs which are executed asynchronously� For each job� a separate thread is created�

A job can be in the following states�

Submitted � the job is submitted and prepared for running on the target machine�

Running � the job is running on the target machine�

Completed � the job is completed and the result is available for other jobs�

Failed � the execution of the job has failed�

Waiting � the job waits on the completion of one of its dependencies �input resolution��

Halted � the job has been halted by the operator�

A separate list is used to collect failed jobs� They are either resubmitted� or after a particular

timeout� forwarded to another component of the metacomputing environment� Global control

is used to supervise the jobs in the batch queue�

��� �� The Interface and Software Layer of the Metacomputer

Job Replication

The mapping of jobs to machines operating in time�sharing and batch mode� forces one to

use di
erent strategies for the prediction of the runtime of a job� In time sharing mode� the

system values� like current load and load average� are used to predict the completion time of

the job� This is especially useful when a performance prediction function is available for the

job�

In case the performance prediction is not possible or the job is executed on a supercomputer

operating in batch mode� the execution time is not as easy to predict� One way to solve this

problem is to use a global queue and to submit all jobs to the global queue� The decision

regarding on which machine is executed� is performed by this queue� The batch operating

software CODINE is able to do this����
�� If this queuing system is not installed for the

machine� as it is in the current setup of the metacomputer� the situation is more complex�

Thus� the jobs are simply replicated on each one of the machines� The 	rst job completed

causes the other jobs to be terminated� They are removed from the queue� The disadvantage

of this strategy is that in case jobs are started at the same time� expensive resources in CPU

cycles are wasted� Thus� one has to ensure to kill the jobs on all but one machine� The

machine on which the job is left is selected via its performance characteristics�

The supervision of the status of the machines can be achieved in multiple ways� It is possible

to run a Java server on the supercomputer side and send information about the status upon

request� The current setup allows the user to start a remote procedure call and look into the

job queue� Information about the status of the running jobs are obtained from the remote

procedure call� Figure ���
 depicts the details of the loosely coupled metacomputer�

Practical experience has been gathered while executing large jobs using more than ��� pro�

cessors on the SP� in Cornell and in Maui� During these experiments the jobs have been

submitted to both machines� Whenever a job got accepted in a machine� the corresponding

job on the other machine got deleted� With this simple strategy� a reduction of ��
 hours wall

clocktime for the completion of the job could be achieved� Therefore� the turnaround time of

the computations to be performed is drastically reduced during peek hours�

���� Dynamic Resource Management ��

x

y

+

add shift

C

D

B

A r
1

r
2

x

y
+

C

D

BA

r 1
r 2

=

=

a) b)

Figure ����� Di�erent paradigms expressed in a data�ow graph

��� Dynamic Resource Management

This section illustrates the function of the dynamic resource management on an elaborate

example�

Figure ���� and ���� show the problem to be solved� Here� a program is displayed which

adds 	rst two vectors� x and y� Then� it performs a shift and the the procedures A� B� and C

are started using the result of the shift operation� The results of the calculation B and C are

forwarded to D and the 	nal result r�� and r� are obtained� A possible parallel execution is

depicted in Figure ����� A CM�� a SP�� and a workstation are utilized�

Step � � The resource mappings are speci	ed and the program is executed�

Step� � The data objects are mapped onto the CM�� A request is issued to test if the SP�

or the CM� have enough computational resources to perform the addition of the two

vectors� Let us assume� the CM� has enough resources�

Step� � Then� the addition is performed on the CM� and new requests are issued to test if

the shift operation can be performed on either machine� Let us assume� the CM� has

enough resources�

Step� � Then� the shift operation is performed on the CM��

��� �� The Interface and Software Layer of the Metacomputer

x

y

+

add shift

C

D

B

A r
1

r
2

x

y

+

add shift

C

D

B

A r
1

r
2

x

y

+

add shift

C

D

B

A r
1

r
2

?

?

x

y

+

add shift

C

D

B

A r
1

r
2

?

?

x

y

+

add shift

C

D

B

A r
1

r
2? ?

Step 1

Step 2

Step 3

Step 4

Step ..

Figure ����� Di�erent paradigms expressed in a data�ow graph

���� The Metacomputing Library ���

This is iterated for the whole computation� The last step in Figure ���� depicts a state

where multiple processes can be active� Process A is mapped onto the CM� and occupies

its resources� Thus� the processes B and C are mapped onto the SP�� after the result of

the shift operation has been transported to the machine� A truly heterogeneous execution of

the programs is performed� Because the processes have been executed on both machines� it

is advantageous to compile the instructions of the process� for both hardware platforms� in

advance and store them in a library� locally accessible for the machine� Thus� besides the

decision on which machine the process is executed� the decision about which software is used�

is implied by the hardware choice�

The programs generated in this way cause some overhead by using message passing to com�

municate with each other� In case the mapping of a sequence of processes is forced on only

one machine� a sequential program is generated instead of a message passing program� This

is essential for the use of the program environment for grand challenge problems� where speed

is a major factor�

��� The Metacomputing Library

Two libraries for users and developers are distinguished� Their function is similar� but their

access mechanism is bound by di
erent priorities of users and developers� Both libraries

store

�� the module source�

�� the machine on which the module�program can be compiled�

�� the compilation option for each machine�

�� a runtime prediction function� which depends on the number of processors used and on

the values of the input parameters to the module �usually referred to as the problem

size��

�� a table noting the actual runtime of the module during a previous run for each machine

�if available��

��
 �� The Interface and Software Layer of the Metacomputer

The values in the tables are normed� based on the exclusive usage of the machine� In addition�

there is a temporary library available in each computational unit which is attached to the

metacomputer� This library can hold precompiled modules� The timing information stored in

the library is used by the resource managementenvironment to schedule the module execution�

It is expected that the available libraries will grow rapidly and an information exchange is

implicitly achieved while using the metacomputing environment� This can be of advantage for

industrial usage� where prede	ned solutions are often acquired���� through rapid prototyping�

The idea for such a library evolved from the extensive performancemeasurements for solving a

system of linear equations for LU factorization with di
erent strategies in a parallel computer

using di
erent numbers of processors� Information similar to those published in ���
� �����

can be used to make the decision about which algorithm and how many processors� as well

as� which platform have to be used to minimize the execution time�

��� The Metacomputer Resource Monitor

Because of the increased number of resources included in the metacomputing environment�

a substantial amount of research should be spent on the issues involving the supervision

of the metacomputing environment by an operator� This includes security� and resource

management�

Because there are so many resources combined in a metacomputer� and many users are

expected to use the environment� a central control seems to be impractical� This is also due

to the fact that currently� the supercomputing centers do run separate batch queues�

To avoid congestion while monitoring the available resources in the metacomputer� a hier�

archical approach is appropriate� Figure ���� displays the view of such an hierarchically

organized metacomputer�

On the lowest level are the compute servers� They are connected to resource servers� which

supervise the resources available in a small compute cluster� Resource servers are connected

to other resource servers� which in turn� re�ect the resources available in the clusters associ�

ated with the resource server� Resource allocation of the machine is 	rst done in clusters close

to each other to reduce network tra�c� Thus� it will minimize intra�cluster communication�

For the practical operation of the metacomputer� it is important that resources can be dy�

namically added and removed� Because of this dynamical behavior� fault tolerance has to

��	� On Demand Publishing ���

.....
.....

.....

.....

.....

Figure ����� The WWW Metacomputer�

be maintained� This involves the remapping of a job to another component of the meta�

computer in case the original component fails� or is removed from the metacomputer� Job

runtime limits have to be established in order to prevent blocking of resources by one job�

Load information and queuing status of the di
erent components can be activated with the

geographical map� similar to the one shown in Figure ��
�

��� On Demand Publishing

Frequently� the data produced for grand challenge problems are too large to store� The

reproduction of the experiments are a preferred alternative� Since it is expected that the

users of the data are non experts in parallel programming� even the parallel programming

environment is too complicated� The scientists are not interested in the actual execution of

the program� Their requirements are�

�� Easy access�

�� Correctness�

��� �� The Interface and Software Layer of the Metacomputer

�� Availability of the result�

On demand publishing provides the solution to this requirements� Today� WWW browsers

are familiar to a wide computer user community����� Thus� it is natural to incorporate the

access to the program solving the grand challenge via a HTML page� This page can be

publicized with the help of an accessible HTTP server� Methods are included in the page to

start the program� and display the result�

For the NASA assimilation system� it is most natural to give the scientist some control of the

input parameters� This is shown in Figure ����� where various parameters can be modi	ed�

Normally� the parameters would have to be changed in the complex original FORTRAN

program and data 	les� Changing the parameters requires recompilation� Because of the

modular properties of the �DDAS� it is advantageous to design the page similar to the module

�owchart� as introduced in Figure ���� Then� the resulting output can be distributed in an

appropriate form� e�g� GIFs accessible through additional WEB pages or a down�loadable

	le including the datasets in a prede	ned format�

Besides the reproduction of on demand data� the NASA project provides a set of standard

experiments useful for many researches in the atmospheric science community� In this case�

it is a waste of resources to reproduce the dataset over� and over again� Thus� it is su��

cient to store the data set� and the programs interpreting and displaying the dataset� on an

FTP server� Download can be activated via anonymous FTP� incorporated in an HTML

page� which is accessible on the World Wide Web�WWW�� A step in this direction for the

NASA DAS is the planned Data Online�Monitoring System �DOLMS� by DAO����� Here�

the selection of single GIF images are used to distribute results�

The amount of data involved for displaying� requires a fast data visualization package�

Providing a WWW interface to a sequence of downloadable GIF pictures will not provide

the speed required� Thus� it is better to download the considerably large dataset directly

to the local machine to do further analysis and display o$ine� Another way� is to use Java

scripts and forward the GIF images� in a pipelined fashion to the requesting machine� even

before the 	gure is actually demanded�

��	� On Demand Publishing ���

Figure ����� A WWW interface for the on Demand calculation of the �DDAS�

��� �� The Interface and Software Layer of the Metacomputer

��� Data�ow� a Multiparadigm Program Notation

This section answers the question�

Can data�ow be used to express programs in a multiparadigm way�

The answer is yes� and from the considerable amount of theoretical work spent in the de	nition

of data�ow languages to be expected�

Program Notation

As seen before� the data�ow speci	cation of the program has to be translated into an ap�

propriate parallel program� Depending on the resources and the programming paradigm

di
erent translations are possible� They can be executed on di
erent machines� even though�

the program is only speci	ed once� To show the usefulness of this multiparadigm program�

ming concept� it is referred to Figure ���� a� and the Programs ������
� The original program

can be translated in an arbitrary parallel or sequential programming language�

Program ��� An example formulation in a CSP like program�

� Vector x� y� w� r�� r�� t�� t�"
� do sequential

� w� VectorShift�VectorAdd�x� y�� left�"
� end
� do parallel

� r� � A�w�"
� do sequential
� do parallel

	 t� � B�w�"
�
 t� � C�w�"
�� end
�� r� � D�t�� t��"
�� end
�� end

The 	rst intuitive formulation of a CSP�
�� like code �Program ���� shows that the parallel

program is more complicated than the visual representation makes believe� Nested state�

ments are used and temporary variables have to be explicitly used to express the parallelism�

���� Data�ow� a Multiparadigm Program Notation ��	

Using a message passing paradigm� makes the program even more complicated� as shown in

Program ���� Writing the program in a data�ow language makes the program notation even

more di�cult because 	ring rules have to be established�
�� �
� ���� The power of data�ow

computation becomes more obvious if a language is de	ned which implicitly generates the

	ring rules� Program ��� shows the notation in a language using such implicit semantic rules�

Nevertheless� now it is still more complicated to see the the dependencies between the separ�

ate calculations� In case the program is more complex� the problem increases� Therefore� the

graph representation is still preferable� Other program representation can be immediately

derived from the process graph� Programs ������
 show a sequential Fortran�� and Fortran��

program� as well as� an HPF program�

Data�ow Engine

Many ways to enable the data�ow concepts on distributed computers exist�

In the 	rst approach� each computational unit acts as a data�ow processor� as known from

the hardware implementations used in image processing� Each processing unit listens to a

port and grabs the data which is necessary for a computation stored in the computational

unit� Once all the data for a calculation is agglomerated� the command is executed and new

data is generated� The new data is then distributed to the network and �ows between the

processing units� as long as it is not used by another command� It is essential to include

special replication of the data in case it is used by several commands� Thus� each data has an

additional tag connected to it representing the number of times it has to be picked up by a

processing unit before it can expire� This type of data�ow is useful when few processors are

used� and the message and communication overhead is small� as it is in certain applications of

image processing� In case it is not desirable to use this truly distributed concept of data�ow�

an easier implementation can be achieved with the help of a global scheduling mechanism

and policy� In the current implementation of the metacomputing environment� this strategy

is used� Here� a global processor supervises the execution of jobs and the progress of the

program is monitored during each time step� This approach is especially useful for coarse

grain parallel programs� Other methods are modi	cations to the ones described before�

It is interesting to simulate a resource driven data�ow� Here� data is kept in the computational

unit� as long as there is no unit found where the computation on the data can be performed�

In fact� this additional feature is implemented in the metacomputing environment�

��� �� The Interface and Software Layer of the Metacomputer

Data�ow Representation

A nice feature of the metacomputing editor is the ability to change the appearance of the

processing and data nodes� One can de	ne icons which can then be associated with the

di
erent nodes� In case a programmer prefers to visualize the vector structure of the problem�

vector icons could be used� An example for the diversity of the display� is shown in Figure ����

b�� The �ow of data has not changed�

��
 Related Research

A lot of research has been done in the 	eld of visual programming� in respect to parallel

computing�

The environment introduced in this paper� uses similar approaches as� i�e�� HeNCE and

CODE� Nevertheless� it extends the usage towards a realistic metacomputer while providing a

database of performance predictions� which guides the selection and mapping of programming

tasks to selectable resources�

A more detailed description of visual programming and their applications in parallel com�

puting can be found in literature���� �
��

A short summary of tools which will have an impact on the further improvement of the

metacomputing environment are listed next� Tools are distinguished which are used for

visual programming� as well as� metacomputing�

	���� Visual Programming

CODE

CODE is a visual parallel programming system� which allows users to compose sequential

programs into parallel programs� The parallel program is displayed as a directed graph�

where data �ows on arcs connecting the nodes representing the sequential programs� The

sequential programs may be written in any language� CODE will produce parallel programs

for a variety of architectures because its model is architecture�independent� The CODE

system can produce parallel programs for machines running PVM� as well as� for the Sequent

Symmetry�

��
� Related Research ��

HeNCE

HeNCE is a metacomputing environment based on PVM�
��� Its goal is to greatly simplify

the software development cycle� It implements a system for source 	le distribution and com�

pilation on remote nodes� Source 	les can be compiled in parallel on several machines� This

task is controlled by a global process manager� HeNCE lacks virtual machine management

facilities� since its primary goal is to simplify the programming task�

AVS

The Abstract Visualization System �AVS� is a commercial visualization environment avail�

able on a wide variety of compute platforms��� ���� � It is based on the software engineering

de	nition of data�ow� A �ow network of autonomous processes is generated visually� Data is

passed between input and output ports of the processes connected via edges� Each process

module 	res as soon as its inputs are present� Thus� it re�ects a statical data�ow model�

AVS provides a convenient type checking on its ports� Message passing occurs only through

the input and output ports� A global control manager coordinates the data transfer mech�

anism which is internally carried out by an Interprocess Communication�single machine� or

Remote Procedure Call mechanism �distributed machine�� Other similar systems to AVS�

are Explorer from SGI� Data Explorer from IBM� and Khoros ���� ��� ����

	���� Metacomputing

Legion

The Legion project is pursued at University of Virginia��
�� It attempts to create system

services for wide�area assemblies of workstations and supercomputers which provide the il�

lusion of a single machine� The Legion system is an object�oriented system based on C���

The Goal of the Legion system is to provide a shared object and shared namespace while

allowing�

�� parallel processing�

�� resource management�

�� fault tolerance�

��� �� The Interface and Software Layer of the Metacomputer

�� security�

�� wide�area network support� including managing facilities� and

� improved response time for submitted jobs�

The central part of the Legion system� are legion objects which are located in a shared

object space� The computational resources use this shared object space to exchange data

with each other� Currently� a test�bed based on top of Mentat� a parallel C�������� is used

for the implementation of a Campus Wide Virtual Computer�CWVC�� The Goal of the test�

bed is to demonstrate the usefulness of a Legion like system and to provide an interface

to high performance distributed computing resources� A single uni	ed 	le system is used

to allow the easy access of 	les on di
erent machines� A GUI allows the monitoring of

the available resources which are accompanied by a resource accounting service� Automatic

runtime scheduling is available� A debugger can support post mortem debugging�

WAMM

The Wide Area Metacomputing Manager �WAMM� is a project started in Italy involving

several sites������ The Central part of WAMM is a GUI� which provides a geographical view

of the system� Hosts are grouped in a tree structure following their geographical distribution�

On the lower level are the hosts connected via a Local Area Network �LAN�� Several LAN�s

can be combined to a Medium Area Network �MAN�� All of them are connected via a Wide

Area Network �WAN��

The WAMM internals are based on remote command execution of UNIX commands� The

actions associated with the functions are displayed in the GUI� One aspect of the environment

is the remote compilation of programs� Tools are provided� which greatly simplify this task�

The programenvironment is based on PVM�� thus allowing the execution of parallel programs

on previously selected machines�

WANE

TheWide Area Network Environment �WANE� is developed at the Supercomputer Computa�

tions Research Center� The design goals are high scalability� fault tolerance� and information

encompassment� It is based on the integration of several ongoing software projects� WANE

��
� Related Research ���

provides a comprehensive internet service package� allowing servers to connect to the internet

and make use of client software for several platforms� A WANE server provides extensive

user access controls� hierarchical administrative levels� multiple user domains� and a user

friendly GUI to add users to the environment� The client software provides several software

packages for the internet connection� including WWW browsers� network connection pack�

ages� and many more� WANE is a simple way to get connected to the internet easily� Thus�

it can provide a basis for the connectivity of resources to a metacomputing environment�

Issues of programming in this heterogeneous environment are not addressed so far�

XPVM

XPVM provides a graphical console for PVM with support for virtual machine and process

management������ The user is able to change the metacomputer con	guration �by adding

or removing nodes� and spawn tasks� in a way similar to WAMM� In contrast to WAMM�

XPVM does not provide the same geographical view of the virtual machine� It is more

suitable for smaller systems� XPVM does not include facilities for source 	le distribution�

parallel compilation and execution of commands on remote nodes� It includes a section for

trace data analysis and visualization� which is not yet implemented in WAMM�

Globus

The Globus project at Argonne National Laboratory� is developing a basic software infra�

structure for the computations that integrate geographically distributed computational and

information resources���� ���� The I�WAY project demonstrated several components of Glo�

bus� The focus of the Globus project is the development of low�level mechanisms that can be

used to implement higher�level services� Furthermore� techniques that allow those services

to observe and guide the execution are planned� Overall� a single low level�infrastructure is

provided�

MetaWeb

The goal of the MetaWeb project at NPAC is to provide a scalable metacomputermanagement

package� based on WWW technology� The project will build on existing knowledge and

experience with the management of LAN based computing clusters� While establishing such

�	
 �� The Interface and Software Layer of the Metacomputer

an environment� the through�put of user applications can be increased by utilizing networked

computing resources� The environment will be truly heterogeneous� enabling the usage of

PCs� MPPs and vector�supercomputers� The computer language Java is used to provide

the services� Fault tolerance is a primary issue in MetaWeb� The status of a calculation

is retained� even if the system reboots itself� In addition� application jobs are resumed or

restarted on failure�

A 	rst prototype has been used on the basis of Perl�CGI�scripts� C�modules and HTTP serv�

ers� It has been successfully used for the Rivest�Shamir�Adelman �RSA� Factoring challenge�

It is a public�key cryptosystem for both encryption and authentication� Each party has two

keys� the public key and a corresponding secret key� The secret key can be derived via factor�

ing from the public key� The di
erent calculations to obtain the factoring are embarrassingly

parallel and can be distributed over a number of machines� The result is collected and the

main answer is given� More information about the system can be found in �����

��� Advantages and Problems with Metacomputers

The advantages of a functioning metacomputing environment are obvious� A metacomputing

environment�

�� utilizes the strength of individual computers and programming paradigms�

�� distributes a computational problem over the available resources�

�� can dynamically modify the application�

�� provides transparency for the user�

Common problems associated with metacomputers are the�

�� improvement of the existent software�

�� improvement of the bandwidth of the networks�

�� improvement of the quality of the user interface�

�� software engineering complexity to design a metacomputer�

���� Current State and Future Research �	�

A metacomputer environment is not only useful for grand challenge applications� but also for

national challenge applications and even smaller ones� A common example is the usage of

distributed telemedicine� where di
erent resources are utilized to support diagnosis� remote

imaging� and expert system shells�

��� Current State and Future Research

In this chapter� the usefulness of an interactive parallel programming environment for sci�

enti	c grand challenge problems were demonstrated� The environment makes it possible to

view the available resources as a metacomputer and reduce the development time of parallel

programs� Dynamic process assignment is used to assist the execution of the parallel pro�

grams on diverse computing resources� This not only includes the selection of the best suited

hardware platform� but also the appropriate software for solving the problem�

Currently� the environment consists of many modules which have to be integrated with each

other� Several aspects of the metacomputing environment need de	nite improvement� One

of them is the metacomputing editor� which should allow hierarchical de	nition of modules

in order to prevent cluttering of the display with too large graphs�

An independent research 	eld is the performance prediction and utilization of the di
erent

machines� So far� only simple strategies are chosen which can be implemented in a reasonable

time frame� A lot of research has to be done in the security issues of the metacomputing

environment� The current implementation uses UNIX password authorization� before a job

with the loosely coupled metacomputing environment is submitted or started� More complex

security issues arise while distributing precompiled code with the help of world readable

libraries� A method has to be established to prevent �Trojan horses��

Many other extensions are planned in future research projects� One of the most striking will

be the inclusion of a message passing layer for the WWW� This will allow to use resources

accessible via the WWW� Integration of a Fortran Interpreter� or language tools to simplify

the distribution of programs� is desirable� For mathematical problems� scripting languages

like matlab� scilab� or mathematica� could be viable alternatives to interpreted Fortran or

Java�

�	� �� The Interface and Software Layer of the Metacomputer

Program ��� An example formulation in a message passing like program�

process main

Vector x�y�w�r�� r�� t�� t��

w � VectorShift�VectorAdd�x�y��left��

sendto�w� A�

sendto�w� B�

sendto�w� C�

r� � receivefrom�A�

r� � receivefrom�D�

end process

process A

r � do calculation A

sendto�r� main�

end process A

process B

r � do calculation B

sendto�r� D�

end process B

process C

r � do calculation C

sendto�r� B�

end process C

process D

b � receivefrom�B�

c � receivefrom�C�

r � do calculation D�b�c�

sendto�r� B�

end process D

���� Current State and Future Research �	�

Program ��� An example formulation in a Data�ow like language with no program counters

w� VectorShift�VectorAdd�x� y�� left�"
r� � A�w�"
r� � D�B�w�� C�w��"

Program ��� An example formulation in FORTRAN�� with program lines� The functions
B and C are executed in the order determined by the compiler�

� INTEGER X�N�� Y �N�� w�N�� r��N�� r��N�
� w � EOSHIFT�x� y�"
� r� � A�w�"
� r� � D�B�w�� C�w��"

Program ��	 An example formulation in FORTRAN�� with program lines� The functions
B and C are executed in the order determined by the compiler�

� INTEGER X�N�� Y �N�� w�N�� r��N�� r��N�
� do i � �� n
� w�i� � x�i� � y�i�
� end do

� do i � �� n� �
� w�i� � w�i� ��
� end do
� r� � A�w�
	 r� � D�B�w�� C�w��

�	� �� The Interface and Software Layer of the Metacomputer

Program ��� An example formulation in HPF���� In HPF ��� there is no easy way to
incorporate task parallelism� HPF ��� will provide a special directive ON HOME�

� INTEGER X�N�� Y �N�� w�N�� r��N�� r��N�
� #HPF%DISTRIBUTE X�BLOCK�� Y �BLOCK�� w�BLOCK�
� w � EOSSHIFT �x� y�
� r� � A�w�
� #HPF%ON HOME p���
� t� � B�w�
� #HPF%ON HOME p���
� t� � C�w�
	 #HPF%ON HOME p���
�
 r� � D�t�� t��
�� #HPF%ON HOME p���

Chapter

Conclusion

In this dissertation� the following goals and results have been accomplished�

	 It could be shown that the existent production version of the NASA data assimilation

system can be parallelized for MIMD machines� besides vector supercomputers�

	 Problems during the parallelization are encountered and solutions to solve them are

found� Most of the problems were based on the original �dusty deck� approach�

	 The sequential assimilation system could be optimized� Improvements have been for�

warded to the originators� resulting in an improvement of the numerical accuracy of the

code�

	 A new deterministic quality control algorithm is outlined� which is planned to be in�

cooperated into the next generation of assimilation systems at the NASA GSFC Data

Assimilation O�ce�

	 Di
erent domain and functional decompositions have been analyzed�

	 Di
erent parallel algorithms based on the domain and functional decompositions have

been implemented and tested� The analysis shows that a decomposition of the poles is

necessary to avoid non�scalability of the algorithm�

	 If more processors are used than the domain decomposition allows� the e�ciency de�

creases�

���

�	� �� Conclusion

	 A simple algorithm has been derived using a hierarchical domain decomposition� The

decomposition is based on block decompositions and cyclic decompositions� in hori�

zontal and vertical levels� Its speedup is almost linear while using up to ��� processors�

	 An analysis based on the simpli	cation for parallel programming paradigms could be

found� It has analogies to concepts as used in the 	eld of atmospheric science� It is the

well known data�ow concept�

	 The design of a metacomputing environment is outlined� using the data�ow concept as

basic programming paradigm�

	 The data�ow concept can be used on di
erent levels of parallel programming� This in�

cludes support for tightly coupled metacomputers and loosely coupled metacomputers�

Programs running on tightly coupled machines use direct message passing between pro�

cesses� while programs running on loosely coupled metacomputers use asynchronous

message passing between �jobs��

	 A dynamical data�ow model is preferable to support a loosely coupled metacomputing

environment� in contrast to a static data�ow model�

��� Implications of the Grand Challenge Application on the

Metacomputing Environment

The following list summarizes the implications of the grand challenge application on the

metacomputing environment�

	 Grand challenges deal with limited resources� A metacomputing environmentmust have

an e�cient resource management strategy to support grand challenge applications�

	 Due to the complexity of the system� applications researchers are not able to learn

everything� Most of the functions should be hidden� The user interface should be

simple and intuitive� To reach acceptance it must be possible to integrate programs

written in FORTRAN and other sequential programming languages into the framework�

In the same way� other programming tools should be supported�

���� Future Avenues of Research �	

	 A graphical metacomputing editor is useful to support program de	nition and execu�

tion�

	 The distinction of data� process� and machine as nodes in a program graph is important�

It can support mapping of data to a particular machine� The program �ow is controlled

with the help of edges in the set of data and process nodes�

	 It is advantageous to support resource selection� This �violation� to the black�box

metacomputing concept is necessary to achieve high performance� in case resource

restrictions are known at compile time� This is done with a separate graph specifying

the mapping between machines and data� as well as� processes�

	 Di
erent programming paradigms should be supported to use the architecture most

suitable for the problem�

	 Documentation support has to be granted to help improve the quality of the code� It

is not useful to redistribute an undocumented code� nor to include it in a production

version� because maintenance will become too expensive in the future�

	 It is desirable to support fault�tolerance and automatic process or job migration in

order to minimize the overhead for the user� in case problems occur during the program

execution�

	 To reuse components by others� a library of components should be supported� The

library contains performance prediction data whenever possible� Once a function of the

library is used and the performance data is useful for reusability� it is stored for future

predictions�

	 Batch operation should be supported� to allow the submission of large repetitive jobs�

	 Interactive operation should be supported� to allow easy code development�

��� Future Avenues of Research

The following future research topics are revealed by the work conducted�

�	� �� Conclusion

	 The complete redesign of the
����� line OI algorithm is desirable� The data replication�

as used in the current model variables� can be overcome while developing a localized

data assimilation algorithm� The algorithm should be based on the de	nition of a local

grid� rather than the availability of a globe grid representation�

	 Though one of the goals of Java is to be platform independent� it has di
erent thread

scheduling policies on di
erent hosts� Thus� program development with threads is

more complex than it should be� It is desirable to extend Java to incorporate a switch

controlling the thread scheduling policy� Preemptive and non�preemptive scheduling

should be possible�

	 A bug in the runtime environment of Java prevents the usage of the runtime method

on some platforms� An alternative is to rewrite the runtime environment or provide

the execution of operating system calls in a separate C or C�� application� which

communicates with the Java applet�

	 Many modules of the metacomputing environment have been prototyped� The incor�

poration and more thorough� testing should be performed�

	 The issue of security has to be studied more thoroughly�

	 The development of a reliable and fault�tolerant WWW message passing library is of

utmost importance to integrate computational resources available on the WWW�

Due to its economical feasibility� the utilization of resources on the WWW can help solving

grand challenge problems�

Appendix A

Abbreviations

���

��
 A� Abbreviations

Abbreviation Meaning
CO� Carbondioxide
Ng be the number of observations� e
ecting a particular grid point g
Ag be the resulting analysis at grid point g
Fg be the 	rst guess value at the grid point g
Fi be the 	rst guess value for the ith observation
Oi be the ith observed value
Wgi be the yet undetermined weight function
�DDA Four Dimensional Data Assimilation
�DDAS Four Dimensional Data Assimilation System
AS Assimilation System
AVS
CPU Central Processing Unit
DAO Data Assimilation O�ce
DAS Data Assimilation System
ECMWF European Centre for Medium Weather Forecast
FLOP MFLOPS� GFLOPS� ��� �
GCM General Circulation Model
GSFC Goddard Space Flight Center
GUI Graphical User Interface
HPF High Performance Fortran
HUV Height�u�wind�v�wind �analysis�
HiPPI
IEEE
MIMD Multiple Instruction Multiple Data
MIX Moisture�vapor �analysis�
MPI Message Passing Interface
MPP Massively Parallel Processors
NASA National Aero and Space Agency
NPAC Northeast Parallel Architectures Center
NQS Network Queuing System

A� Abbreviations ���

Abbreviation Meaning
OI Optimal Interpolation
OOMPI Object Oriented MPI
PC Personal Computer
PSAS Physical space System Assimilation System
PVM Parallel Virtual Machine
SIMD Single Instruction Multiple Data
SLP Surface�level�pressure �analysis�
WAMM
WANE
WORD MWORD� GWORD� ��� �
WWW World Wide Web
mb millibar
s seconds

Appendix B

Program and Code Examples

B�� Generating Tightly Coupled Applications with the Meta	

computing Environment

The metacomputing editor can automatically generate a message passing code based on Ob�

ject Oriented MPI �OOMPI������ Let� the following textual representation be the de	nition

of a data object�

DATA observations BEGIN

const int n���

float x�

float y�

float temperature�

float pressure�

int model �n	�

END

Then� the code for inclusion in the message passing program looks as follows�

 Author� Gregor Von Laszewski

 Tool � GVL �Graphical Visual Language�

 Class � �TYPEobservations
 derived from �observations

� include files

const int TYPEobservationsTAG � ����

�
�

B��� Generating Tightly Coupled Applications with the Metacomputing
Environment ���

class TYPEobservations � virtual public OOMPI�User�type f
public�

TYPEobservations�void� �

OOMPI�User�type�type� this� TYPEobservationsTAG� f

 The Datatype

if ��type�Built��� f
type�Struct�start�this��

type �� x �

type �� y �

type �� temperature �

type �� pressure �

type�Entry�model�n��

type�Struct�end���

g
g�

void Print�void� f
cout �� endl�

cout �� �Datatype� observations� �� endl�

cout �� �float x � � �� x �� endl�

cout �� �float y � � �� y �� endl�

cout �� �float temperature � � �� temperature �� endl�

cout �� �float pressure � � �� pressure �� endl�

cout �� �int model�� �� n �� �	 � ��

gvl�Print�model�n��

g

void Set�void� f
int rank � OOMPI�COMM�WORLD�Rank���

Random�x�rank��

Random�y�rank��

Random�temperature�rank��

Random�pressure�rank��

Random�model�n�rank��

g

private�

 The Data for the class

const int n�� �

��� B� Program and Code Examples

float x �

float y �

float temperature �

float pressure �

int model �n	 �

 static variable to hold the new datatype

static OOMPI�Datatype type�

g�
OOMPI�Datatype TYPEobservations��type�

A simple application for the routines generated form the data de	nition block is given below�
It emulates a ring application�

int main�int argc� char �argv�	� f
OOMPI�COMM�WORLD�Init�argc� argv��

int rank � OOMPI�COMM�WORLD�Rank���

int size � OOMPI�COMM�WORLD�Size���

TYPEobservations msg�

if �rank �� �� f
for �int i � �� i � size� i��� f
OOMPI�COMM�WORLD�i	�Recv�msg��

cout �� � from � �� i �� � � � �

msg�Print���

g
g else f
msg�Set���

OOMPI�COMM�WORLD��	�Send�msg��

g
OOMPI�COMM�WORLD�Finalize���

g

Internally� a Java program generates the program codes as listed previously� The Java class
has the following methods�

class DataToMPI f

� global variables

� some other private functions

private void print�oompi�program �� f
�� prints the oompi program

g

B��� Generating loosely Coupled Applications with the Metacomputing
Environment ��	

private void read�String filename� f reads the file into the memoryg

private void ParseFile�� f
�� parses the file and extracts the variables as

�� well as their types and dimensions

g

public void generate�oompi�String filename� f
�� generates an OOMPI code

read �filename��

ParseFile���

print�oompi�program ���

g

public void generateTestRingCode�� f �� generates a test program g

g

B�� Generating loosely Coupled Applications with the Meta	

computing Environment

Once a loosely coupled job is generated with the help of the graph editor� it is transfered
to an intermediate language� which is similar to a shell script� This is essential� because a
programming of a tightly coupled metacomputer should also be allowed in textual form and
not only in graphical form� Naturally� the graphical representation is preferred�
The language is built around a couple of simple commands allowing remote 	le access and
remote compilation� Each command is attached with an id� which allows to generate de�
pendencies between jobs� Jobs are all submitted asynchronously� A special wait command
waits on the execution of the speci	ed job� A probe command returns if the speci	ed job has
already returned� A special command is the �rst command� which returns as soon as one
out of a speci	ed list of jobs returns� The cancel command cancels a job on the appropriate
machine�

B���� Remote Script Language

A simple script for compiling and running a program calculating the heat equation using the
SP� at Cornell and Maui looks like the following�

MKDIR PROJ id�mkdir

��� B� Program and Code Examples

wait id�mkdir

CP heat
Makefile�maui� cornell�PROJ
� id��

CP heat
Makefile�cornell� cornell�PROJ
� id��

CP heat
cmd�cornell� cornell�PROJ
� id��

CP heat
cmd�maui� cornell�PROJ
� id��

CP heat
draw�heat�c� cornell�PROJ
� id��

CP heat
heat�h� cornell�PROJ
� id��

CP heat
make�mpi�heat�D�c� cornell�PROJ
� id��

CP heat
make�ser�heat�D�c� cornell�PROJ
� id��

CP heat
mpi�heat�D�c� cornell�PROJ
� id��

CP heat
ser�heat�D�c� cornell�PROJ
� id���

wait id�����

APPLY cornell�PROJ
 make �f Makefile�cornell all id�make

wait id�make

jobno � SUBMIT cornell�cmd�cornell id�run

wait id�run

FINISH cornell jobno id�wait

wait id�wait

CP cornell�PROJ
final�dat � id�get

wait id�get

While using the concepts from task parallel languages� it is also desirable to provide a CSP
lice notation� The OCCAM programming language might model here as a base for the
concepts needed�

parallel �asynchronous� f
cornell ��� sequential f
MKDIR cornell�PROJ

B��� Generating loosely Coupled Applications with the Metacomputing
Environment ��

CP heat
Makefile�maui� cornell�PROJ
�

CP heat
Makefile�cornell� cornell�PROJ
�

CP heat
cmd�cornell� cornell�PROJ
�

CP heat
cmd�maui� cornell�PROJ
�

CP heat
draw�heat�c� cornell�PROJ
�

CP heat
heat�h� cornell�PROJ
�

CP heat
make�mpi�heat�D�c� cornell�PROJ
�

CP heat
make�ser�heat�D�c� cornell�PROJ
�

CP heat
mpi�heat�D�c� cornell�PROJ
�

CP heat
ser�heat�D�c� cornell�PROJ
�

APPLY cornell�PROJ
 make �f Makefile�cornell all

jobno�cornell � SUBMIT cornell�cmd�cornell

g

maui ��� sequential f
MKDIR maui�PROJ

CP heat
Makefile�maui� maui�PROJ
�

CP heat
Makefile�cornell� maui�PROJ
�

CP heat
cmd�cornell� maui�PROJ
�

CP heat
cmd�maui� maui�PROJ
�

CP heat
draw�heat�c� maui�PROJ
�

CP heat
heat�h� maui�PROJ
�

CP heat
make�mpi�heat�D�c� maui�PROJ
�

CP heat
make�ser�heat�D�c� maui�PROJ
�

CP heat
mpi�heat�D�c� maui�PROJ
�

CP heat
ser�heat�D�c� maui�PROJ
�

APPLY maui�PROJ
 make �f Makefile�maui all

jobno�maui � SUBMIT maui�cmd�cornell

g
g

�job � first��maui��cornell��

switch ��job� f
case maui� �machine��maui�� �kill��cornell�� �killid � �maui� break�

case cornell� �machine��cornell�� �kill��maui�� �killid � �cornell� break�

g
KILL �kill �killid

CP �machine�PROJ
final�dat �

��� B� Program and Code Examples

B���� The Java Classes for Remote Computer Handling

The commands speci	ed above are available as Java class�

public class META f

public static int MKDIR �String machine�

String base�directory�

String directory�

public static int RM �String machine�

String base�directory�

String file�

public static int EXISTS �String machine�

String directory�

String file�

public static void CP �String from� String to�

public static void GET �String machine�

String directory�

String file�

public static int APPLY �String machine�

String directory�

String runcommand�

public static void getQueue �String machine�

String filename�

� other routines

g

B���� Scheduling

Internally a program scheduler as described in the main part of the Dissertation� organizes
the execution in a dynamical data�ow fashion�

class ProcessInfo f
String command�

Process p�

int id�

B��� Generating loosely Coupled Applications with the Metacomputing
Environment ���

String output�

String error�

String status�

int returncode�

String group�

ProcessInfo�String status�msg�

ProcessInfo��

g

class ProcessThread extends Thread f
private static int IdCounter � ��

private static Array process�list � new Array���

private int Id�

void synchronized SetId�int id�

void synchronized Start��

void Stop��

void Suspend��

void Resume��

g

class ProcessInfo f
String command�

Process p�

int id�

String output�

String error�

String status�

int returncode�

String group�

ProcessInfo�String status�msg�

ProcessInfo��

g

public class SYSTEM f

�

 B� Program and Code Examples

private static boolean verbose � true�

static private int IdCounter � ��

static private Array process�list � new Array���

private final static int Pos�id � ��

private final static int Pos�status � ��

private final static int Pos�command � ���

public static void setVerbose�boolean verboseFlag�

public static int RETURN�EXEC �String command� boolean echo�

public static void BUFFERED�EXEC �String command� String filename�

public static void RUN �String command�

public static int RETURN�RUN �String command� boolean echo�

public static synchronized void PrintRunningProcesses��

public static synchronized void AddProcesses�List l�

public static synchronized ProcessInfo Get�int id�

public static synchronized String GetOutput�int id�

public static synchronized String GetError�int id�

public static synchronized void KillProcess�int id�

public static synchronized void firstProcess�IntegerVector id�

public static synchronized void wait�int id�

public static synchronized void probe�int id�

public static synchronized void suspend�int id�

public static synchronized void restart�int id�

public static synchronized void PrintOutput �int id� String filename�

public static synchronized int oldEXEC �String command� boolean echo�

private static void DEBUG�String s�

private static void SEPARATOR��

private static void ERROR�String s�

public static synchronized int EXEC �String command� boolean echo�

public static void emacs�String filename�

g

public class process f
public static int EXISTS �String file� String machine�

public static void CP �String file� String machine� String directory�

public static void GET �String file� String machine� String directory�

public static void APPLY �String file� String machine� String directory�

public static void getQueue �String machine�

public static void getQueueMaui ��

public static void getQueueCornell ��

B��� Generating loosely Coupled Applications with the Metacomputing
Environment �
�

g

public class JOB f
public String IPName � new String���

public String MachineName � new String���

public String Filename � new String���

public String InitialDir � new String���

public String ErrorOutput � new String���

public String StdOutput � new String���

public String JobType � new String���

public String Class � new String���

public String Time � new String���

public String Notify � new String���

public int MinProcessors � ��

public int MaxProcessors � ��

public String Email � new String���

public String Commands � new String���

public JOB ��

public void write�data��

public void write�job�file �String filename�

g

Bibliography

��� NCCS Science Highlights� Earth and Space Sciences� Supercomputing and Mass Stor�

age Applications� �����

��� Ahmad� I� Dynamic Load Balancing for Large Distributes and Massively Parallel Mul�

ticomputer Systems� PhD thesis� Computer Science Department at Syracuse University�

June �����

��� Akl� S� G� The Design and Analysis of Parallel Algorithms� Prentice Hall� New Jersy�

�����

��� Amdahl� G� M� Validity of the single processor approach to achieving large�scale

computing capabilities� In AFIPS Conference Proceedings ���
��� AFIPS Press�

��� AVS ��� Developer�s Guide and User�s Guide� May �����

�
� Baker� M�� Fox� G� C�� and Yau� H� Cluster Computing Review� Tech� Rep� �����

Center for Research on Parallel Computation� Nov� �����

��� Baker� W� E�� Bloom� S� C�� Woollen� J� S�� Nestler� M� S�� and Brin� E�

Experiments with a Three�Dimensional Statistical Objective Analysis Scheme Using

FGGE Data� Monthly Weather Review ���� � �������

��� Baumgardner� J� R�� and Frederickson� P� O� Icosahedral Discretization of the

Two�Sphere� SIAM Journal of Numerical Analysis ���
 �Dec� ������ ����������

��� Beguelin� A�� Dongarra� J�� Geist� G� A�� Manchek� R�� and Sunderam� V�

A user�s guide to PVM� Parallel virtual machine� Tech� Rep� TM�����
� Oak Ridge

National Laboratory� �����

���

BIBLIOGRAPHY �
�

���� Beguelin� A�� Dongarra� J�� Geist� G� A�� Manchek� R�� and Sunderam� V�

A user�s guide to PVM ���� Parallel virtual machine� Tech� Rep� TM�����
� Oak Ridge

National Laboratory� �����

���� Bic� L�� and Gaudiot� J�� Eds� Special Issue� Data�ow Processing ������� vol� ��

of Journal of Parallel and Distributed Computing�

���� Bjerknes� V� Dynamic Meteorology and Hydrography� Carnegie Institute� Gibson

Bros�� New York� �����

���� Brouwer� A� E�� Cohen� A� M�� and Neumair� A� Distance�Regular Graphs�

Springer Verlag� New York� �����

���� Browne� J� C�� Hyder� S� I�� Dongarra� J�� Moore� K�� and Newton� P�

Visual Programming and Debugging for Parallel Computing� IEEE Parallel and Dis�

tributed Technology �� � �Spring ������

���� Center for Analysis and Prediction of Storms� Advanced Regional Prediction

System� version ��� ed� University of Oklahoma� Oct� �����

��
� Chandy� K� M�� and Kesselman� C� Compositional C��� Compositional Parallel

Programming� Tech� rep�� California Institute of Technology� �����

���� Chen� M�� Cowie� J�� Fox� G� C�� Furmanski� W�� and Rebbi� C� WebWork�

Integrated Programming Environment Tools for National Grand Challenges� Tech�

Rep� CRPC�TR��
��� Center for Research on Parallel Computation� Rice University�

June �����

���� Cheng� D� Y� A Survey of Parallel Programming Languages and Tools� Tech� Rep�

RND�������� NASA Ames Research Center� Mo
et Field� CA� Mar� �����

���� Cheng� G� A Data�ow�based Software Integration Model in Parallel and Distributed

Computing and Applications� PhD thesis� Syracuse University� ���
�

���� Choi� J�� Dongarra� J� J�� Pozo� R�� and Walker� D� W� Scalapack� A scalable

linear algebra library for distributed memory concurrent computers� In Proceeding

of the Fourth Symposium on the Frontiers of Massively Parallel Computation �������

IEEE Computer Society Press� pp� ��������

�
� BIBLIOGRAPHY

���� The Connection Machine CM�� Technical Summary� Oct� �����

���� CODINE� http���www�genias�de�genias�english�codine�codine�html�

���� Cohn� S� E�� Sivakumarun� N�� and Todling� R� Experiments with a Three�

Dimensional Statistical Objective Analysis Scheme Using FGGE Data� Monthly

Weather Review �Dec� ������ �������
��

���� Cooperation� I� IBM Visualization Data Explorer �DX�� http���www�

i�almaden�ibm�com�dx��

���� Cray� Cray Performance Optimization Manual� man performance on a Cray�

��
� Daley� R� Atmospheric Data Analysis� Cambridge Atmospheric and Space Science

Series� Cambridge University Press� �����

���� Data Online Monitoring System �DOLMS�� http���dao�gsfc�nasa�gov�restricted links�monitoring�

Sept� ���
� Restricted access for GSFC�

���� DaSilva� A� Personal communication� �����

���� World Wide Web Cite of the Data Assimilation O�ce �DAO�� NASA Goddard Space

Flight Center� http���dao�gsfc�nasa�gov�restricted links�monitoring� Sept� ���
� Re�

stricted access for GSFC�

���� Dennis� J� B� First Version of a Data Flow Procedure Language� vol� �� of Lecture

Notes in Computer Science� pp� �
����
�

���� Dennis� J� B� A preliminary architecture for a basic data��ow Processor� In ACM

Proceedings of the Second Annual Symposium on Compute Architecture �Jan� ������

pp� ��
�����

���� Dongara� J� Performance of various computers using standard linear equation soft�

ware� Tech� Rep� CS������� Oak Ridge National Laboratory� Oct� ��������
�

���� El�Rewini� H�� Lewis� T� G�� and Ali� H� H� Task Scheduling in Parallel and

Distributed Systems� Prentice Hall� �����

BIBLIOGRAPHY �
	

���� Eliassen� A� Provisional Report on Calculation of Spatial Covariance and Autocor�

relation of the Pressure Field� Tech� rep�� Videnskaps�Akademiet� Institut for Vaer og

Klimaforskning� Oslo� �����

���� Executive Office of the President� Office of Science and Technology

Policy� A Research and Development Strategy for High Performance Computing� Nov�

�����

��
� Fenton� N� E� Software Metrics� A Rigorous Approach� Chapman and Hall� �����

���� Fenton� N� E� Software Assessment� A necessary scienti	c basis� Trns� Soft� Eng�

�� �� ������� ������
�

���� Flanagan� D� Java in a Nutshell� O�Reiley� ���
�

���� Flynn� M� J� Some Computer Organizations and Their E
ectiveness� IEEE Trans�

Computers C���� � �September ������ �����
��

���� Forum� H� P� F� High Performance Fortran Language Speci	cation� Tech� rep�� Rice

University� �����

���� Foster� I�� and Chandy� K� M� Fortran M� A Language for Modular Parallel Pro�

gramming� Tech� Rep� Preprint MCS�P��������� Mathematics and Computer Science

Division� Argonne National Laboratory� Argonne� Ill�� ����� �����

���� Foster� I�� and Kesselman� C� Globus� A Metacomputing Infrastructure Toolkit�

Tech� rep�� Argonne National Laboratory� ���
� http���www�globus�org�

���� Foster� I�� Kesselman� C�� and Tuecke� S� The Nexus Approach to Integrating

Multithreading and Communication� Tech� rep�� Argonne National Laboratory� ���
�

http���www�globus�org�

���� Fox� G� Parallel Computing in Industry� An Initial Survey� In Proc� of Fifth Aus�

tralian Supercomputing Conference �World Congress Centre� Melbourne� Australia�

Dec� ������

�
� BIBLIOGRAPHY

���� Fox� G�� and Furmanski� W� TowardsWeb � Java based High PerformanceDistrib�

uted Computing � an Evolving Virtual Machine� In IEEE Conference HPDC�� �Aug�

���
��

��
� Fox� G�� Furmanski� W�� Haupt� T�� and Klasky� S� WebFlow� A Visual

Problem Solving Environment for Wide�Area� Heterogeneous� Distributed High Per�

formance Computing� NPAC Proposal to the NSF New Technologies Program� July

���
�

���� Fox� G�� Johnson� M�� Lyzenga� G�� Otto� S�� Salmon� J�� and Walker� D�

Solving Problems on Concurrent Processors� Prentice Hall� New Jersey� �����

���� Fox� G� C� Parallel Computers and Complex Systems� In Complex Systems ����

From Biology to Computation ������� Bossomaier and D� G� Green� Eds�� Inaugural

Australian National Conference on Complex Systems� also CRPC�TR���

�

���� Fox� G� C�� and et al� InfoMall� A Scalable Organization for the Development of

HPCC Software and Systems� Tech� Rep� SCCS����� NPAC at Syracuse University�

Oct� �����

���� Fox� G� C�� and et al� InfoVision� Information� Video� Imagery and Simulation on

Demand� Tech� Rep� SCCS����� NPAC at Syracuse University� �����

���� Fox� G� C�� and Furmanski� W� Factoring on the World Wide Web Computing

Project� http���www�npac�syr�edu�factoring�html� �����

���� Fox� G� C�� and Furmanski� W� SNAP� Crackle� WebWindows# Tech� Rep�

SCCS���� NPAC at Syracuse University� ���
�

���� Fox� G� C�� Hiranadani� S�� Kennedy� K�� Koelbel� C�� Kremer� U�� Tseng�

C��W�� � and Wu� M��Y� Fortran D Language Speci	cation� Tech� Rep� SCCS���c�

NPAC at Syracuse University� ����� Rice University�TR�������

���� Fox� G� C�� Williams� R� D�� and Messina� P� C� Parallel Computing Works�

Morgan Kaufmann� ����� http���www�npac�syr�edu�copywrite�pcw�

���� Gandin� L� Objective Analysis of meteorological �elds� Gridoment� Leningrad� ��
��

translation to English� Israel Program for Scienti	c Translation� ��
��

BIBLIOGRAPHY �

��
� Golub� G� H�� and Loan� C� F� V� Matrix Computations� John Hopkins University

Press� �����

���� Guo� J�� and da Silva� A� Computational Aspects of Goddard�s Physical�Space

Statistical Analysis System �PSAS�� In Second UNAM�CRAY Supercomputing Con�

ference on Numerical Simulations in Environmental and Earth Sciences �Mexico City�

Mexico� June ������ updated in Nov� �����

���� Haupt� T�� Hawick� K�� and Macivic� M� Evaluation of HPF Compilers� Personal

communication� ��������

���� Haupt� T�� and Klasky� S� Implementation of the T� code in HPF�

http���www�npac�syr�edu�users�haupt�bbh�HPF�index�html� ���
�

�
�� Heikes� R� P� The Shallow Water Equations on a Spherical Geodesic Grid� Tech�

Rep� ���� Department of Atmospheric Science Colorado State University� �����

�
�� PVM and HeNCE Programmers Manual� http���www�epcc�ed�ac�uk�epcc��

publications�cray�pvm�hence����index�html�

�
�� Henderson�Sellers� A�� Henderson�Sellers� B�� Pollard� D�� Verner� J��

and Pitman� A� Applying Software Engineering Metrics to Land Surface Parameter�

ization Schemes� Journal of Climate � �May ������

�
�� Hoare� C� A� R� Communicating Sequential Processes� Prentice Hall� �����

�
�� Hudson� A� Reference to Performance Data Automatically Collected on the GSFC

Cray� NASA GSFC� Data Assimilation O�ce� Personal Communication� Jan� ���
�

�
�� Hwang� K�� and Briggs� F� A� Computer Architecture and Parallel Processing�

McGraw�Hill� ���
�

�

� �th International Symposium on Solving Irregular Structured Problems in Parallel�

June �����

�
�� Isaksen� L� Parallelizing the ECMWF Optimum Interpolation analysis� In Parallel

Supercomputing in Atmospheric Science
 Proceedings of the Fifth ECMWF Workshop

on the Use of Parallel Processors in Meteorology �Nov� ������

�
� BIBLIOGRAPHY

�
�� Jagannathan� R� Parallel and Distributed Computing Handbook� McGrawhill� ���

ch� Data�ow Models�

�
�� Java�Linux� http���substance�blackdown�org�java�linux�html� Oct� ���
�

���� Kahn� G� A Semantic of a Simple Language for Parallel Processing� In Proceedings

IFIP Congress �Amsterdam� ������ Elsvier North Holland� pp� ��������

���� Karp� R� M�� and Miller� R� E� Properties of a Model for Parallel Computations�

Determinacy� Termination� Queuing� SIAM Journal of Applied Mathematics �� ��

���

�� ����������

���� Khanna� R�� Ed� Distributed Computing� Prentice Hall� �����

���� http���www�khoros�unm�edu�khoros�khoros��home�html�

���� Kowalczyk� E� A� A soilcanopy scheme for use in a numerical model for the atmo�

sphere � �D standalone model� Tech� Rep� ��� CSRIO� DAR� �����

���� Kurihara� Y� A Finite Di
erence Scheme by Making Use of Primitive Equations of

a Spherical Grid� Monthly Weather Review �� �
��� ��������

��
� Legion� http���www�cs�virginia�edu� legion� ���
�

���� Lemay� L�� and Perkins� C� L� Teach Yourself Java in �� Days� Sams Net� ���
�

���� Lippman� S� B� C		 Primer� �nd ed� Addison�Wesley� ���

���� Lumsdaine� A�� Squere� J�� and McCandless� B� Object Oriented MPI �OOMPI��

A C		 Class Library for MPI� University of Notre Dame� July ���
�

���� Lyster� P� M�� Cohn� S� E�� Menard� R�� Chang� L��P�� Lin� S��J�� and Olsen�

R� An Implementation of a Two Dimensional Kalman Filter for Atmospheric Chem�

ical Constituent Assimilation on Massively Parallel Computers� submitted to� Monthly

Weather Review �June ������ NASA GSFC Data Assimilation O�ce� Greenbelt� Mary�

land�

BIBLIOGRAPHY �
�

���� Makivi�c� M�� and von Laszewski� G� High�Performance Computing and Four�

Dimensional Data Assimilation� The Impact on Future and Current Problems� Tech�

Rep� Final Report� NPAC at Syracuse University� Aug� ���
�

���� MPI � Document for a Standard Massage�Passing Interface� University of Tennesse�

Nov� �����

���� MPI� A Message�Passing Interface Standard� http���www�mcs�anl�gov�mpi�mpi�

report�mpi�report�html� May �����

���� NASA Data Assimilation Office at Goddard Space Flight Center� Data

Assimilation Program Version ���� Greenbelt� MD� ����� The version ���s has been

made available by Mike Seablom�

���� NASA Data Assimilation Office at Goddard Space Flight Center� Data

Assimilation Program Version ���� Greenbelt� MD� ����� The version ���mv has been

made available by David Lamich�

��
� Newton� P� Visual Programming and Parallel Computing� In Workshop on Envir�

onments and Tools for Parallel Scienti�c Computing �Walland� TN� May ������

���� Ousterhout� J� Tcl and the Tk Toolkit� Adisson Wessley� �����

���� Pfaendtner� J�� Bloom� S�� Lamich� D�� Seablom� M�� Sienkiewicz� M�� Sto�

bie� J�� and da Silva� A� Documentation of the Goddard Earth Observing System

�GEOS�� Data Assimilation System � Version �� NASA Technical Memorandum���
�
�

Vol��� NASA GSFC Data Assimilation O�ce� Greenbelt� Maryland� Jan� ����� �ftp��

���� Pfaendtner� J�� Rood� R�� Schubert� S�� Bloom� S�� Lamich� D�� Seablom�

M�� and Sienkiewicz� M� The Goddard Global Data Assimilation System� Descrip�

tion and Evaluation� Submitted to Mon� Wea� Review �������

���� Pfaentdner� J� The use of Icosahedral Grids in PSAS� Working note� Goddard

Space Flight Center� Seabrook� MD�� �����

���� Richardson� L� Weather Prediction by Numerical Process� Cambridge University

Press� �����

��
 BIBLIOGRAPHY

���� Roskies� R� Metacomputing � Pipedream or Practical Reality� Computers in Physics

�� � �Sept�Oct ������ ��������

���� Sabot� G�� and Wholey� S� Parallel execution of a Fortran �� Weather Prediction

Model� In Supercomputing �� �Nov� ������

���� Saltz� J�� Das� R�� Ponnusamy� R�� Mavriplis� D�� Berryman� H�� and Wu�

J� PARTI procedures for realistic loops� In Proceedings of the �th Distributed Memory

Computing Conference �Portland� OR� April�may ������

���� Seablom� M� Experiments with new quality control techniques in the NASA Optimum

Interpolation Analysis System� In Preprints
 International Symposium on Assimilation

of Observations in Meteorology and Oceanography �Clermont�Ferrand� France� ������

vol� WMO� Preprint volume� pp�
���
���

��
� Sedgewick� R� Algorithms� Addison Wesley� �����

���� Silicon Graphics Inc� Iris Explore User�s Guide� �����

���� Silva� A� D�� Pfaendtner� J�� Guo� J�� Sienkiewicz� M�� and Cohn� S� E�

Assessing the E
ects of Data Selection with DAO�s Physical�space Statistical Analysis

System� In International Symposium on Assimilation of Observations
 Tokyo
 Japan

�March ������

���� Smarr� L� L�� and Catlett� C� E� Metacomputing� Communication of the ACM

���
 �June ������ ������

����� Snir� M�� Otto� S� W�� Huss�Lederman� S�� Walker� D� W�� and Dongara�

J� MPI� The Complete Reference� Scienti	c and Engineering Computation Series� The

MIT Press� ���
�

����� Stobie� J� Personal communication� Nov� �����

����� Stobie� J� G� Correlated Instrument Errors in Optimal Interpolation �OI� Data As�

similation� Monthly Weather Review �Sept� ������ �submitted��

����� Stone� H� S� High�Performance Computer Architecture� Addison Wessley� ����������

BIBLIOGRAPHY ���

����� Takacs� L� L�� Molod� A�� and Wang� T� Documentation of the Goddard Earth

Observing System �GEOS�� General Circulation Model � Version �� NASA Technical

Memorandum ���
�
� Vol��� NASA GSFC Data Assimilation O�ce� Greenbelt� Mary�

land� Sep� ����� �ftp��

����� Tannenbaum� A� S� Distributed Operating Systems� Prentice Hall� �����

���
� Thomson� J� F�� Warsi� Z� U� A�� and Mastin� C� W� Numerical Grid Generation�

North�Holland� �����

����� Trenbreth� K� E�� Ed� Climate System Modeling� Cambridge University Press� �����

����� Trew� A�� and eds�� G� W� Past
 Present
 Future� Springer� �����

����� University of Virginia� The Mentat Project� http���www�cs�virginia� mentat�

����� Upson� C�� Faulhaber� T�� Jr�� Kamins� D�� Laidlaw� D�� Schlegel� D��

Vroom� J�� Gurwitz� R�� and van Dam� A� The Application Visualization System�

A Computational Environment for Scienti	c Visualization� IEEE Computer Graphics

and Applications �July ������

����� van Rossum� G� Python Tutorial� Dept� CST� CWI� Amsterdam� NL� �����

����� von Laszewski� G� A parallel genetic algorithm for the graph partitioning problem� In

Transputer Research and Applications �
 Proc� of the �th Conf� of the North�American

Transputers Users Group �Ithaca� NY� ������ IOS Press�

����� von Laszewski� G� Intelligent Structural Operators for the k�way Graph Partitioning

Problem� In Proc� of the �th intern� Conf� on Genetic Algorithms �San Diego� CA�

July ������ Morgan Kaufman� plenary presentation�

����� von Laszewski� G� A Collection of Graph Partitioning Algorithms� Simulated An�

nealing� Simulated Tempering� Kernighan Lin� Two Optimal� Graph Reduction� Bi�

section� Tech� Rep� SCCS ���� Northeast Parallel Architectures Center at Syracuse

University� Apr� �����

��� BIBLIOGRAPHY

����� von Laszewski� G� Implementing the Advanced Regional Prediction System �ARPS�

with Fortran D� Tech� Rep� SCCS ���� Northeast Parallel Architectures Center at

Syracuse University� June �����

���
� von Laszewski� G� Issues in Parallel Computing� Tech� Rep� SCCS ���� Northeast

Parallel Architectures Center at Syracuse University� Dec� �����

����� von Laszewski� G� Object Oriented Recursive Bisection on the CM��� Tech� Rep�

SCCS ��
� Northeast Parallel Architectures Center at Syracuse University� Apr� �����

����� von Laszewski� G� Parallelization of MOPAC� Tech� Rep� SCCS ���� Northeast

Parallel Architectures Center at Syracuse University� May �����

����� von Laszewski� G� Preliminary Performance of a Parallel Interpolation Algorithm�

Tech� Rep� SCCS ���� Northeast Parallel Architectures Center at Syracuse University�

Dec� ����� 	rst edition in June �����

����� von Laszewski� G� Interactive Parallel Program Generation� In Making its Mark�

Proceedings of the �th Workshop of The use of Parallel Processors in Meteorology

European Centre for Medium Weather Forecast
 Reading
 UK �Dec� ���
�� G��R� Ho
�

man and N� Kreitz� Eds�� World Scienti	c� to be published�

����� von Laszewski� G�� and et al� Design Issues for the Parallelization of an Optimal

Interpolation Algorithm� In Coming of Age� Proceedings of the �th Workshop on

the Use of Parallel Processing in Atmospheric Science
 European Centre for Medium

Weather Forecast
 Reading
 UK �Nov� ������ G��R� Ho
man and N� Kreitz� Eds��

World Scienti	c� pp� �������� �ftp�

����� von Laszewski� G�� and Macivic� M� The Four Dimensional Data Assimilation

Web Page� http���www�npac�syr�edu�projects�nasa�

����� von Laszewski� G�� Macivi�c� M�� Lyster� P�� DaSilva� A�� Lamich� D�� and

Dee� D� Problems with the Quality Control� Meeting at NASA GSFC� June ���
�

����� von Laszewski� G�� Mohamed� A� G�� and Fox� G� C� Blocked LU Factorization

on a Multiprocessor Computer� Microcomputer in Civil Engineering �� � ������� pp�

����
�

BIBLIOGRAPHY ���

����� von Laszewski� G�� and M�uhlenbein� H� A Parallel Genetic Algorithm for the k�

way Graph Partitioning Problem� In �st inter� Workshop on Parallel Problem Solving

from Nature �University Dortmund� West Germany� Nov� ������ Springer� Ed�

���
� von Laszewski� G�� Parashar� M�� Mohamed� A� G�� and Fox� G� C� High

Performance Scalable Matrix Algebra Algorithms for Distributed Memory Architec�

tures� In Proceedings of Supercomputing �� �Minneapolis� Nov� ������ IEEE Compt�

Soc� Press� pp� �������� Overall Best Student Paper Award�

����� Wall� L�� and Schwartz� R� L� Programming Perl� O�Reiley� �����

����� WAMM� Wide Area Metacomputer Manager� http���miles�cnuce�cnr�it�pp�wamm�

���
�

����� Williamson� D� L� Review of Numerical Approaches for Modeling Global Transport�

In Air Pollution Modeling and its Application� H� van Dop and G� Kallos� Eds� Plenum

Press� �����

����� XPVM� http���www�lncc�br�tutorials�SP��Training�Maui�training�workshop�html��

xpvm�XpvmExercise�html�

Vita

Name� Gregor von Laszewski
Date of Birth� June �� ��
�
Place of Birth� Bonn� Germany

Elementary School� Grundschule Niederpleis� Sankt Augustin� Germany

High School� Albert�Einstein Gymnasium� Sankt Augustin� Germany
� Graduated ����

Universities�

	 University of Bonn� Germany
� BS� in computer and information science with minors mathematics and physics
������
� MS� in computer and information science with minor physics ������

	 University Fellow at The Ohio State University ������

	 Syracuse University� Syracuse� New York ������

A�liations�

	 German National Research Centre for Infomations Technology �GMD�

	 Northeast Parallel Architectures Center at Syracuse University

	 Data Assimilation O�ce at NASA Goddard Space Flight Center

Awards�

	 Fellowship award from the University of Bonn ������

	 Financial support by the German Government due to outstanding grades ������

	 Fellowship award at The Ohio State University ������

	 Overall best student paper at Supercomputing ������

	 Member of the program committee of Supercomputing ������

	 Sponsored by University Space Research Agency ������

���

