

NIST	BIG	DATA	INTEROPERABILITY	FRAMEWORK:	VOLUME	8,
REFERENCE	ARCHITECTURE	INTERFACES

Editor:	Gregor	von	Laszewski,	Working	Group	co-Chair:	Wo	Chang

Copyrights	 and	Permissions:	Official	 publications	 of	 the	National	 Institute	 of	 Standards	 and
Technology	 are	 not	 subject	 to	 copyright	 in	 the	 United	 States.	 Foreign	 rights	 are	 reserved.
Questions	concerning	the	possibility	of	copyrights	in	foreign	countries	should	be	referred	to	the
Office	of	Chief	Counsel	at	NIST	via	email	to	nistcounsel@nist.gov.

NIST	BIG	DATA	INTEROPERABILITY	FRAMEWORK:	VOLUME	8,
REFERENCE	ARCHITECTURE	INTERFACES

NIST	Big	Data	Interoperability	Framework:	Volume	8,	Reference	Architecture	Interfaces
1	Introduction
1.1	Background
1.2	Scope	and	Objectives	of	the	Reference	Architectures	Subgroup
1.3	Report	Production
1.4	Report	Structure

2	NBDRA	Interface	Requirements
2.1	High-Level	Requirements	of	the	Interface	Approach
2.1.1	Technology-	and	Vendor-Agnostic
2.1.2	Support	of	Plug-In	Compute	Infrastructure
2.1.3	Orchestration	of	Infrastructure	and	Services
2.1.4	Orchestration	of	Big	Data	Applications	and	Experiments
2.1.5	Reusability
2.1.6	Execution	Workloads
2.1.7	Security	and	Privacy	Fabric	Requirements

2.2	Component-Specific	Interface	Requirements
2.2.1	System	Orchestrator	Interface	Requirements
2.2.2	Data	Provider	Interface	Requirements
2.2.3	Data	Consumer	Interface	Requirements
2.2.4	Big	Data	Application	Interface	Provider	Requirements
2.2.5	Big	Data	Provider	Framework	Interface	Requirements
2.2.6	Big	Data	Application	Provider	to	Big	Data	Framework	Provider	Interface

3	Specification	Paradigm
3.1	Hybrid	and	Multiple	Frameworks
3.2	Design	by	Resource-Oriented	Architecture
3.3	Design	by	Example
3.4	Version	Management
3.5	Interface	Compliancy
3.6	Refernce	implementations

4	Specification
4.1	List	of	specifications
4.2	Authentication
4.3	Status	Codes	and	Error	Responses
4.4	Timestamp
4.4.1	Timestamp

4.5	Identity
4.5.1	Organization
4.5.2	User
4.5.3	Account

4.5.4	Public	Key	Store
4.6	Variable,	Defualt,	and	Alias
4.6.1	Alias
4.6.2	Variables
4.6.3	Default

4.7	Data	Management
4.7.1	Filestore
4.7.2	Replica
4.7.3	Database
4.7.4	Virtual	Directory

4.8	Compute	Management	-	Virtual	Clusters
4.8.1	Virtual	Cluster
4.8.2	Network	of	Nodes
4.8.3	Scheduler
4.8.4	Queue

4.9	Compute	Management	-	Virtual	Machines
4.9.1	Image
4.9.2	Flavor
4.9.3	Virtual	Machine
4.9.4	Secgroup	
4.9.5	Nic

4.10	Compute	Management	-	Containers
4.10.1	Containers

4.11	Compute	Management	-	Map	Reduce
4.11.1	Map	Reduce

4.12	Compute	Management	-	Functions
4.12.1	Microservice

4.13	Reservation
4.13.1	Reservation

4.14	Data	Streams
4.14.1	Stream
4.14.2	Filter

4.15	Deployment
4.15.1	Deployment

5	Acronyms	and	Terms
Bibliography

NIST	BIG	DATA	INTEROPERABILITY	FRAMEWORK:	VOLUME	8,
REFERENCE	ARCHITECTURE	INTERFACES

Abstract

This	 document	 summarizes	 interfaces	 that	 are	 instrumental	 for	 the	 interaction	 with	 Clouds,
Containers,	 and	High	 Performance	 Computing	 (HPC)	 systems	 to	manage	 virtual	 clusters	 to
support	 the	 NIST	 Big	 Data	 Reference	 Architecture	 (NBDRA).	 The	 REpresentational	 State
Transfer	 (REST)	 paradigm	 is	 used	 to	 define	 these	 interfaces,	 allowing	 easy	 integration	 and
adoption	by	a	wide	variety	of	frameworks.

Big	 Data	 is	 a	 term	 used	 to	 describe	 extensive	 datasets,	 primarily	 in	 the	 characteristics	 of
volume,	variety,	velocity,	and/or	variability.	While	opportunities	exist	with	Big	Data,	the	data
characteristics	 can	 overwhelm	 traditional	 technical	 approaches,	 and	 the	 growth	 of	 data	 is
outpacing	scientific	and	technological	advances	in	data	analytics.	To	advance	progress	in	Big
Data,	the	NIST	Big	Data	Public	Working	Group	(NBD-PWG)	is	working	to	develop	consensus
on	important	fundamental	concepts	related	to	Big	Data.	The	results	are	reported	in	 the	NIST
Big	Data	Interoperability	Framework	(NBDIF)	 series	of	volumes.	This	volume,	Volume	8,
uses	the	work	performed	by	the	NBD-PWG	to	identify	objects	instrumental	for	the	NIST	Big
Data	 Reference	 Architecture	 (NBDRA)	 which	 is	 introduced	 in	 the	 NBDIF:	 Volume	 6,
Reference	Architecture.

Keywords

Adoption;	 barriers;	 implementation;	 interfaces;	 market	 maturity;	 organizational	 maturity;
project	maturity;	system	modernization.

Acknowledgements

This	 document	 reflects	 the	 contributions	 and	 discussions	 by	 the	 membership	 of	 the	 NBD-
PWG,	 cochaired	 by	Wo	Chang	 (NIST	 ITL),	Bob	Marcus	 (ET-Strategies),	 and	Chaitan	Baru
(San	 Diego	 Supercomputer	 Center;	 National	 Science	 Foundation).	 For	 all	 versions,	 the
Subgroups	were	 led	 by	 the	 following	people:	Nancy	Grady	 (SAIC),	Natasha	Balac	 (SDSC),
and	 Eugene	 Luster	 (R2AD)	 for	 the	 Definitions	 and	 Taxonomies	 Subgroup;	 Geoffrey	 Fox
(Indiana	 University)	 and	 Tsegereda	 Beyene	 (Cisco	 Systems)	 for	 the	 Use	 Cases	 and
Requirements	 Subgroup;	 Arnab	 Roy	 (Fujitsu),	 Mark	 Underwood	 (Krypton	 Brothers;
Synchrony	 Financial),	 and	 Akhil	 Manchanda	 (GE)	 for	 the	 Security	 and	 Privacy	 Subgroup;
David	 Boyd	 (InCadence	 Strategic	 Solutions),	 Orit	 Levin	 (Microsoft),	 Don	 Krapohl
(Augmented	 Intelligence),	 and	 James	 Ketner	 (AT&T)	 for	 the	 Reference	 Architecture
Subgroup;	 and	 Russell	 Reinsch	 (Center	 for	 Government	 Interoperability),	 David	 Boyd
(InCadence	Strategic	Solutions),	Carl	Buffington	(Vistronix),	and	Dan	McClary	(Oracle),	 for
the	 Standards	 Roadmap	 Subgroup,	 Gregor	 von	 Laszewski	 (Indiana	 University)	 for	 the
Interface	Subgroup.

The	following	milestone	releases	exist:

Version	 2.1:	 A	 previous	 volume	 used	 the	 definitions	 of	 the	 schema	 based	 on
examples	only.	It	was	easier	to	read	but	only	included	the	definition	of	the	resources
and	not	the	interaction	with	the	resources.	This	volume	was	in	place	until	June	2018.
Version	 2.2:	 This	 version	 was	 significantly	 changed	 and	 used	 OpenAPI	 2.0	 to

specify	the	interfaces	between	the	various	services	and	components.
Version	 3.1.1:	 The	 version	 includes	 significant	 improvements	 of	 the	 object
specifications	but	are	still	using	OpenAPI	2.0.
Version	3.2.0:	All	 specifications	have	been	updated	 to	OpenAPI	3.0.2.	Significant
updates	have	been	done	to	a	number	of	specifications.

The	editors	for	these	documents	are:

Gregor	von	Laszewski	(Indiana	University)
Wo	Chang	(NIST).

Laurie	 Aldape	 (Energetics	 Incorporated)	 and	 Elizabeth	 Lennon	 (NIST)	 provided	 editorial
assistance	across	all	NBDIF	volumes.

NIST	 SP	 1500-9,	 Draft	 NIST	 Big	 Data	 Interoperability	 Framework:	 Volume	 8,	 Reference
Architecture	Interfaces,	Version	2	has	been	collaboratively	authored	by	the	NBD-PWG.	As	of
the	 date	 of	 publication,	 there	 are	 over	 six	 hundred	 NBD-PWG	 participants	 from	 industry,
academia,	 and	 government.	 Federal	 agency	 participants	 include	 the	 National	 Archives	 and
Records	 Administration	 (NARA),	 National	 Aeronautics	 and	 Space	 Administration	 (NASA),
National	 Science	 Foundation	 (NSF),	 and	 the	 U.S.	 Departments	 of	 Agriculture,	 Commerce,
Defense,	 Energy,	 Census,	 Health	 and	 Human	 Services,	 Homeland	 Security,	 Transportation,
Treasury,	and	Veterans	Affairs.

NIST	would	 like	 to	acknowledge	 the	specific	contributions	 to	 this	volume,	during	Version	1
and/or	Version	2	activities.	Contributors	are	members	of	the	NIST	Big	Data	Public	Working
Group	who	dedicated	 great	 effort	 to	 prepare	 and	 gave	 substantial	 time	on	 a	 regular	 basis	 to
research	and	development	in	support	of	this	document.	This	includes	the	following	NBD-PWG
members:

Gregor	von	Laszewski,	Indiana	University
Wo	Chang,	National	Institute	of	Standard	and	Technology,
Fugang	Wang,	Indiana	University
Geoffrey	C.	Fox,	Indiana	University
Shirish	Joshi,	Indiana	University
Badi	Abdul-Wahid,	formerly	Indiana	Univresity
Alicia	Zuniga-Alvarado,	Consultant
Robert	C.	Whetsel,	DISA/NBIS
Pratik	Thakkar,	Philips

Executive	Summary

The	 NIST	 Big	 Data	 Interoperability	 Framework	 (NBDIF):	 Volume	 8,	 Reference
Architecture	Interfaces	document	was	prepared	by	the	NIST	Big	Data	Public	Working	Group
(NBD-PWG)	Reference	Architecture	Subgroup	 to	 identify	 interfaces	 in	 support	 of	 the	NIST
Big	Data	Reference	Architecture	(NBDRA).	The	interface	define	resources	that	are	part	of	the

NBDRA.	These	resources	are	formulated	in	OpenAPI	3.0.2	format	and	can	be	easily	integrated
into	a	REpresentational	State	Transfer	(REST)	framework	or	an	object-based	framework.

The	resources	were	categorized	in	groups	that	are	identified	by	the	NBDRA	set	forward	in	the
NBDIF:	 Volume	 6,	 Reference	 Architecture	 document.	While	 the	NBDIF:	 Volume	 3,	 Use
Cases	 and	 General	 Requirements	 document	 provides	 application-oriented	 high-level	 use
cases,	 the	use	cases	defined	in	 this	document	are	subsets	of	 them	and	focus	on	 interface	use
cases.	The	interface	use	cases	are	not	meant	to	be	complete	examples,	but	showcase	why	the
resource	has	been	defined.	Hence,	the	interfaces	use	cases	are	only	representative,	and	do	not
encompass	the	entire	spectrum	of	Big	Data	usage.	All	the	interfaces	were	openly	discussed	in
the	working	group	[1].	Additions	to	the	interfaces	are	welcome	and	the	NBD-PWG	is	open	to
discuss	any	contributions.

The	NIST	 Big	 Data	 Interoperability	 Framework	 (NBDIF)	 was	 released	 in	 three	 versions,
which	correspond	 to	 the	 three	stages	of	 the	NBD-PWG	work.	Version	3	 (current	version)	of
the	NBDIF	volumes	resulted	from	Stage	3	work	with	major	emphasis	on	the	validation	of	the
NBDRA	Interfaces	and	content	enhancement.	Stage	3	work	built	upon	the	foundation	created
during	Stage	 2	 and	Stage	 1.	The	 current	 effort	 documented	 in	 this	 volume	 reflects	 concepts
developed	within	the	rapidly	evolving	field	of	Big	Data.	The	three	stages	(in	reverse	order)	aim
to	achieve	the	following	with	respect	to	the	NIST	Big	Data	Reference	Architecture	(NBDRA):

Stage	 1:	 Identify	 the	 high-level	 Big	 Data	 reference	 architecture	 key	 components,
which	are	technology-,	infrastructure-,	and	vendor-agnostic.
Stage	2:	Define	general	interfaces	between	the	NBDRA	components;	and
Stage	3:	Validate	the	NBDRA	by	building	Big	Data	general	applications	through	the
general	interfaces;

The	NBDIF	consists	of	nine	volumes,	each	of	which	addresses	a	specific	key	topic,	resulting
from	the	work	of	the	NBD-PWG.	The	nine	volumes	are	as	follows:

Volume	1,	Definitions	[2]
Volume	2,	Taxonomies	[3]
Volume	3,	Use	Cases	and	General	Requirements	[4]
Volume	4,	Security	and	Privacy	[5]
Volume	5,	Architectures	White	Paper	Survey	[6]
Volume	6,	Reference	Architecture	[7]
Volume	7,	Standards	Roadmap	[8]
Volume	8,	Reference	Architecture	Interfaces	(this	volume)	[9]
Volume	9,	Adoption	and	Modernization	[10]

During	 Stage	 1,	 Volumes	 1	 through	 7	 were	 conceptualized,	 organized	 and	 written.	 The
finalized	Version	1	documents	 can	be	downloaded	 from	 the	V1.0	Final	Version	page	of	 the
NBD-PWG	website	[11].

During	Stage	2,	the	NBD-PWG	developed	Version	2	of	the	NBDIF	Version	1	volumes,	with
the	exception	of	Volume	5,	which	contained	the	completed	architecture	survey	work	that	was

used	to	inform	Stage	1	work	of	 the	NBD-PWG.	The	goals	of	Version	2	were	to	enhance	the
Version	1	content,	define	general	interfaces	between	the	NBDRA	components	by	aggregating
low-level	interactions	into	high-level	general	interfaces,	and	demonstrate	how	the	NBDRA	can
be	used.	As	a	result	of	the	Stage	2	work,	the	need	for	NBDIF	Volume	8	and	NBDIF	Volume	9
were	 identified	 and	 the	 two	 new	 volumes	 were	 created.	 Version	 2	 of	 the	 NBDIF	 volumes,
resulting	 from	 Stage	 2	 work,	 can	 be	 downloaded	 from	 the	 V2.0	 Final	 Version	 page	 of	 the
NBD-PWG	website	[12].

This	document	 is	 the	result	of	Stage	3	work	of	 the	NBD-PWG.	Coordination	of	 the	group	is
conducted	on	the	NBD-PWG	web	page	[1].

1	INTRODUCTION

1.1	BACKGROUND

There	 is	 broad	 agreement	 among	 commercial,	 academic,	 and	 government	 leaders	 about	 the
potential	of	Big	Data	to	spark	innovation,	fuel	commerce,	and	drive	progress.	Big	Data	is	the
common	term	used	to	describe	the	deluge	of	data	in	today’s	networked,	digitized,	sensor-laden,
and	 information-driven	world.	The	 availability	of	 vast	 data	 resources	 carries	 the	potential	 to
answer	questions	previously	out	of	reach,	including	the	following:

How	can	a	potential	pandemic	reliably	be	detected	early	enough	to	intervene?
Can	 new	 materials	 with	 advanced	 properties	 be	 predicted	 before	 these	 materials
have	ever	been	synthesized?
How	can	the	current	advantage	of	the	attacker	over	the	defender	in	guarding	against
cybersecurity	threats	be	reversed?

There	is	also	broad	agreement	on	the	ability	of	Big	Data	to	overwhelm	traditional	approaches.
The	 growth	 rates	 for	 data	 volumes,	 speeds,	 and	 complexity	 are	 outpacing	 scientific	 and
technological	advances	in	data	analytics,	management,	transport,	and	data	user	spheres.

Despite	 widespread	 agreement	 on	 the	 inherent	 opportunities	 and	 current	 limitations	 of	 Big
Data,	 a	 lack	 of	 consensus	 on	 some	 important	 fundamental	 questions	 continues	 to	 confuse
potential	users	and	stymie	progress.	These	questions	include	the	following:

How	is	Big	Data	defined?
What	attributes	define	Big	Data	solutions?
What	is	new	in	Big	Data?
What	is	the	difference	between	Big	Data	and	bigger	data	that	has	been	collected	for
years?
How	 is	 Big	 Data	 different	 from	 traditional	 data	 environments	 and	 related
applications?
What	are	the	essential	characteristics	of	Big	Data	environments?
How	do	these	environments	integrate	with	currently	deployed	architectures?
What	 are	 the	 central	 scientific,	 technological,	 and	 standardization	 challenges	 that
need	 to	 be	 addressed	 to	 accelerate	 the	 deployment	 of	 robust,	 secure	 Big	 Data
solutions?

Within	 this	context,	on	March	29,	2012,	 the	White	House	announced	 the	Big	Data	Research
and	Development	Initiative	(The	White	House	Office	of	Science	and	Technology	Policy,	“Big
Data	 is	 a	 Big	 Deal,”	OSTP	 Blog,	 accessed	 February	 21,	 2014	 [13].	 The	 initiative’s	 goals
include	helping	 to	accelerate	 the	pace	of	discovery	 in	science	and	engineering,	strengthening
national	 security,	 and	 transforming	 teaching	 and	 learning	 by	 improving	 analysts’	 ability	 to
extract	knowledge	and	insights	from	large	and	complex	collections	of	digital	data.

Six	federal	departments	and	their	agencies	announced	more	than	$200	million	in	commitments
spread	 across	 more	 than	 80	 projects,	 which	 aim	 to	 significantly	 improve	 the	 tools	 and
techniques	 needed	 to	 access,	 organize,	 and	 draw	 conclusions	 from	 huge	 volumes	 of	 digital
data.	The	initiative	also	challenged	industry,	research	universities,	and	nonprofits	to	join	with
the	federal	government	to	make	the	most	of	the	opportunities	created	by	Big	Data.

Motivated	 by	 the	 White	 House	 initiative	 and	 public	 suggestions,	 the	 National	 Institute	 of
Standards	 and	 Technology	 (NIST)	 accepted	 the	 challenge	 to	 stimulate	 collaboration	 among
industry	professionals	to	further	the	secure	and	effective	adoption	of	Big	Data.	As	a	result	of
NIST’s	 Cloud	 and	 Big	 Data	 Forum	 held	 on	 January	 15–17,	 2013,	 there	 was	 strong
encouragement	for	NIST	to	create	a	public	working	group	for	the	development	of	a	Big	Data
Standards	Roadmap.	Forum	participants	noted	 that	 this	 roadmap	should	define	and	prioritize
Big	 Data	 requirements,	 including	 interoperability,	 portability,	 reusability,	 extensibility,	 data
usage,	analytics,	and	technology	infrastructure.	In	doing	so,	the	roadmap	would	accelerate	the
adoption	of	the	most	secure	and	effective	Big	Data	techniques	and	technology.

On	June	19,	2013,	the	NIST	Big	Data	Public	Working	Group	(NBD-PWG)	was	launched	with
extensive	 participation	 by	 industry,	 academia,	 and	 government	 from	 across	 the	 nation.	 The
scope	 of	 the	 NBD-PWG	 involves	 forming	 a	 community	 of	 interests	 from	 all	 sectors—
including	 industry,	 academia,	 and	 government—with	 the	 goal	 of	 developing	 consensus	 on
definitions,	taxonomies,	secure	reference	architectures,	security	and	privacy,	and,	from	these,	a
standards	 roadmap.	 Such	 a	 consensus	 would	 create	 a	 vendor-neutral,	 technology-	 and
infrastructure-independent	framework	that	would	enable	Big	Data	stakeholders	to	identify	and
use	 the	 best	 analytics	 tools	 for	 their	 processing	 and	 visualization	 requirements	 on	 the	most
suitable	 computing	 platform	 and	 cluster,	 while	 also	 allowing	 added	 value	 from	 Big	 Data
service	providers.

The	NIST	 Big	 Data	 Interoperability	 Framework	 (NBDIF)	 was	 released	 in	 three	 versions,
which	correspond	 to	 the	 three	stages	of	 the	NBD-PWG	work.	Version	3	 (current	version)	of
the	NBDIF	volumes	resulted	from	Stage	3	work	with	major	emphasis	on	the	validation	of	the
NBDRA	Interfaces	and	content	enhancement.	Stage	3	work	built	upon	the	foundation	created
during	Stage	 2	 and	Stage	 1.	The	 current	 effort	 documented	 in	 this	 volume	 reflects	 concepts
developed	within	the	rapidly	evolving	field	of	Big	Data.	The	three	stages	(in	reverse	order)	aim
to	achieve	the	following	with	respect	to	the	NIST	Big	Data	Reference	Architecture	(NBDRA).

Stage	3:	Validate	 the	NBDRA	by	building	Big	Data	general	applications	through	the	general
interfaces;	Stage	2:	Define	general	interfaces	between	the	NBDRA	components;	and	Stage	1:
Identify	the	high-level	Big	Data	reference	architecture	key	components,	which	are	technology-,
infrastructure-,	and	vendor-agnostic.

The	NBDIF	consists	of	nine	volumes,	each	of	which	addresses	a	specific	key	topic,	resulting
from	the	work	of	the	NBD-PWG.	The	nine	volumes	are	as	follows:

Volume	1,	Definitions	[2]
Volume	2,	Taxonomies	[3]
Volume	3,	Use	Cases	and	General	Requirements	[4]

Volume	4,	Security	and	Privacy	[5]
Volume	5,	Architectures	White	Paper	Survey	[6]
Volume	6,	Reference	Architecture	[7]
Volume	7,	Standards	Roadmap	[8]
Volume	8,	Reference	Architecture	Interfaces	(this	volume)	[9]
Volume	9,	Adoption	and	Modernization	[10]

During	 Stage	 1,	 Volumes	 1	 through	 7	 were	 conceptualized,	 organized	 and	 written.	 The
finalized	Version	1	documents	 can	be	downloaded	 from	 the	V1.0	Final	Version	page	of	 the
NBD-PWG	website	[11].

During	Stage	2,	the	NBD-PWG	developed	Version	2	of	the	NBDIF	Version	1	volumes,	with
the	exception	of	Volume	5,	which	contained	the	completed	architecture	survey	work	that	was
used	to	inform	Stage	1	work	of	 the	NBD-PWG.	The	goals	of	Version	2	were	to	enhance	the
Version	1	content,	define	general	interfaces	between	the	NBDRA	components	by	aggregating
low-level	interactions	into	high-level	general	interfaces,	and	demonstrate	how	the	NBDRA	can
be	used.	As	a	result	of	the	Stage	2	work,	the	need	for	NBDIF	Volume	8	and	NBDIF	Volume	9
were	 identified	 and	 the	 two	 new	 volumes	 were	 created.	 Version	 2	 of	 the	 NBDIF	 volumes,
resulting	 from	 Stage	 2	 work,	 can	 be	 downloaded	 from	 the	 V2.0	 Final	 Version	 page	 of	 the
NBD-PWG	website	[12].

1.2	SCOPE	AND	OBJECTIVES	OF	THE	REFERENCE	ARCHITECTURES	SUBGROUP

Reference	architectures	provide	“an	authoritative	source	of	information	about	a	specific	subject
area	that	guides	and	constrains	the	instantiations	of	multiple	architectures	and	solutions”	[14].
Reference	architectures	generally	serve	as	a	foundation	for	solution	architectures	and	may	also
be	used	for	comparison	and	alignment	of	instantiations	of	architectures	and	solutions.

The	goal	of	the	NBD-PWG	Reference	Architecture	Subgroup	is	to	develop	an	open	reference
architecture	for	Big	Data	that	achieves	the	following	objectives:

Provides	a	common	language	for	the	various	stakeholders;
Encourages	adherence	to	common	standards,	specifications,	and	patterns;
Provides	 consistent	 methods	 for	 implementation	 of	 technology	 to	 solve	 similar
problem	sets;
Illustrates	 and	 improves	 understanding	 of	 the	 various	 Big	 Data	 components,
processes,	 and	 systems,	 in	 the	 context	 of	 a	 vendor-	 and	 technology-agnostic	 Big
Data	conceptual	model;
Provides	a	technical	reference	for	U.S.	government	departments,	agencies,	and	other
consumers	to	understand,	discuss,	categorize,	and	compare	Big	Data	solutions;	and
Facilitates	 analysis	 of	 candidate	 standards	 for	 interoperability,	 portability,
reusability,	and	extendibility.

The	 NBDRA	 is	 a	 high-level	 conceptual	 model	 crafted	 to	 serve	 as	 a	 tool	 to	 facilitate	 open
discussion	 of	 the	 requirements,	 design	 structures,	 and	 operations	 inherent	 in	 Big	 Data.	 The

NBDRA	is	intended	to	facilitate	the	understanding	of	the	operational	intricacies	in	Big	Data.	It
does	not	represent	the	system	architecture	of	a	specific	Big	Data	system,	but	rather	is	a	tool	for
describing,	 discussing,	 and	 developing	 system-specific	 architectures	 using	 a	 common
framework	 of	 reference.	 The	model	 is	 not	 tied	 to	 any	 specific	 vendor	 products,	 services,	 or
reference	implementation,	nor	does	it	define	prescriptive	solutions	that	inhibit	innovation.

The	NBDRA	does	not	address	the	following:

Detailed	specifications	for	any	organization’s	operational	systems;
Detailed	specifications	of	information	exchanges	or	services;	and
Recommendations	or	standards	for	integration	of	infrastructure	products.

The	 goals	 of	 the	 Subgroup	were	 realized	 throughout	 the	 three	 planned	 phases	 of	 the	NBD-
PWG	work,	as	outlined	in	Section	1.3.

1.3	REPORT	PRODUCTION

The	NBDIF:	Volume	8,	References	Architecture	 Interfaces	 is	 one	 of	 nine	 volumes,	whose
overall	 aims	 are	 to	 define	 and	 prioritize	 Big	 Data	 requirements,	 including	 interoperability,
portability,	 reusability,	 extensibility,	 data	 usage,	 analytic	 techniques,	 and	 technology
infrastructure	 to	support	secure	and	effective	adoption	of	Big	Data.	The	overall	goals	of	 this
volume	are	to	define	and	specify	interfaces	to	implement	the	Big	Data	Reference	Architecture.
This	 volume	 arose	 from	 discussions	 during	 the	weekly	NBD-PWG	conference	 calls.	 Topics
included	 in	 this	 volume	began	 to	 take	 form	 in	Phase	 2	 of	 the	NBD-PWG	work.	During	 the
discussions,	the	NBD-PWG	identified	the	need	to	specify	a	variety	of	interfaces.

Phase	3	work,	which	built	upon	the	groundwork	developed	during	Phase	2,	included	an	early
specification	based	on	resource	object	specifications	 that	provided	a	simplified	version	of	an
API	interface	design.

1.4	REPORT	STRUCTURE

To	 enable	 interoperability	 between	 the	NBDRA	components,	 a	 list	 of	well-defined	NBDRA
interfaces	is	needed.	These	interfaces	are	documented	in	this	volume.	To	introduce	them,	the
NBDRA	 structure	 will	 be	 followed,	 focusing	 on	 interfaces	 that	 allow	 bootstrapping	 of	 the
NBDRA.	The	document	begins	with	a	summary	of	requirements	that	will	be	integrated	into	our
specifications.	 Subsequently,	 each	 section	will	 introduce	 a	 number	 of	 objects	 that	 build	 the
core	 of	 the	 interface	 addressing	 a	 specific	 aspect	 of	 the	 NBDRA.	 A	 selected	 number	 of
interface	use	cases	will	be	 showcased	 to	outline	how	 the	specific	 interface	can	be	used	 in	a
reference	 implementation	of	 the	NBDRA.	Validation	of	 this	approach	can	be	achieved	while
applying	it	to	the	application	use	cases	that	have	been	gathered	in	the	NBDIF:	Volume	3,	Use
Cases	and	Requirements	document.	These	application	use	cases	have	considerably	contributed
towards	the	design	of	the	NBDRA.	Hence	the	expectation	is	that:	(1)	the	interfaces	can	be	used
to	 help	 implement	 a	 Big	 Data	 architecture	 for	 a	 specific	 use	 case;	 and	 (2)	 the	 proper

implementation.	This	 approach	 can	 facilitate	 subsequent	 analysis	 and	 comparison	 of	 the	 use
cases.

The	organization	of	this	document	roughly	corresponds	to	the	process	used	by	the	NBD-PWG
to	 develop	 the	 interfaces.	 Following	 the	 introductory	 material	 presented	 in	 Section	 1,	 the
remainder	of	this	document	is	organized	as	follows:

Section	2	presents	the	interface	requirements;
Section	3	presents	the	specification	paradigm	that	is	used;
Section	 4	 presents	 several	 objects	 grouped	 by	 functional	 use	 while	 providing	 a
summary	table	of	selected	proposed	objects	in	Section	4.1.

While	each	NBDIF	volume	was	created	with	a	specific	focus	within	Big	Data,	all	volumes	are
interconnected.	During	creation,	the	volumes	gave	and/or	received	input	from	other	volumes.
Broad	 topics	 (e.g.,	 definition,	 architecture)	 may	 be	 discussed	 in	 several	 volumes	 with	 the
discussion	circumscribed	by	the	volume’s	particular	focus.	Arrows	shown	in	Figure	1	indicate
the	main	 flow	 of	 input/output.	Volumes	 2,	 3,	 and	 5	 (blue	 circles)	 are	 essentially	 standalone
documents	that	provide	output	to	other	volumes	(e.g.,	to	Volume	6).	These	volumes	contain	the
initial	situational	awareness	research.	Volumes	4,	7,	8,	and	9	(green	circles)	primarily	received
input	from	other	volumes	during	the	creation	of	the	particular	volume.	Volumes	1	and	6	(red
circles)	were	 developed	 using	 the	 initial	 situational	 awareness	 research	 and	 continued	 to	 be
modified	 based	 on	work	 in	 other	 volumes.	 These	 volumes	 also	 provided	 input	 to	 the	 green
circle	volumes.

Figure	1:	NBDIF	Documents	Navigation	Diagram	Provides	Content	Flow	Between
Volumes

2	NBDRA	INTERFACE	REQUIREMENTS

The	 development	 of	 a	Big	Data	 reference	 architecture	 requires	 a	 thorough	 understanding	 of
current	 techniques,	 issues,	 and	 concerns.	 To	 this	 end,	 the	NBD-PWG	collected	 use	 cases	 to
gain	 an	 understanding	 of	 current	 applications	 of	 Big	Data,	 conducted	 a	 survey	 of	 reference
architectures	 to	 understand	 commonalities	within	Big	Data	 architectures	 in	 use,	 developed	 a
taxonomy	 to	 understand	 and	 organize	 the	 information	 collected,	 and	 reviewed	 existing
technologies	and	trends	relevant	 to	Big	Data.	The	results	of	 these	NBD-PWG	activities	were
used	 in	 the	 development	 of	 the	 NBDRA	 (Figure	 2)	 and	 the	 interfaces	 presented	 herein.
Detailed	descriptions	of	these	activities	can	be	found	in	the	other	volumes	of	the	NBDIF.

Figure	2:	NIST	Big	Data	Reference	Architecture	(NBDRA)

This	vendor-neutral,	technology-	and	infrastructure-agnostic	conceptual	model,	the	NBDRA,	is
shown	 in	 Figure	 2	 and	 represents	 a	 Big	 Data	 system	 composed	 of	 five	 logical	 functional
components	 connected	by	 interoperability	 interfaces	 (i.e.,	 services).	Two	 fabrics	 envelop	 the
components,	representing	the	interwoven	nature	of	management	and	security	and	privacy	with
all	 five	 of	 the	 components.	 These	 two	 fabrics	 provide	 services	 and	 functionality	 to	 the	 five
main	 roles	 in	 the	 areas	 specific	 to	Big	Data	 and	 are	 crucial	 to	 any	Big	Data	 solution.	Note:
None	 of	 the	 terminology	 or	 diagrams	 in	 these	 documents	 is	 intended	 to	 be	 normative	 or	 to

imply	 any	 business	 or	 deployment	 model.	 The	 terms	 provider	 and	 consumer	 as	 used	 are
descriptive	of	general	roles	and	are	meant	to	be	informative	in	nature.

The	NBDRA	 is	organized	 around	 five	major	 roles	 and	multiple	 sub-roles	 aligned	 along	 two
axes	representing	the	two	Big	Data	value	chains:	the	Information	Value	(horizontal	axis)	and
the	Information	Technology	(IT;	vertical	axis).	Along	the	Information	Value	axis,	the	value	is
created	by	data	collection,	 integration,	 analysis,	 and	applying	 the	 results	 following	 the	value
chain.	 Along	 the	 IT	 axis,	 the	 value	 is	 created	 by	 providing	 networking,	 infrastructure,
platforms,	application	tools,	and	other	IT	services	for	hosting	of	and	operating	the	Big	Data	in
support	 of	 required	 data	 applications.	 At	 the	 intersection	 of	 both	 axes	 is	 the	 Big	 Data
Application	 Provider	 role,	 indicating	 that	 data	 analytics	 and	 its	 implementation	 provide	 the
value	to	Big	Data	stakeholders	in	both	value	chains.	The	term	provider	as	part	of	the	Big	Data
Application	 Provider	 and	Big	Data	 Framework	 Provider	 is	 there	 to	 indicate	 that	 those	 roles
provide	or	implement	specific	activities	and	functions	within	the	system.	It	does	not	designate
a	service	model	or	business	entity.

The	DATA	arrows	in	Figure	2	show	the	flow	of	data	between	the	system’s	main	roles.	Data
flows	between	 the	 roles	either	physically	 (i.e.,	by	value)	or	by	providing	 its	 location	and	 the
means	 to	 access	 it	 (i.e.,	 by	 reference).	 The	 SW	 arrows	 show	 transfer	 of	 software	 tools	 for
processing	 of	 Big	 Data	 in	 situ.	 The	 Service	 Use	 arrows	 represent	 software	 programmable
interfaces.	While	the	main	focus	of	the	NBDRA	is	to	represent	the	run-time	environment,	all
three	types	of	communications	or	transactions	can	happen	in	the	configuration	phase	as	well.
Manual	 agreements	 (e.g.,	 service-level	 agreements)	 and	 human	 interactions	 that	 may	 exist
throughout	the	system	are	not	shown	in	the	NBDRA.

Detailed	information	on	the	NBDRA	conceptual	model	is	presented	in	the	NBDIF:	Volume	6,
Reference	Architecture	document.

Prior	to	outlining	the	specific	interfaces,	general	requirements	are	introduced	and	the	interfaces
are	defined.

2.1	HIGH-LEVEL	REQUIREMENTS	OF	THE	INTERFACE	APPROACH

This	section	focuses	on	the	high-level	requirements	of	the	interface	approach	that	are	needed	to
implement	the	reference	architecture	depicted	in	Figure	2.

2.1.1	Technology-	and	Vendor-Agnostic

Due	 to	 the	many	different	 tools,	 services,	and	 infrastructures	available	 in	 the	general	area	of
Big	Data,	an	interface	ought	to	be	as	vendor-independent	as	possible,	while,	at	the	same	time,
be	 able	 to	 leverage	best	 practices.	Hence,	 a	methodology	 is	 needed	 that	 allows	 extension	of
interfaces	to	adapt	and	leverage	existing	approaches,	but	also	allows	the	interfaces	to	provide
merit	in	easy	specifications	that	assist	the	formulation	and	definition	of	the	NBDRA.

2.1.2	Support	of	Plug-In	Compute	Infrastructure

As	Big	Data	 is	not	 just	about	hosting	data,	but	about	analyzing	data,	 the	 interfaces	provided
herein	must	encapsulate	a	rich	infrastructure	environment	that	is	used	by	data	scientists.	This
includes	the	ability	to	integrate	(or	plug-in)	various	compute	resources	and	services	to	provide
the	 necessary	 compute	 power	 to	 analyze	 the	 data.	 These	 resources	 and	 services	 include	 the
following:

Access	 to	 hierarchy	 of	 compute	 resources	 from	 the	 laptop/desktop,	 servers,	 data
clusters,	and	clouds;
The	ability	to	integrate	special-purpose	hardware	such	as	graphics	processing	units
(GPUs)	 and	 field-programmable	 gate	 arrays	 (FPGAs)	 that	 are	 used	 in	 accelerated
analysis	of	data;	and
The	 integration	 of	 services	 including	microservices	 that	 allow	 the	 analysis	 of	 the
data	 by	 delegating	 them	 to	 hosted	 or	 dynamically	 deployed	 services	 on	 the
infrastructure	of	choice.

2.1.3	Orchestration	of	Infrastructure	and	Services

From	review	of	 the	use	case	collection,	presented	 in	 the	NBDIF:	Volume	3,	Use	Cases	and
General	Requirements	 document	 [4],	 the	need	arose	 to	 address	 the	mechanism	of	preparing
suitable	infrastructures	for	various	use	cases.	As	not	every	infrastructure	is	suited	for	every	use
case,	 a	 custom	 infrastructure	 may	 be	 needed.	 As	 such,	 this	 document	 is	 not	 attempting	 to
deliver	 a	 single	 deployed	NBDRA,	but	 allow	 the	 setup	of	 an	 infrastructure	 that	 satisfies	 the
particular	 use	 case.	 To	 achieve	 this	 task,	 it	 is	 necessary	 to	 provision	 software	 stacks	 and
services	while	orchestrating	their	deployment	and	leveraging	infrastructures.	It	is	not	the	focus
of	 this	 document	 to	 replace	 existing	 orchestration	 software	 and	 services,	 but	 provide	 an
interface	to	them	to	leverage	them	as	part	of	defining	and	creating	the	infrastructure.	Various
orchestration	frameworks	and	services	could	therefore	be	leveraged,	even	as	part	of	the	same
framework,	and	work	in	orchestrated	fashion	to	achieve	the	goal	of	preparing	an	infrastructure
suitable	for	one	or	more	applications.

2.1.4	Orchestration	of	Big	Data	Applications	and	Experiments

The	 creation	 of	 the	 infrastructure	 suitable	 for	 Big	 Data	 applications	 provides	 the	 basic
computing	 environment.	 However,	 Big	 Data	 applications	 may	 require	 the	 creation	 of
sophisticated	applications	as	part	of	interactive	experiments	to	analyze	and	probe	the	data.	For
this	 purpose,	 the	 applications	 must	 be	 able	 to	 orchestrate	 and	 interact	 with	 experiments
conducted	 on	 the	 data	 while	 assuring	 reproducibility	 and	 correctness	 of	 the	 data.	 For	 this
purpose,	a	System	Orchestrator	(either	the	data	scientists	or	a	service	acting	on	behalf	of	the
data	scientist)	is	used	as	the	command	center	to	interact	on	behalf	of	the	Big	Data	Application
Provider	 to	 orchestrate	 dataflow	 from	Data	Provider,	 carry	 out	 the	Big	Data	 application	 life
cycle	with	 the	help	 of	 the	Big	Data	Framework	Provider,	 and	 enable	 the	Data	Consumer	 to
consume	Big	Data	processing	results.	An	interface	is	needed	to	describe	these	interactions	and

to	 allow	 leveraging	 of	 experiment	 management	 frameworks	 in	 scripted	 fashion.	 A
customization	 of	 parameters	 is	 needed	 on	 several	 levels.	 On	 the	 highest	 level,	 application-
motivated	parameters	are	needed	to	drive	the	orchestration	of	the	experiment.	On	lower	levels,
these	 high-level	 parameters	 may	 drive	 and	 create	 service-level	 agreements,	 augmented
specifications,	 and	parameters	 that	 could	 even	 lead	 to	 the	orchestration	of	 infrastructure	 and
services	to	satisfy	experiment	needs.

2.1.5	Reusability

The	 interfaces	 provided	 must	 encourage	 reusability	 of	 the	 infrastructure,	 services,	 and
experiments	described	by	 them.	This	 includes	 (1)	 reusability	of	 available	 analytics	 packages
and	services	for	adoption;	(2)	deployment	of	customizable	analytics	tools	and	services;	and	(3)
operational	 adjustments	 that	 allow	 the	 services	 and	 infrastructure	 to	 be	 adapted	while	 at	 the
same	time	allowing	for	reproducible	experiment	execution.

2.1.6	Execution	Workloads

One	of	 the	 important	 aspects	 of	 distributed	Big	Data	 services	 can	 be	 that	 the	 data	 served	 is
simply	 too	 big	 to	 be	 moved	 to	 a	 different	 location.	 Instead,	 an	 interface	 could	 allow	 the
description	and	packaging	of	analytics	algorithms,	and	potentially	also	tools,	as	a	payload	to	a
data	service.	This	can	be	best	achieved,	not	by	sending	the	detailed	execution,	but	by	sending
an	 interface	 description	 that	 describes	 how	 such	 an	 algorithm	 or	 tool	 can	 be	 created	 on	 the
server	 and	 be	 executed	 under	 security	 considerations	 (integrated	 with	 authentication	 and
authorization	in	mind).

2.1.7	Security	and	Privacy	Fabric	Requirements

Although	the	focus	of	this	document	is	not	security	and	privacy,	which	are	documented	in	the
NBDIF:	Volume	4,	Security	and	Privacy	[5],	the	interfaces	defined	herein	must	be	capable	of
integration	 into	 a	 secure	 reference	 architecture	 that	 supports	 secure	 execution,	 secure	 data
transfer,	 and	 privacy.	 Consequently,	 the	 interfaces	 defined	 herein	 can	 be	 augmented	 with
frameworks	 and	 solutions	 that	 provide	 such	 mechanisms.	 Thus,	 diverse	 requirement	 needs
stemming	 from	different	 use	 cases	 addressing	 security	 need	 to	 be	 distinguished.	To	 contrast
that	the	security	requirements	between	applications	can	vary	drastically,	the	following	example
is	provided.	Although	many	of	the	interfaces	and	their	objects	to	support	Big	Data	applications
in	physics	are	similar	to	those	in	healthcare,	they	differ	in	the	integration	of	security	interfaces
and	 policies.	 While	 in	 physics	 the	 protection	 of	 data	 is	 less	 of	 an	 issue,	 it	 is	 a	 stringent
requirement	 in	 healthcare.	Thus,	 deriving	 architectural	 frameworks	 for	 both	may	use	 largely
similar	 components,	 but	 addressing	 security	 issues	 will	 be	 very	 different.	 The	 security	 of
interfaces	 may	 be	 addressed	 in	 other	 documents.	 In	 this	 document,	 they	 are	 considered	 an
advanced	 use	 case	 showcasing	 that	 the	 validity	 of	 the	 specifications	 introduced	 here	 is
preserved,	even	if	security	and	privacy	requirements	differ	vastly	among	application	use	cases.

2.2	COMPONENT-SPECIFIC	INTERFACE	REQUIREMENTS

This	section	summarizes	the	requirements	for	the	interfaces	of	the	NBDRA	components.	The
five	 components	 are	 listed	 in	 Figure	2	 and	 addressed	 in	 Section	2.2.1	 (System	 Orchestrator
Interface	 Requirements)	 and	 Section	 2.2.4	 (Big	 Data	 Application	 Provider	 to	 Big	 Data
Framework	Provider	Interface)	of	this	document.	The	five	main	functional	components	of	the
NBDRA	represent	the	different	technical	roles	within	a	Big	Data	system	and	are	the	following:

System	Orchestrator:	Defines	and	integrates	the	required	data	application	activities
into	an	operational	vertical	system	(see	Section	2.2.1);
Data	Provider:	 Introduces	new	data	or	 information	feeds	 into	 the	Big	Data	system
(see	Section	2.2.2);
Data	Consumer:	Includes	end	users	or	other	systems	that	use	the	results	of	the	Big
Data	Application	Provider	(see	Section	2.2.3);
Big	 Data	 Application	 Provider:	 Executes	 a	 data	 life	 cycle	 to	 meet	 security	 and
privacy	 requirements	 as	 well	 as	 System	 Orchestrator-defined	 requirements	 (see
Section	2.2.4);
Big	 Data	 Framework	 Provider:	 Establishes	 a	 computing	 framework	 in	 which	 to
execute	 certain	 transformation	 applications	 while	 protecting	 the	 privacy	 and
integrity	of	data	(see	Section	2.2.5);	and
Big	 Data	 Application	 Provider	 to	 Framework	 Provider	 Interface:	 Defines	 an
interface	between	the	application	specification	and	the	provider	(see	Section	2.2.6).

2.2.1	System	Orchestrator	Interface	Requirements

The	System	Orchestrator	 role	 includes	defining	 and	 integrating	 the	 required	data	 application
activities	 into	 an	 operational	 vertical	 system.	 Typically,	 the	 System	Orchestrator	 involves	 a
collection	 of	 more	 specific	 roles,	 performed	 by	 one	 or	 more	 actors,	 which	 manage	 and
orchestrate	 the	 operation	 of	 the	Big	Data	 system.	 These	 actors	may	 be	 human	 components,
software	 components,	 or	 some	 combination	 of	 the	 two.	 The	 function	 of	 the	 System
Orchestrator	is	to	configure	and	manage	the	other	components	of	the	Big	Data	architecture	to
implement	one	or	more	workloads	that	the	architecture	is	designed	to	execute.	The	workloads
managed	by	the	System	Orchestrator	may	be	assigning/provisioning	framework	components	to
individual	physical	or	virtual	nodes	at	the	lower	level,	or	providing	a	graphical	user	interface
that	 supports	 the	 specification	 of	 workflows	 linking	 together	 multiple	 applications	 and
components	at	 the	higher	level.	The	System	Orchestrator	may	also,	 through	the	Management
Fabric,	 monitor	 the	 workloads	 and	 system	 to	 confirm	 that	 specific	 quality	 of	 service
requirements	 is	met	 for	 each	workload,	 and	may	 elastically	 assign	 and	 provision	 additional
physical	or	virtual	resources	to	meet	workload	requirements	resulting	from	changes/surges	in
the	 data	 or	 number	 of	 users/transactions.	 The	 interface	 to	 the	 System	Orchestrator	must	 be
capable	 of	 specifying	 the	 task	 of	 orchestration	 the	 deployment,	 configuration,	 and	 the
execution	 of	 applications	 within	 the	 NBDRA.	 A	 simple	 vendor-neutral	 specification	 to
coordinate	 the	 various	 parts	 either	 as	 simple	 parallel	 language	 tasks	 or	 as	 a	 workflow
specification	 is	needed	 to	 facilitate	 the	overall	coordination.	 Integration	of	existing	 tools	and
services	into	the	System	Orchestrator	as	extensible	interfaces	is	desirable.

2.2.2	Data	Provider	Interface	Requirements

The	Data	Provider	role	introduces	new	data	or	information	feeds	into	the	Big	Data	system	for
discovery,	access,	and	transformation	by	the	Big	Data	system.	New	data	feeds	are	distinct	from
the	data	already	in	use	by	the	system	and	residing	in	the	various	system	repositories.	Similar
technologies	can	be	used	to	access	both	new	data	feeds	and	existing	data.	The	Data	Provider
actors	can	be	anything	from	a	sensor,	to	a	human	inputting	data	manually,	to	another	Big	Data
system.	Interfaces	for	data	providers	must	be	able	to	specify	a	data	provider	so	it	can	be	located
by	a	data	consumer.	It	also	must	include	enough	details	to	identify	the	services	offered	so	they
can	 be	 pragmatically	 reused	 by	 consumers.	 Interfaces	 to	 describe	 pipes	 and	 filters	 must	 be
addressed.

2.2.3	Data	Consumer	Interface	Requirements

Like	 the	Data	Provider,	 the	role	of	Data	Consumer	within	 the	NBDRA	can	be	an	actual	end
user	or	another	system.	In	many	ways,	this	role	is	the	mirror	image	of	the	Data	Provider,	with
the	 entire	 Big	 Data	 framework	 appearing	 like	 a	 Data	 Provider	 to	 the	 Data	 Consumer.	 The
activities	associated	with	the	Data	Consumer	role	include	the	following:

Search	and	Retrieve,
Download,
Analyze	Locally,
Reporting,
Visualization,	and
Data	to	Use	for	Their	Own	Processes.

The	interface	for	the	data	consumer	must	be	able	to	describe	the	consuming	services	and	how
they	retrieve	information	or	leverage	data	consumers.

2.2.4	Big	Data	Application	Interface	Provider	Requirements

The	Big	Data	Application	Provider	role	executes	a	specific	set	of	operations	along	the	data	life
cycle	 to	 meet	 the	 requirements	 established	 by	 the	 System	 Orchestrator,	 as	 well	 as	 meeting
security	 and	 privacy	 requirements.	 The	 Big	 Data	 Application	 Provider	 is	 the	 architecture
component	 that	 encapsulates	 the	 business	 logic	 and	 functionality	 to	 be	 executed	 by	 the
architecture.	The	interfaces	to	describe	Big	Data	applications	include	interfaces	for	the	various
subcomponents	including	collections,	preparation/curation,	analytics,	visualization,	and	access.
Some	of	the	interfaces	used	in	these	subcomponents	can	be	reused	from	other	interfaces,	which
are	 introduced	 in	 other	 sections	 of	 this	 document.	 Where	 appropriate,	 application-specific
interfaces	will	be	identified	and	examples	provided	with	a	focus	on	use	cases	as	identified	in
the	NBDIF:	Volume	3,	Use	Cases	and	General	Requirements.

2.2.4.1	Collection

In	general,	 the	collection	activity	of	 the	Big	Data	Application	Provider	handles	 the	 interface
with	 the	Data	 Provider.	 This	may	 be	 a	 general	 service,	 such	 as	 a	 file	 server	 or	 web	 server
configured	by	the	System	Orchestrator	 to	accept	or	perform	specific	collections	of	data,	or	 it
may	be	an	application-specific	service	designed	to	pull	data	or	receive	pushes	of	data	from	the
Data	 Provider.	 Since	 this	 activity	 is	 receiving	 data	 at	 a	 minimum,	 it	 must	 store/buffer	 the
received	data	until	 it	 is	persisted	through	the	Big	Data	Framework	Provider.	This	persistence
need	 not	 be	 to	 physical	 media	 but	 may	 simply	 be	 to	 an	 in-memory	 queue	 or	 other	 service
provided	by	 the	processing	frameworks	of	 the	Big	Data	Framework	Provider.	The	collection
activity	 is	 likely	where	 the	extraction	portion	of	 the	Extract,	Transform,	Load	(ETL)/Extract,
Load,	Transform	 (ELT)	 cycle	 is	 performed.	At	 the	 initial	 collection	 stage,	 sets	 of	 data	 (e.g.,
data	records)	of	similar	structure	are	collected	(and	combined),	 resulting	in	uniform	security,
policy,	 and	 other	 considerations.	 Initial	 metadata	 is	 created	 (e.g.,	 subjects	 with	 keys	 are
identified)	to	facilitate	subsequent	aggregation	or	look-up	methods.

2.2.4.2	Preparation

The	 preparation	 activity	 is	where	 the	 transformation	 portion	 of	 the	ETL/ELT	 cycle	 is	 likely
performed,	 although	 analytics	 activity	 will	 also	 likely	 perform	 advanced	 parts	 of	 the
transformation.	 Tasks	 performed	 by	 this	 activity	 could	 include	 data	 validation	 (e.g.,
checksums/hashes,	 format	 checks),	 cleaning	 (e.g.,	 eliminating	 bad	 records/fields),	 outlier
removal,	standardization,	reformatting,	or	encapsulating.	This	activity	is	also	where	source	data
will	 frequently	 be	 persisted	 to	 archive	 storage	 in	 the	 Big	 Data	 Framework	 Provider	 and
provenance	data	will	be	verified	or	attached/associated.	Verification	or	attachment	may	include
optimization	of	data	through	manipulations	(e.g.,	deduplication)	and	indexing	to	optimize	the
analytics	 process.	 This	 activity	 may	 also	 aggregate	 data	 from	 different	 Data	 Providers,
leveraging	metadata	keys	to	create	an	expanded	and	enhanced	data	set.

2.2.4.3	Analytics

The	analytics	activity	of	the	Big	Data	Application	Provider	includes	the	encoding	of	the	low-
level	 business	 logic	 of	 the	Big	Data	 system	 (with	 higher-level	 business	 process	 logic	 being
encoded	 by	 the	 System	 Orchestrator).	 The	 activity	 implements	 the	 techniques	 to	 extract
knowledge	 from	 the	 data	 based	 on	 the	 requirements	 of	 the	 vertical	 application.	 The
requirements	specify	the	data	processing	algorithms	to	produce	new	insights	that	will	address
the	technical	goal.	The	analytics	activity	will	leverage	the	processing	frameworks	to	implement
the	associated	logic.	This	typically	involves	the	activity	providing	software	that	implements	the
analytic	 logic	 to	 the	 batch	 and/or	 streaming	 elements	 of	 the	 processing	 framework	 for
execution.	 The	 messaging/communication	 framework	 of	 the	 Big	 Data	 Framework	 Provider
may	be	used	to	pass	data	or	control	functions	to	the	application	logic	running	in	the	processing
frameworks.	The	analytic	logic	may	be	broken	up	into	multiple	modules	to	be	executed	by	the
processing	 frameworks	 which	 communicate,	 through	 the	 messaging/communication
framework,	 with	 each	 other	 and	 other	 functions	 instantiated	 by	 the	 Big	 Data	 Application
Provider.

2.2.4.4	Visualization

The	 visualization	 activity	 of	 the	 Big	 Data	 Application	 Provider	 prepares	 elements	 of	 the
processed	data	and	 the	output	of	 the	analytic	activity	 for	presentation	 to	 the	Data	Consumer.
The	 objective	 of	 this	 activity	 is	 to	 format	 and	 present	 data	 in	 such	 a	 way	 as	 to	 optimally
communicate	meaning	and	knowledge.	The	visualization	preparation	may	involve	producing	a
text-based	report	or	rendering	the	analytic	results	as	some	form	of	graphic.	The	resulting	output
may	 be	 a	 static	 visualization	 and	 may	 simply	 be	 stored	 through	 the	 Big	 Data	 Framework
Provider	 for	 later	 access.	 However,	 the	 visualization	 activity	 frequently	 interacts	 with	 the
access	activity,	 the	analytics	activity,	and	 the	Big	Data	Framework	Provider	 (processing	and
platform)	 to	 provide	 interactive	 visualization	 of	 the	 data	 to	 the	 Data	 Consumer	 based	 on
parameters	 provided	 to	 the	 access	 activity	 by	 the	Data	Consumer.	The	 visualization	 activity
may	 be	 completely	 application-implemented,	 leverage	 one	 or	 more	 application	 libraries,	 or
may	 use	 specialized	 visualization	 processing	 frameworks	 within	 the	 Big	 Data	 Framework
Provider.

2.2.4.5	Access

The	 access	 activity	 within	 the	 Big	 Data	 Application	 Provider	 is	 focused	 on	 the
communication/interaction	 with	 the	 Data	 Consumer.	 Like	 the	 collection	 activity,	 the	 access
activity	may	be	a	generic	service	such	as	a	web	server	or	application	server	that	is	configured
by	the	System	Orchestrator	to	handle	specific	requests	from	the	Data	Consumer.	This	activity
would	 interface	with	 the	visualization	and	analytic	activities	 to	 respond	 to	 requests	 from	 the
Data	Consumer	 (who	may	be	a	person)	and	uses	 the	processing	and	platform	frameworks	 to
retrieve	data	 to	 respond	 to	Data	Consumer	 requests.	 In	addition,	 the	access	activity	confirms
that	 descriptive	 and	 administrative	 metadata	 and	 metadata	 schemes	 are	 captured	 and
maintained	for	access	by	the	Data	Consumer	and	as	data	is	transferred	to	the	Data	Consumer.
The	interface	with	the	Data	Consumer	may	be	synchronous	or	asynchronous	in	nature	and	may
use	a	pull	or	push	paradigm	for	data	transfer.

2.2.5	Big	Data	Provider	Framework	Interface	Requirements

Data	for	Big	Data	applications	are	delivered	through	data	providers.	They	can	be	either	local
providers,	data	contributed	by	a	user,	or	distributed	data	providers,	data	on	the	Internet.	This
interface	must	be	able	to	provide	the	following	functionality:

Interfaces	to	files,
Interfaces	to	virtual	data	directories,
Interfaces	to	data	streams,	and
Interfaces	to	data	filters.

2.2.5.1	Infrastructures	Interface	Requirements

This	Big	Data	Framework	Provider	element	provides	all	the	resources	necessary	to	host/run	the

activities	of	the	other	components	of	the	Big	Data	system.	Typically,	these	resources	consist	of
some	combination	of	physical	resources,	which	may	host/support	similar	virtual	resources.	The
NBDRA	needs	interfaces	that	can	be	used	to	deal	with	the	underlying	infrastructure	to	address
networking,	computing,	and	storage.

2.2.5.2	Platforms	Interface	Requirements

As	part	of	 the	NBDRA	platforms,	 interfaces	are	needed	 that	can	address	platform	needs	and
services	for	data	organization,	data	distribution,	indexed	storage,	and	file	systems.

2.2.5.3	Processing	Interface	Requirements

The	 processing	 frameworks	 for	 Big	 Data	 provide	 the	 necessary	 infrastructure	 software	 to
support	 implementation	 of	 applications	 that	 can	deal	with	 the	 volume,	 velocity,	 variety,	 and
variability	of	data.	Processing	frameworks	define	how	the	computation	and	processing	of	the
data	is	organized.	Big	Data	applications	rely	on	various	platforms	and	technologies	to	meet	the
challenges	 of	 scalable	 data	 analytics	 and	 operation.	A	 requirement	 is	 the	 ability	 to	 interface
easily	 with	 computing	 services	 that	 offer	 specific	 analytics	 services,	 batch	 processing
capabilities,	interactive	analysis,	and	data	streaming.

2.2.5.4	Crosscutting	Interface	Requirements

Several	crosscutting	 interface	 requirements	within	 the	Big	Data	Framework	Provider	 include
messaging,	 communication,	 and	 resource	management.	 Often	 these	 services	may	 be	 hidden
from	 explicit	 interface	 use	 as	 they	 are	 part	 of	 larger	 systems	 that	 expose	 higher-level
functionality	 through	 their	 interfaces.	 However,	 such	 interfaces	 may	 also	 be	 exposed	 on	 a
lower	 level	 in	 case	 finer-grained	 control	 is	 needed.	The	 need	 for	 such	 crosscutting	 interface
requirements	 will	 be	 extracted	 from	 the	 NBDIF:	 Volume	 3,	 Use	 Cases	 and	 General
Requirements	document.

2.2.5.5	Messaging/Communications	Frameworks

Messaging	 and	 communications	 frameworks	 have	 their	 roots	 in	 the	 High	 Performance
Computing	 environments	 long	 popular	 in	 the	 scientific	 and	 research	 communities.
Messaging/Communications	Frameworks	were	developed	to	provide	application	programming
interfaces	(APIs)	for	the	reliable	queuing,	transmission,	and	receipt	of	data.

2.2.5.6	Resource	Management	Framework

As	 Big	 Data	 systems	 have	 evolved	 and	 become	more	 complex,	 and	 as	 businesses	 work	 to
leverage	limited	computation	and	storage	resources	to	address	a	broader	range	of	applications
and	 business	 challenges,	 the	 requirement	 to	 effectively	 manage	 those	 resources	 has	 grown
significantly.	While	tools	for	resource	management	and	elastic	computing	have	expanded	and

matured	in	response	to	the	needs	of	cloud	providers	and	virtualization	technologies,	Big	Data
introduces	 unique	 requirements	 for	 these	 tools.	 However,	 Big	Data	 frameworks	 tend	 to	 fall
more	into	a	distributed	computing	paradigm,	which	presents	additional	challenges.

2.2.6	Big	Data	Application	Provider	to	Big	Data	Framework	Provider	Interface

The	Big	Data	Framework	Provider	typically	consists	of	one	or	more	hierarchically	organized
instances	of	the	components	in	the	NBDRA	IT	value	chain	(Figure	2).	There	is	no	requirement
that	all	instances	at	a	given	level	in	the	hierarchy	be	of	the	same	technology.	In	fact,	most	Big
Data	 implementations	 are	 hybrids	 that	 combine	 multiple	 technology	 approaches	 to	 provide
flexibility	 or	meet	 the	 complete	 range	 of	 requirements,	which	 are	 driven	 from	 the	Big	Data
Application	Provider.

3	SPECIFICATION	PARADIGM

This	section	summarizes	the	elementary	specification	paradigm.

3.1	HYBRID	AND	MULTIPLE	FRAMEWORKS

To	 avoid	 vendor	 lock-in,	 Big	 Data	 systems	 must	 be	 able	 to	 deal	 with	 hybrid	 and	 multiple
frameworks.	This	is	not	only	true	for	Clouds,	containers,	DevOps,	but	also	for	components	of
the	NBDRA.

3.2	DESIGN	BY	RESOURCE-ORIENTED	ARCHITECTURE

A	resource-oriented	architecture	represents	a	software	architecture	and	programming	paradigm
for	 designing	 and	 developing	 software	 in	 the	 form	 of	 resources.	 It	 is	 often	 associated	 with
REpresentational	State	Transfer	(REST)	 interfaces.	The	 resources	are	 software	components
which	 can	 be	 reused	 in	 concrete	 reference	 implementations.	 The	 service	 specification	 is
conducted	with	OpenAPI,	allowing	use	to	provide	it	in	a	very	general	form	that	is	independent
of	 the	 framework	 or	 computer	 language	 in	 which	 the	 services	 can	 be	 specified.	 Note	 that
OpenAPI	defines	services	in	REST	The	previous	version	only	specified	the	resource	objects.

3.3	DESIGN	BY	EXAMPLE

To	 accelerate	 discussion	 among	 the	NBD-PWG	members,	 contributors	 to	 this	 document	 are
encouraged	to	also	provide	the	NBD-PWG	with	examples.

3.4	VERSION	MANAGEMENT

Previous	work	that	shaped	the	current	version	of	this	volumes	and	are	documented	In	GitHub
[15]	with	prior	versions	of	Volume	8	[16][17]	and	Cloudmesh	[18]	in	support	of	the	NIST	Big
Data	Architecture	Framework	[1].

During	 the	 design	 phase	 and	 development	 period	 of	 each	 version	 of	 this	 document,
enhancements	 are	 managed	 through	 GitHub	 and	 community	 contributions	 are	 managed	 via
GitHub	issues.	This	allows	preservation	of	the	history	of	this	document.	When	a	new	version	is
ready,	the	version	will	be	tagged	in	GitHub.	Older	versions	will,	through	this	process,	also	be
available	as	historical	documents.	Discussions	about	objects	in	written	form	are	communicated
as	GitHub	issues.

3.5	INTERFACE	COMPLIANCY

Due	 to	 the	 easy	 extensibility	 of	 the	 resource	 objects	 specified	 in	 this	 document	 and	 their

interfaces,	 it	 is	 important	 to	 introduce	 a	 terminology	 that	 allows	 the	 definition	 of	 interface
compliancy.	We	define	three	levels	of	interface	compliance	as	follows:

Full	Compliance:	These	are	reference	implementations	that	provide	full	compliance
to	the	objects	defined	in	this	document.	A	version	number	is	added	to	assure	that	the
snapshot	 in	 time	 of	 the	 objects	 is	 associated	 with	 the	 version.	 A	 full	 complient
framework	implements	all	objects.

Partial	 Compliance:	 These	 are	 reference	 implementations	 that	 provide	 partial
compliance	to	the	objects	defined	in	this	document.	A	version	number	will	is	added
to	assure	that	the	snapshot	in	time	of	the	objects	is	associated	with	the	version.	This
reference	 implementation	 implements	a	partial	 list	of	 the	objects	and	 interfaces.	A
document	 is	 to	 be	 added	 that	 specifies	 the	 differences	 to	 a	 full	 complient
implementation.

Extended	 Compliance:	 In	 addition	 to	 full	 and	 partial	 compliance	 additional
resources	 can	 be	 identified	 while	 documenting	 additional	 resource	 objects	 and
interfaces	 that	 are	 not	 included	 in	 the	 current	 specification.	 The	 extended
complience	 document	 can	 lead	 to	 additional	 improvements	 of	 the	 current
specification.

3.6	REFERNCE	IMPLEMENTATIONS

Documents	 generated	 during	 a	 reference	 implementation	 can	 be	 forwarded	 to	 the	Reference
Architecture	 Subgroup	 for	 further	 discussion	 and	 for	 possible	 future	modifications	 based	 on
additional	practical	user	feedback.

4	SPECIFICATION

The	 specifications	 in	 this	 section	 are	 provided	 through	 an	 automated	 document	 creation
process	 using	 the	 actual	 OpenAPI	 specifications	 yaml	 files	 as	 the	 source.	 All	 OpenAPI
specifications	located	in	the	cloudmesh/cloudmesh-nist/spec/	directory	in	GitHub	[19].

Limitations	of	the	current	implementation	are	as	follows.	It	is	a	demonstration	that	showcases
the	generation	of	a	fully	functioning	REST	service	based	on	the	specifications	provided	in	this
document.	However,	it	is	expected	that	scalability,	distribution	of	services,	and	other	advanced
options	need	to	be	addressed	based	on	application	requirements.

4.1	LIST	OF	SPECIFICATIONS

The	 following	 table	 lists	 the	 current	 set	 of	 resource	 objects	 that	 are	 defined	 in	 this	 draft.
Additional	objects	are	also	available	in	GitHub	[19].

Table	1	shows	the	list	of	currently	included	specification	in	this	version	of	the	document.

Table	1:	Specifications
Service Version Date Reference Section

Alias 3.2.0 17-06-2019 ☁� Section	4.6.1
Account 3.2.0 17-06-2019 ☁� Section	4.5.3
Containers 3.2.0 17-06-2019 ☁� Section	4.10.1
Database 3.2.0 17-06-2019 ☁� Section	4.7.3
Default 3.2.0 17-06-2019 ☁� Section	4.6.3
Deployment 3.2.0 17-06-2019 ☁� Section	4.15.1
File 3.2.0 17-06-2019 ☁� Section	4.7.1
Filter 3.2.0 17-06-2019 ☁� Section	4.14.2
Flavor 3.2.0 17-06-2019 ☁� Section	4.9.2
Image 3.2.0 17-06-2019 ☁� Section	4.9.1
MapReduce 3.2.0 17-06-2019 ☁� Section	4.11.1
Microservice 3.2.0 17-06-2019 ☁� Section	4.12.1
Nic 3.2.0 17-06-2019 ☁� Section	4.9.5
Network	of	Nodes 3.2.0 17-06-2019 ☁� Section	4.8.2
Organization 3.2.0 17-06-2019 ☁� Section	4.5.1
Public	Key	Store 3.2.0 17-06-2019 ☁� Section	4.5.4
Scheduler 3.2.0 17-06-2019 ☁� Section	4.8.4

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/alias.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/account.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/containers.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/database.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/default.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/deployment.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/filestore.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/filter.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/flavor.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/image.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/mapreduce.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/microservice.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/nic.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/non.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/organization.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/publickeystore.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/queue.yaml

Replica 3.2.0 17-06-2019 ☁� Section	4.7.2
Reservation 3.2.0 17-06-2019 ☁� Section	4.13.1
Queue 3.2.0 17-06-2019 ☁� Section	4.8.3
Secgroup 3.2.0 17-06-2019 ☁� Section	4.9.4
Stream 3.2.0 17-06-2019 ☁� Section	4.14.1
Timestamp 3.2.0 17-06-2019 ☁� Section	4.4.1
User 3.2.0 17-06-2019 ☁� Section	4.5.2
Variables 3.2.0 17-06-2019 ☁� Section	4.6.2
Virtual	Cluster 3.2.0 17-06-2019 ☁� Section	4.8.1
Virtual	Directory 3.2.0 17-06-2019 ☁� Section	4.7.4
Virtual	Machine 3.2.0 17-06-2019 ☁� Section	4.9.3

Figure	3	shows	the	provider	view	of	the	specification	resources.

Figure	3:	Provider	view

Figure	4	shows	the	resources	view	of	the	specification	resources.

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/replica.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/reservation.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/scheduler.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/secgroup.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/stream.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/timestamp.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/user.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/variables.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/virtualcluster.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/virtualdirectory.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/vm.yaml

Figure	4:	Resource	view

4.2	AUTHENTICATION

Mechanisms	 are	 not	 included	 in	 this	 specification	 to	 manage	 authentication	 to	 external
services.	 However,	 the	 working	 group	 has	 shown	 multiple	 solutions	 to	 this	 as	 part	 of
cloudmesh.	This	includes	the	posibility	of	a

Local	configuration	file:	A	configuration	file	is	managed	locally	to	allow	access	to
the	clouds.	It	is	the	designer’s	responsibility	not	to	expose	such	credentials.
Session	based	authentication:	No	passwords	are	stored	in	the	configuration	file	and
access	is	granted	on	a	per	session	basis	where	the	password	needs	to	be	entered.
Service	 based	 authentication:	 The	 authentication	 is	 delegated	 to	 an	 external
process.	 The	 service	 that	 acts	 on	 behalf	 of	 the	 user	 needs	 to	 have	 access	 to	 the
appropriate	cloud	provider	credentials

An	example	for	a	configuration	file	is	provided	at	[20].

4.3	STATUS	CODES	AND	ERROR	RESPONSES

In	case	of	an	error	or	a	successful	 response,	 the	 response	header	contains	a	HTTP	code	(see
https://tools.ietf.org/html/rfc7231).	The	response	body	usually	contains	the	following:

The	HTTP	response	code;

An	accompanying	message	for	the	HTTP	response	code;	and

A	field	or	object	where	the	error	occurred.

https://tools.ietf.org/html/rfc7231

Table	1:	HTTP	Response	Codes

HTTP
Response Operation	D escription

200	Ok GET,	PUT,	DELETE No	error,	operation	successful.
201	Created POST Successful	creation	of	a	resource.
204	No
Content GET,	PUT,	DELETE Successful	but	no	content.

400	Bad
Request

GET,	POST,	PUT,
DELETE The	request	could	not	be	understood.

401
Unauthorized

GET,	POST,	PUT,
DELETE User	must	authorize.

403
Forbidden

GET,	POST,	PUT,
DELETE

The	request	has	been	refused	due	to
authorization	failure.

404	Not
Found

GET,	POST,	PUT,
DELETE The	requested	resource	could	not	be	found.

405	Not
Allowed

GET,	POST,	PUT,
DELETE The	method	is	not	allowed	on	the	resource.

500	Server
Error GET,	POST	PUT Internal	Server	error.

In	the	specification	such	responses	are	indicated	and	if	an	simple	response	is	returned	the	term
Message	is	used.

Resources

4.4	TIMESTAMP

Timestamps	can	be	used	in	conjunction	with	andy	server	side	implementation	of	the	interfaces.
It	 can	 be	 useful	 to	 return	 information	 about	 when	 a	 particular	 resource	 has	 been	 created,
updated,	 or	 accessed.	 To	 simplify	 the	 specification	 in	 the	 document	 we	 have	 not	 explicitly
listed	that	a	timestamp	is	part	of	the	reource,	but	we	can	assume	it	may	be	added	as	part	of	the
service	implementation.	To	obtain	an	example	timestamp	a	simple	get	function	is	provided.

4.4.1	Timestamp

Data	 often	 needs	 to	 be	 time	 stamped	 to	 indicate	 when	 it	 has	 been	 accessed,	 created,	 or
modified.	All	objects	defined	 in	 this	document	will	have,	 in	 their	 final	version,	a	 timestamp.
The	date-time	string	is	defined	in	RFC3339.

https://xml2rfc.ietf.org/public/rfc/html/rfc3339.html#anchor14

4.4.1.1	Schema	Timestamp

Reference:	☁�

Property Type Description

accessed string(date-
time) The	time	stamp	when	the	object	was	last	accessed

created string(date-
time) The	time	stamp	when	the	object	was	created

modified string(date-
time) The	time	stamp	when	the	object	was	modified

4.4.1.2	Paths

HTTP Path Summary
get /timestamp Returns	the	timestamp

4.4.1.2.1	/timestamp

4.4.1.2.1.1	GET	/timestamp

Returns	the	timestamp

Responses

Code Description Schema
200 The	current	time	and	date string

4.4.1.3	timestamp.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Timestamp

		description:	|-

		

				Data	often	needs	to	be	time	stamped	to	indicate	when	it	has	been

				accessed,	created,	or	modified.	All	objects	defined	in	this

				document	will	have,	in	their	final	version,	a	timestamp.

				The	date-time	string	is	defined	in

				[RFC3339](https://xml2rfc.ietf.org/public/rfc/html/rfc3339.html#anchor14).

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist/spec/

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/timestamp.yaml

		-	url:	/cloudmesh/v3

paths:

		/timestamp:

				get:

						summary:	Returns	the	timestamp

						description:	Returns	the	timestamp

						responses:

								'200':

										description:	The	current	time	and	date

										content:

												application/json:

														schema:

																type:	string

																example:	1985-04-12T23:20:50.52Z

components:

		schemas:

				Timestamp:

						type:	object

						description:	the	timestamp

						properties:

								accessed:

										type:	string

										format:	date-time

										description:	The	time	stamp	when	the	object	was	last	accessed

										example:	1985-04-12T23:20:50.52Z

								created:

										type:	string

										format:	date-time

										description:	The	time	stamp	when	the	object	was	created

										example:	1985-04-12T23:20:50.52Z

								modified:

										type:	string

										format:	date-time

										description:	The	time	stamp	when	the	object	was	modified

										example:	1985-04-12T23:20:50.52Z

4.5	IDENTITY

As	part	of	services	an	identity	often	needs	to	be	specified.	In	addition,	such	persons	[21]	 are
often	 part	 of	 groups.	Thus,	 three	 important	 terms	 related	 to	 the	 identity	 are	 distinguished	 as
follows:

Organization:	 The	 information	 representing	 an	 Organization	 that	 manages	 a	 Big
Data	Service	(Section	4.5.1)
Group:	A	group	 that	 a	person	may	belong	 to	 that	 is	 important	 to	define	 access	 to
services	(included	in	Section	4.5.1)
User:	The	information	identifying	the	profile	of	a	person	(Section	4.5.2)

4.5.1	Organization

An	 important	 concept	 in	 many	 services	 is	 the	 management	 of	 a	 group	 of	 users	 in	 an
organization.	Within	an	organization	we	distinguish	different	groups	of	users.	Groups	can	be
used	to	charachterize	roles	users	can	fulfill.	Users	can	belong	to	multiple	groups.	Such	groups
can	also	be	used	to	specify	access	rights	to	services.

4.5.1.1	Schema	Organization

Reference:	☁�

Property Type Description
name string Name	of	the	organization

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/organization.yaml

users array[User] List	of	users

4.5.1.2	Schema	Group

Reference:	☁�

Property Type Description
name string The	name	of	the	group
description string The	description	of	the	group
users array[string] The	user	names	that	are	members	of	the	group

4.5.1.3	Paths

HTTP Path Summary

get /organization Returns	a	list	of
organizations

get /organization/{name} Returns	the	named
organization

put /organization/{name} Uploads	an	organization	to
the	list	of	organizations

delete /organization/{name} Deletes	the	named
organization

get /organization/{name}/user Returns	all	users	of	the
organization

get /organization/{name}/user/{user} Returns	the	specific	user	of
that	organization

put /organization/{name}/user/{user} Updates	or	adds	a	user	in
the	organization

delete /organization/{name}/user/{user} Delete	an	user	in	the
organization

get /organization/{name}/group/ Returns	all	group	names

get /organization/{name}/group/{group} Returns	the	specific	group
of	that	organization

put /organization/{name}/group/{group} Updates	or	adds	a	group	in
the	organization

delete /organization/{name}/group/{group} Delete	a	group	in	the
organization

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/group.yaml

put /organization/{name}/group/{group}/{user} Updates	or	adds	a	user
name	to	the	group

delete /organization/{name}/group/{group}/{user} Delete	a	user	in	the	group

4.5.1.3.1	/organization

4.5.1.3.1.1	GET	/organization

Returns	a	list	of	all	organizations

Responses

Code Description Schema
200 The	list	of	organizations array[Organization]
401 Not	authorized String

4.5.1.3.2	/organization/{name}

4.5.1.3.2.1	GET	/organization/{name}

Returns	an	organization	by	name

Responses

Code Description Schema
200 Retruning	the	information	of	the	organization Organization
401 Not	authorized String
404 The	named	organization	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	organization True String

4.5.1.3.2.2	PUT	/organization/{name}

Uploads	an	organization	to	the	list	of	organizations

Responses

Code Description Schema
200 Organization	created	or	updated String
401 Not	authorized String
404 The	organization	could	not	be	found String

Request	Body

Located	in Description Required Schema
Body The	organization	to	be	uploaded True Organization

4.5.1.3.2.3	DELETE	/organization/{name}

Deletes	an	organization	by	name

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	organization	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	organization True String

4.5.1.3.3	/organization/{name}/user

4.5.1.3.3.1	GET	/organization/{name}/user

Returns	all	users	of	the	organization

Responses

Code Description Schema
200 The	organization Organization
401 Not	authorized String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	organization True String

4.5.1.3.4	/organization/{name}/user/{user}

4.5.1.3.4.1	GET	/organization/{name}/user/{user}

Returns	the	specific	user	of	that	organization

Responses

Code Description Schema
200 The	user User
401 Not	authorized String
404 The	organization	or	user	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	organization True String
user path The	user	name True String

4.5.1.3.4.2	PUT	/organization/{name}/user/{user}

Updates	or	adds	a	user	in	the	organization

Responses

Code Description Schema
200 User	added	sucessfully String
401 Not	authorized String
404 The	organization	or	user	could	not	be	found\ String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	organization True String

user path The	user	name True String

Request	Body

Located	in Description Required Schema
Body The	user	to	be	uploaded True User

4.5.1.3.4.3	DELETE	/organization/{name}/user/{user}

Delete	an	user	in	the	organization

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	organization	or	user	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	organization True String
user path The	user	name True String

4.5.1.3.5	/organization/{name}/group/

4.5.1.3.5.1	GET	/organization/{name}/group/

Returns	all	group	names

Responses

Code Description Schema

200 Returning	the	information	of	the	group array[String]
400 No	group	found String
401 Not	authorized String
404 The	organization	or	group	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	organization True String

4.5.1.3.6	/organization/{name}/group/{group}

4.5.1.3.6.1	GET	/organization/{name}/group/{group}

Returns	the	specific	group	of	that	organization

Responses

Code Description Schema
200 The	group Group
401 Not	authorized String
404 The	organization	or	group	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	organization True String
group path The	group	name True String

4.5.1.3.6.2	PUT	/organization/{name}/group/{group}

Updates	or	adds	a	group	in	the	organization

Responses

Code Description Schema
200 Group	added	sucessfully String
401 Not	authorized String

404 The	organization	or	group	could	not	be	found String

Parameters

Name Located	in Description Required Schema

name path The	name	of	the	group True String
group path The	group	name True String

4.5.1.3.6.3	DELETE	/organization/{name}/group/{group}

Delete	a	group	in	the	organization

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	organization	or	group	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	organization True String
group path The	group	name True String

4.5.1.3.7	/organization/{name}/group/{group}/{user}

4.5.1.3.7.1	PUT	/organization/{name}/group/{group}/{user}

Updates	or	adds	a	user	name	to	the	group

Responses

Code Description Schema
200 User	added	sucessfully String
401 Not	authorized String
404 The	organization,	group,	or	user	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	group True String
group path The	group	name True String

user path The	user	name True String

4.5.1.3.7.2	DELETE	/organization/{name}/group/{group}/{user}

Delete	a	user	in	the	group

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	organization,	group,	or	user	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	organization True String
group path The	group	name True String
user path The	user	name True String

4.5.1.4	organization.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Organization

		description:	|-

				An	important	concept	in	many	services	is	the	management	of	a	group

				of	users	in	an	organization.	Within	an	organization	we	distinguish

				different	groups	of	users.	Groups	can	be	used	to	charachterize	roles

				users	can	fulfill.	Users	can	belong	to	multiple	groups.	Such	groups	can

				also	be	used	to	specify	access	rights	to	services.

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist/spec/

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/organization:

				get:

						tags:

								-	Organization

						summary:	Returns	a	list	of	organizations

						description:	Returns	a	list	of	all	organizations

						operationId:	cloudmesh.organization.list

						responses:

								'200':

										description:	The	list	of	organizations

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Organization'

								'401':

										description:	Not	authorized

		/organization/{name}:

				get:

						tags:

								-	Organization

						summary:	Returns	the	named	organization

						description:	Returns	an	organization	by	name

						operationId:	cloudmesh.organization.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	organization

						responses:

								'200':

										description:	Retruning	the	information	of	the	organization

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Organization'

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	organization	could	not	be	found

				put:

						tags:

								-	Organization

						summary:	Uploads	an	organization	to	the	list	of	organizations

						description:	Uploads	an	organization	to	the	list	of	organizations

						operationId:	cloudmesh.organization.add

						requestBody:

								description:	The	organization	to	be	uploaded

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Organization'

						responses:

								'200':

										description:	Organization	created	or	updated

								'401':

										description:	Not	authorized

								'404':

										description:	The	organization	could	not	be	found

				delete:

						tags:

								-	Organization

						summary:	Deletes	the	named	organization

						description:	Deletes	an	organization	by	name

						operationId:	cloudmesh.organization.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	organization

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	organization	could	not	be	found

		/organization/{name}/user:

				get:

						tags:

								-	Organization

						summary:	Returns	all	users	of	the	organization

						description:	Returns	all	users	of	the	organization

						operationId:	cloudmesh.organization.user.list

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	organization

						responses:

								'200':

										description:	The	organization

										content:

												application/json:

														schema:

																$ref:	"#/components/schemas/Organization"

								'401':

										description:	Not	authorized

		/organization/{name}/user/{user}:

				get:

						tags:

								-	Organization

						summary:	Returns	the	specific	user	of	that	organization

						description:	Returns	the	specific	user	of	that	organization

						operationId:	cloudmesh.organization.user.get_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	organization

								-	name:	user

										description:	The	user	name

										in:	path

										required:	true

										schema:

												type:	string

						responses:

								'200':

										description:	The	user

										content:

												application/json:

														schema:

																$ref:	"user.yaml#/components/schemas/User"

								'401':

										description:	Not	authorized

								'404':

										description:	The	organization	or	user	could	not	be	found

				put:

						tags:

								-	Organization

						summary:	Updates	or	adds	a	user	in	the	organization

						description:	Updates	or	adds	a	user	in	the	organization

						operationId:	cloudmesh.organization.user.add

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	organization

								-	name:	user

										description:	The	user	name

										in:	path

										required:	true

										schema:

												type:	string

						requestBody:

								description:	The	user	to	be	uploaded

								required:	true

								content:

										application/json:

												schema:

														$ref:	'user.yaml#/components/schemas/User'

						responses:

								'200':

										description:	User	added	sucessfully

								'401':

										description:	Not	authorized

								'404':

										description:	The	organization	or	user	could	not	be	found\

				delete:

						tags:

								-	Organization

						summary:	Delete	an	user	in	the	organization

						description:	Delete	an	user	in	the	organization

						operationId:	cloudmesh.organization.user.delete

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	organization

								-	name:	user

										description:	The	user	name

										in:	path

										required:	true

										schema:

												type:	string

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

										description:	The	organization	or	user	could	not	be	found

		/organization/{name}/group/:

				get:

						tags:

								-	Organization

						summary:	Returns	all	group	names

						description:	Returns	all	group	names

						operationId:	cloudmesh.organization.group.list

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	organization

						responses:

								'200':

										description:	Returning	the	information	of	the	group

										content:

												application/json:

														schema:

																type:	array

																items:

																		type:	string

								'400':

											description:	No	group	found

								'401':

										description:	Not	authorized

								'404':

											description:	The	organization	or	group	could	not	be	found

		/organization/{name}/group/{group}:

				get:

						tags:

								-	Organization

						summary:	Returns	the	specific	group	of	that	organization

						description:	Returns	the	specific	group	of	that	organization

						operationId:	cloudmesh.organization.group.get_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	organization

								-	name:	group

										description:	The	group	name

										in:	path

										required:	true

										schema:

												type:	string

						responses:

								'200':

										description:	The	group

										content:

												application/json:

														schema:

																$ref:	"#/components/schemas/Group"

								'401':

										description:	Not	authorized

								'404':

										description:	The	organization	or	group	could	not	be	found

				put:

						tags:

								-	Organization

						summary:	Updates	or	adds	a	group	in	the	organization

						description:	Updates	or	adds	a	group	in	the	organization

						operationId:	cloudmesh.organization.group.add

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	group

								-	name:	group

										description:	The	group	name

										in:	path

										required:	true

										schema:

												type:	string

						responses:

								'200':

										description:	Group	added	sucessfully

								'401':

										description:	Not	authorized

								'404':

										description:	The	organization	or	group	could	not	be	found

				delete:

						tags:

								-	Organization

						summary:	Delete	a	group	in	the	organization

						description:	Delete	a	group	in	the	organization

						operationId:	cloudmesh.organization.greop.delete

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	organization

								-	name:	group

										description:	The	group	name

										in:	path

										required:	true

										schema:

												type:	string

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

										description:	The	organization	or	group	could	not	be	found

		/organization/{name}/group/{group}/{user}:

				put:

						tags:

								-	Organization

						summary:	Updates	or	adds	a	user	name	to	the	group

						description:	Updates	or	adds	a	user	name	to	the	group

						operationId:	cloudmesh.organization.group.user.add

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	group

								-	name:	group

										description:	The	group	name

										in:	path

										required:	true

										schema:

												type:	string

								-	name:	user

										description:	The	user	name

										in:	path

										required:	true

										schema:

												type:	string

						responses:

								'200':

										description:	User	added	sucessfully

								'401':

										description:	Not	authorized

								'404':

										description:	The	organization,	group,	or	user	could	not	be	found

				delete:

						tags:

								-	Organization

						summary:	Delete	a	user	in	the	group

						description:	Delete	a	user	in	the	group

						operationId:	cloudmesh.organization.greop.delete.user

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	organization

								-	name:	group

										description:	The	group	name

										in:	path

										required:	true

										schema:

												type:	string

								-	name:	user

										description:	The	user	name

										in:	path

										required:	true

										schema:

												type:	string

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

										description:	The	organization,	group,	or	user	could	not	be	found

components:

		schemas:

				Organization:

						type:	object

						properties:

								name:

										description:	Name	of	the	organization

										type:	string

								users:

										description:	List	of	users

										type:	array

										items:

												$ref:	"user.yaml#/components/schemas/User"

				Group:

						type:	object

						description:	The	groups

						properties:

								name:

										type:	string

										description:	The	name	of	the	group

								description:

										type:	string

										description:	The	description	of	the	group

								users:

										description:	The	user	names	that	are	members	of	the	group

										type:	array

										items:

												type:	string

4.5.2	User

Services	need	to	specify	which	users	have	access	to	them.	User	information	can	be	reused	in
other	services	and	organized	in	a	virtual	organization.	A	user	can	be	added	to	a	named	list	of
users	within	this	organization.	A	group	associated	with	the	user	can	be	used	to	augment	users
to	be	part	of	one	or	more	groups.

4.5.2.1	Schema	User

Reference:	☁�

Property Type Description
username string The	unique	username	associated	with	the	user
firstname string The	firstname	of	the	user
lastname string The	lastname	of	the	user
email string The	email	of	the	user
comment string A	comment	regarding	the	user
publickey string The	public	key	of	the	user

4.5.2.2	Paths

HTTP Path Summary
get /user Returns	a	list	of	users

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/user.yaml

get /user/{name} Returns	the	named	user
put /user/{name} Uploads	a	user	to	the	list	of	users
delete /user/{name} Deletes	the	named	user

4.5.2.2.1	/user

4.5.2.2.1.1	GET	/user

Returns	a	list	of	all	users

Responses

Code Description Schema
200 The	list	of	users array[User]
401 Not	authorized String

4.5.2.2.2	/user/{name}

4.5.2.2.2.1	GET	/user/{name}

Returns	an	user	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	user User
401 Not	authorized String
404 The	named	user	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	user True String

4.5.2.2.2.2	PUT	/user/{name}

Uploads	a	user	to	the	list	of	users

Responses

Code Description Schema
200 User	updated String
401 Not	authorized String
404 The	named	user	could	not	be	found String

Request	Body

Located	in Description Required Schema
Body The	user	to	be	uploaded True User

4.5.2.2.2.3	DELETE	/user/{name}

Deletes	an	user	by	name

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	user	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	user True String

4.5.2.3	user.yaml

openapi:	"3.0.2"

info:

		version:	"3.2.0"

		x-date:	17-06-2019

		x-status:	defined

		title:	User

		description:	|-

				Services	need	to	specify	which	users	have	access	to	them.	User

				information	can	be	reused	in	other	services	and	organized	in	a	virtual

				organization.	A	user	can	be	added	to	a	named	list	of	users	within	this

				organization.	A	group	associated	with	the	user	can	be	used	to	augment

				users	to	be	part	of	one	or	more	groups.

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	Cloudmesh	User

				url:	https://cloudmesh-community.github.io/nist/spec/

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/user:

				get:

						tags:

								-	User

						summary:	Returns	a	list	of	users

						description:	Returns	a	list	of	all	users

						operationId:	cloudmesh.user.list

						responses:

								'200':

										description:	The	list	of	users

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/User'

								'401':

										description:	Not	authorized

		/user/{name}:

				get:

						tags:

								-	User

						summary:	Returns	the	named	user

						description:	Returns	an	user	by	name

						operationId:	cloudmesh.user.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	user

						responses:

								'200':

										description:	Returning	the	information	of	the	user

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/User'

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	user	could	not	be	found

				put:

						tags:

								-	User

						summary:	Uploads	a	user	to	the	list	of	users

						description:	Uploads	a	user	to	the	list	of	users

						operationId:	cloudmesh.user.add

						requestBody:

								description:	The	user	to	be	uploaded

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/User'

						responses:

								'200':

										description:	User	updated

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	user	could	not	be	found

				delete:

						tags:

								-	User

						summary:	Deletes	the	named	user

						description:	Deletes	an	user	by	name

						operationId:	cloudmesh.user.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	user

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	user	could	not	be	found

components:

		schemas:

				User:

						type:	object

						properties:

								username:

										type:	string

										description:	The	unique	username	associated	with	the	user

								firstname:

										type:	string

										description:	The	firstname	of	the	user

								lastname:

										type:	string

										description:	The	lastname	of	the	user

								email:

										type:	string

										description:	The	email	of	the	user

								comment:

										type:	string

										description:	A	comment	regarding	the	user

								publickey:

										type:	string

										description:	The	public	key	of	the	user

4.5.3	Account

To	charge	the	use	of	resources	accounting	can	be	used.	Accounting	can	be	implemented	on	a
variety	 of	 resources,	 such	 as	 users,	 groups	 or	 organizations.	 It	 is	 up	 to	 the	 implementer	 to
provide	rules	and	cost	for	it.	If	neededvvmultiple	accounting	resources	can	be	implemented.

4.5.3.1	Schema	Account

Reference:	☁�

Property Type Description
name string name	of	account
description string the	purpose	of	the	account
charge integer The	current	chare	of	the	account

unit string the	unit	in	which	the	account	is	charged	and	the	charge
value	is	stored

4.5.3.2	Paths

HTTP Path Summary
get /account Returns	a	the	accounts
get /account/{name} Returns	the	named	account
put /account/{name} Set	the	value	of	a	account
delete /account/{name} Deletes	the	named	account

4.5.3.2.1	/account

4.5.3.2.1.1	GET	/account

Returns	the	accounts

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/account.yaml

Responses

Code Description Schema
200 The	list	of	accounts array[Account]
401 Not	authorized String

4.5.3.2.2	/account/{name}

4.5.3.2.2.1	GET	/account/{name}

Returns	the	named	account

Responses

Code Description Schema
200 Returning	the	information	of	the	account Account
401 Not	authorized String
404 The	named	account	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	account True String

4.5.3.2.2.2	PUT	/account/{name}

Set	the	value	of	the	named	account

Responses

Code Description Schema
200 Account	updated	or	created String
400 Error	updating	account String
401 Not	authorized String

Request	Body

Located	in Description Required Schema
Body The	account	and	its	value True Account

4.5.3.2.2.3	DELETE	/account/{name}

Deletes	a	account	by	name

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	account	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	account True String

4.5.3.3	account.yaml

```{include=./spec/account.yaml}

4.5.4	Public	Key	Store

Many	 services	 and	 frameworks	 use	 Secure	 Shell	 (SSH)	 keys	 to	 authenticate.	 This	 service
allows	the	convenient	storage	of	the	public	keys.

4.5.4.1	Schema	Key

Reference:	☁�

Property Type Description
name string The	name	of	the	public	key
value string The	value	of	the	public	key
kind string The	key	kind	such	as	rsa,	dsa

group string An	optional	group	name	allowing	to	group	keys	to	create
custom	key	groups	within	the	public	key	store

comment string A	comment	for	the	public	key
uri string The	uri	of	the	public	key	if	any

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/key.yaml


fingerprint string The	fingerprint	of	the	public	key

4.5.4.2	Paths

HTTP Path Summary
get /key Returns	a	list	of	keys
get /key/{name} Returns	the	named	key
put /key/{name} Set	a	key
delete /key/{name} Deletes	the	named	key

4.5.4.2.1	/key

4.5.4.2.1.1	GET	/key

Returns	a	list	of	all	keys

Responses

Code Description Schema
200 The	list	of	keys array[Key]
401 Not	authorized String

4.5.4.2.2	/key/{name}

4.5.4.2.2.1	GET	/key/{name}

Returns	a	key	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	key Key
401 Not	authorized String
404 The	named	key	could	not	be	found String

Parameters

Name Located	in Description Required Schema



name path The	name	of	the	key True String

4.5.4.2.2.2	PUT	/key/{name}

Sets	the	named	key

Responses

Code Description Schema
200 Key	updated String
401 Not	authorized String
404 The	named	key	could	not	be	found String

Request	Body

Located	in Description Required Schema
Body The	new	key	to	create True Key

4.5.4.2.2.3	DELETE	/key/{name}

Deletes	a	key	by	name

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	key	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	key True String

4.5.4.3	publickeystore.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Public	Key	Store



		description:	|-

		

				Many	services	and	frameworks	use	Secure	Shell	(SSH)	keys	to

				authenticate.	This	service	allows	the	convenient	storage	of	the

				public	keys.

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/key:

				get:

						tags:

								-	Key

						summary:	Returns	a	list	of	keys

						description:	Returns	a	list	of	all	keys

						operationId:	cloudmesh.key.list

						responses:

								'200':

										description:	The	list	of	keys

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Key'

								'401':

										description:	Not	authorized

		/key/{name}:

				get:

						tags:

								-	Key

						summary:	Returns	the	named	key

						description:	Returns	a	key	by	name

						operationId:	cloudmesh.key.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	key

						responses:

								'200':

										description:	Returning	the	information	of	the	key

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Key'

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	key	could	not	be	found

				put:

						tags:

								-	Key

						summary:	Set	a	key

						description:	Sets	the	named	key

						operationId:	cloudmesh.key.add

						requestBody:

								description:	The	new	key	to	create

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Key'

						responses:

								'200':

										description:	Key	updated

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	key	could	not	be	found

				delete:

						tags:

								-	Key

						summary:	Deletes	the	named	key

						description:	Deletes	a	key	by	name

						operationId:	cloudmesh.key.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:



												type:	string

										description:	The	name	of	the	key

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	key	could	not	be	found

components:

		schemas:

				Key:

						type:	object

						description:	the	public	key

						properties:

								name:

										type:	string

										description:	The	name	of	the	public	key

								value:

										type:	string

										description:	The	value	of	the	public	key

								kind:

										type:	string

										description:	The	key	kind	such	as	rsa,	dsa

								group:

										type:	string

										description:	An	optional	group	name	allowing	to	group	keys	to	create

																							custom	key	groups	within	the	public	key	store

								comment:

										type:	string

										description:	A	comment	for	the	public	key

								uri:

										type:	string

										description:	The	uri	of	the	public	key	if	any

								fingerprint:

										type:	string

										description:	The	fingerprint	of	the	public	key

4.6	VARIABLE,	DEFUALT,	AND	ALIAS

4.6.1	Alias

Often	a	user	has	 the	desire	 to	create	a	custom	name	for	an	object.	An	alias	allows	to	do	that
while	while	 assosication	 auser	 defined	 name	 or	alias	 to	 a	 previouly	 used	 name.	The	 aliases
could	be	shared	with	other	users.	A	name	could	have	one	or	more	aliases.

4.6.1.1	Schema	Alias

Reference:	☁�

Property Type Description
name string The	name	of	the	alias
source string The	original	unique	object	name

4.6.1.2	Paths

HTTP Path Summary
get /alias Returns	a	list	of	aliases

get /alias/{name} Returns	the	named	alias

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/alias.yaml


put /alias/{name} Set	an	alias
delete /alias/{name} Deletes	the	named	alias

4.6.1.2.1	/alias

4.6.1.2.1.1	GET	/alias

Returns	a	list	of	all	aliases

Responses

Code Description Schema
200 The	list	of	aliasses array[Alias]
400 No	alias	found String
401 Not	authorized String

4.6.1.2.2	/alias/{name}

4.6.1.2.2.1	GET	/alias/{name}

Returns	an	alias	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	alias Alias
401 Not	authorized String
404 The	named	alias	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	alias True String

4.6.1.2.2.2	PUT	/alias/{name}

Sets	the	named	alias

Responses



Code Description Schema
200 Alias	updated	or	created String
401 Not	authorized String

Request	Body

Located	in Description Required Schema
Body The	new	alias	to	create True Alias

4.6.1.2.2.3	DELETE	/alias/{name}

Deletes	an	alias	by	name

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	alias	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	alias True String

4.6.1.3	alias.yaml

openapi:	'3.0.2'

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Alias

		description:	|-

				Often	a	user	has	the	desire	to	create	a	custom	name	for	an	object.	An

				alias	allows	to	do	that	while	while	assosication	auser	defined	name	or

				*alias*	to	a	previouly	used	name.	The	aliases	could	be	shared	with	other

				users.	A	name	could	have	one	or	more	aliases.

		termsOfService:	'https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt'

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist/spec/

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/alias:

				get:



						tags:

								-	Alias

						summary:	Returns	a	list	of	aliases

						description:	Returns	a	list	of	all	aliases

						operationId:	cloudmesh.alias.list

						responses:

								'200':

										description:	The	list	of	aliasses

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Alias'

								'400':

											description:	No	alias	found

								'401':

										description:	Not	authorized

		/alias/{name}:

				get:

						tags:

								-	Alias

						summary:	Returns	the	named	alias

						description:	Returns	an	alias	by	name

						operationId:	cloudmesh.alias.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	alias

						responses:

								'200':

										description:	Returning	the	information	of	the	alias

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Alias'

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	alias	could	not	be	found

				put:

						tags:

								-	Alias

						summary:	Set	an	alias

						description:	Sets	the	named	alias

						operationId:	cloudmesh.alias.add

						requestBody:

								description:	The	new	alias	to	create

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Alias'

						responses:

								'200':

										description:	Alias	updated	or	created

								'401':

										description:	Not	authorized

				delete:

						tags:

								-	Alias

						summary:	Deletes	the	named	alias

						description:	Deletes	an	alias	by	name

						operationId:	cloudmesh.alias.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	alias

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	alias	could	not	be	found

components:

		schemas:

				Alias:

						type:	object

						description:	the	alias

						properties:

								name:

										type:	string



										description:	The	name	of	the	alias

								source:

										type:	string

										description:	The	original	unique	object	name

4.6.2	Variables

Variables	are	a	simple	string	key	value	storage	to	store	simple	values.	Each	variable	can	have	a
datatype,	so	that	it	can	be	used	for	serialization	into	other	formats.	Internally	they	are	storred	as
strings.

4.6.2.1	Schema	Variable

Reference:	☁�

Property Type Description
name string Name	of	the	variable
value string Value	of	the	variable
description string A	description	of	the	variable

datatype string The	data	type	of	the	variable	which	can	be	used	for
serialization

4.6.2.2	Paths

HTTP Path Summary
get /variable Returns	a	the	variables
get /variable/{name} Returns	the	named	variable
put /variable/{name} Set	the	value	of	a	variable
delete /variable/{name} Deletes	the	named	variable

4.6.2.2.1	/variable

4.6.2.2.1.1	GET	/variable

Returns	the	variables

Responses

Code Description Schema
200 The	list	of	variables array[Variable]
400 No	variable	found String

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/variable.yaml


4.6.2.2.2	/variable/{name}

4.6.2.2.2.1	GET	/variable/{name}

Returns	the	named	variable

Responses

Code Description Schema
200 Returning	the	information	of	the	variable Variable
401 Not	authorized String
404 The	named	variable	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	variable True String

4.6.2.2.2.2	PUT	/variable/{name}

Set	the	value	of	the	named	variable

Responses

Code Description Schema
200 Variable	updated	or	created String
400 Error	updating	variable String
401 Not	authorized String

Request	Body

Located	in Description Required Schema
Body The	variable	and	its	value True Variable

4.6.2.2.2.3	DELETE	/variable/{name}

Deletes	a	variable	by	name



Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	variable	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	variable True String

4.6.2.3	variables.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Variables

		description:	|-

		

				Variables	are	a	simple	string	key	value	storage	to	store	simple

				values.	Each	variable	can	have	a	datatype,	so	that	it	can	be	used	for

				serialization	into	other	formats.	Internally	they	are	storred	as	strings.

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist/spec/

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/variable:

				get:

						tags:

								-	Variable

						summary:	Returns	a	the	variables

						description:	Returns	the	variables

						operationId:	cloudmesh.variable.list

						responses:

								'200':

										description:	The	list	of	variables

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Variable'

								'400':

											description:	No	variable	found

		/variable/{name}:

				get:

						tags:

								-	Variable

						summary:	Returns	the	named	variable

						description:	Returns	the	named	variable

						operationId:	cloudmesh.variable.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	variable

						responses:

								'200':



										description:	Returning	the	information	of	the	variable

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Variable'

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	variable	could	not	be	found

				put:

						tags:

								-	Variable

						summary:	Set	the	value	of	a	variable

						description:	Set	the	value	of	the	named	variable

						operationId:	cloudmesh.variable.add

						requestBody:

								description:	The	variable	and	its	value

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Variable'

						responses:

								'200':

										description:	Variable	updated	or	created

								'400':

										description:	Error	updating	variable

								'401':

										description:	Not	authorized

				delete:

						tags:

								-	Variable

						summary:	Deletes	the	named	variable

						description:	Deletes	a	variable	by	name

						operationId:	cloudmesh.variable.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	variable

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	variable	could	not	be	found

components:

		schemas:

				Variable:

						type:	object

						description:	the	variables

						properties:

								name:

										type:	string

										description:	Name	of	the	variable

								value:

										type:	string

										description:	Value	of	the	variable

								description:

										type:	string

										description:	A	description	of	the	variable

								datatype:

										type:	string

										description:	The	data	type	of	the	variable	which	can	be	used	for

																							serialization

4.6.3	Default

A	default	is	a	special	variable	that	has	a	context	associated	with	it.	This	allows	one	to	define
values	 that	 can	 be	 easily	 retrieved	 based	 on	 the	 associated	 context.	 For	 example,	 a	 default
could	be	the	image	name	for	a	cloud	where	the	context	is	defined	by	the	cloud	name.

4.6.3.1	Schema	Default

Reference:	☁�

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/default.yaml


Property Type Description
name string The	name	of	the	default
value string The	value	of	the	default
context string The	context	of	the	default

4.6.3.2	Paths

HTTP Path Summary
get /default Returns	a	list	of	defaults
get /default/{name} Returns	the	named	default
put /default/{name} Set	a	default
delete /default/{name} Deletes	the	named	default

4.6.3.2.1	/default

4.6.3.2.1.1	GET	/default

Returns	a	list	of	all	defaults

Responses

Code Description Schema
200 The	list	of	defaults array[Default]
401 Not	authorized String

4.6.3.2.2	/default/{name}

4.6.3.2.2.1	GET	/default/{name}

Returns	a	default	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	default Default
401 Not	authorized String
404 The	named	default	could	not	be	found String



Parameters

Name Located	in Description Required Schema
name path The	name	of	the	default True String

4.6.3.2.2.2	PUT	/default/{name}

Sets	the	named	default

Responses

Code Description Schema
200 Default	updated	or	created String
401 Not	authorized String

Request	Body

Located	in Description Required Schema
Body The	new	default	to	create True Default

4.6.3.2.2.3	DELETE	/default/{name}

Deletes	a	default	by	name

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	default	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	default True String

4.6.3.3	default.yaml

openapi:	"3.0.2"

info:



		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Default

		description:	|-

		

				A	default	is	a	special	variable	that	has	a	context	associated	with

				it.	This	allows	one	to	define	values	that	can	be	easily	retrieved

				based	on	the	associated	context.	For	example,	a	default	could	be

				the	image	name	for	a	cloud	where	the	context	is	defined	by	the

				cloud	name.

				

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist/spec/

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/default:

				get:

						tags:

								-	Default

						summary:	Returns	a	list	of	defaults

						description:	Returns	a	list	of	all	defaults

						operationId:	cloudmesh.default.list

						responses:

								'200':

										description:	The	list	of	defaults

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Default'

								'401':

										description:	Not	authorized

		/default/{name}:

				get:

						tags:

								-	Default

						summary:	Returns	the	named	default

						description:	Returns	a	default	by	name

						operationId:	cloudmesh.default.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	default

						responses:

								'200':

										description:	Returning	the	information	of	the	default

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Default'

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	default	could	not	be	found

				put:

						tags:

								-	Default

						summary:	Set	a	default

						description:	Sets	the	named	default

						operationId:	cloudmesh.default.add

						requestBody:

								description:	The	new	default	to	create

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Default'

						responses:

								'200':

										description:	Default	updated	or	created

								'401':

										description:	Not	authorized

				delete:

						tags:

								-	Default

						summary:	Deletes	the	named	default

						description:	Deletes	a	default	by	name

						operationId:	cloudmesh.default.delete_by_name



						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	default

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	default	could	not	be	found

components:

		schemas:

				Default:

						type:	object

						description:	the	defaults

						properties:

								name:

										type:	string

										description:	The	name	of	the	default

										example:	"image"

								value:

										type:	string

										description:	The	value	of	the	default

										example:	"m1.medium"

								context:

										type:	string

										description:	The	context	of	the	default

										example:	"cloud.vm.flavor"

4.7	DATA	MANAGEMENT

4.7.1	Filestore

A	file	store	is	a	resource	allowing	storage	of	data	as	a	traditional	file.	A	file	store	can	contanin
any	number	of	files	with	additional	attributes	describing	the	file.	A	file	store	is	located	on	the
physical	 server.	 It	contains	access	 to	 the	content	of	 the	 file.	This	contrasts	virtual	directories
that	are	just	pointers	to	files,	which	could	include	files	located	in	different	file	stores.	A	virtual
directory	also	doe	snot	contain	the	content	of	the	file,	but	just	a	pointer	where	to	find	the	file.

4.7.1.1	Schema	File

Reference:	☁�

Property Type Description
name string The	name	of	the	file
endpoint string The	location	of	the	file
checksum string The	checksum	of	the	file
size integer The	size	of	the	file	in	byte
content string(binary) the	content	of	the	file

4.7.1.2	Paths

HTTP Path Summary

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/file.yaml


get /file Returns	a	list	of	files	in	the	file	store
get /file/{name} Returns	the	named	file	in	the	file	store
put /file/{name} Uploads	a	file	to	the	list	of	files	in	the	file	store
delete /file/{name} Deletes	the	named	file	in	the	file	store

4.7.1.2.1	/file

4.7.1.2.1.1	GET	/file

Returns	a	list	of	all	files

Responses

Code Description Schema
200 The	list	of	files array[File]
401 Not	authorized String

4.7.1.2.2	/file/{name}

4.7.1.2.2.1	GET	/file/{name}

Returns	an	file	by	name	in	the	file	store

Responses

Code Description Schema
200 Returning	the	information	of	the	file	store File
401 Not	authorized String
404 The	named	file	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	file True String

4.7.1.2.2.2	PUT	/file/{name}

Uploads	a	file	to	the	list	of	files	in	the	file	store



Responses

Code Description Schema
200 File	updated	or	created String
401 Not	authorized String

Request	Body

Located	in Description Required Schema
Body The	file	to	be	uploaded True File

4.7.1.2.2.3	DELETE	/file/{name}

Deletes	an	file	by	name

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	file	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	file True String

4.7.1.3	filestore.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	File

		description:	|-

		

				A	file	store	is	a	resource	allowing	storage	of	data	as	a	traditional	file.

				A	file	store	can	contanin	any	number	of	files	with	additional	attributes

				describing	the	file.	A	file	store	is	located	on	the	physical		server.	It

				contains	access	to	the	content	of	the	file.	This	contrasts	virtual

				directories	that	are	just	pointers	to	files,	which	could	include	files

				located	in	different	file	stores.	A		virtual	directory	also	doe	snot

				contain	the	content	of	the	file,	but	just	a	pointer	where	to	find	the	file.

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist/spec/

		license:

				name:	Apache	2.0



				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/file:

				get:

						tags:

								-	File

						summary:	Returns	a	list	of	files	in	the	file	store

						description:	Returns	a	list	of	all	files

						operationId:	cloudmesh.file.list

						responses:

								'200':

										description:	The	list	of	files

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/File'

								'401':

										description:	Not	authorized

		/file/{name}:

				get:

						tags:

								-	File

						summary:	Returns	the	named	file	in	the	file	store

						description:	Returns	an	file	by	name	in	the	file	store

						operationId:	cloudmesh.file.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	file

						responses:

								'200':

										description:	Returning	the	information	of	the	file	store

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/File'

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	file	could	not	be	found

				put:

						tags:

								-	File

						summary:	Uploads	a	file	to	the	list	of	files	in	the	file	store

						description:	Uploads	a	file	to	the	list	of	files	in	the	file	store

						operationId:	cloudmesh.file.add

						requestBody:

								description:	The	file	to	be	uploaded

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/File'

						responses:

								'200':

										description:	File	updated	or	created

								'401':

										description:	Not	authorized

				delete:

						tags:

								-	File

						summary:	Deletes	the	named	file	in	the	file	store

						description:	Deletes	an	file	by	name

						operationId:	cloudmesh.file.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	file

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	file	could	not	be	found

components:

		schemas:

				File:

						type:	object

						description:	an	object	representing	a	file



						properties:

								name:

										type:	string

										description:	The	name	of	the	file

								endpoint:

										type:	string

										description:	The	location	of	the	file

								checksum:

										type:	string

										description:	The	checksum	of	the	file

								size:

										type:	integer

										description:	The	size	of	the	file	in	byte

								content:

										type:	string

										format:	binary

										description:	the	content	of	the	file

4.7.2	Replica

In	 many	 distributed	 systems,	 it	 is	 important	 that	 a	 file	 can	 be	 replicated	 among	 different
systems	to	provide	faster	access.	It	is	important	to	provide	a	mechanism	to	trace	the	pedigree	of
the	 file	while	pointing	 to	 its	original	 source.	A	 replica	will	point	 to	a	 file	 in	a	 file	 store	and
store	the	contents	in	the	file	store	instead	of	the	replica.	The	replica	is	just	a	pointer.

4.7.2.1	Schema	Replica

Reference:	☁�

Property Type Description
name string The	name	of	the	replica
filename string The	original	filename
endpoint string The	location	of	the	file
checksum string The	checksum	of	the	file
size integer The	size	of	the	file	in	byte

4.7.2.2	Paths

HTTP Path Summary
get /replica Returns	a	list	of	replicas
get /replica/{name} Returns	the	named	replica
put /replica/{name} Uploads	a	replica	to	the	list	of	replicas
delete /replica/{name} Deletes	the	named	replica

4.7.2.2.1	/replica

4.7.2.2.1.1	GET	/replica

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/replica.yaml


Returns	a	list	of	all	replicas

Responses

Code Description Schema
200 The	list	of	replicas array[Replica]
401 Not	authorized String

4.7.2.2.2	/replica/{name}

4.7.2.2.2.1	GET	/replica/{name}

Returns	an	replica	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	replica Replica
401 Not	authorized String
404 The	named	replica	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	replica True String

4.7.2.2.2.2	PUT	/replica/{name}

Uploads	a	replica	to	the	list	of	replicas

Responses

Code Description Schema
200 Replica	updated	or	created String
401 Not	authorized String

Request	Body

Located	in Description Required Schema



Body The	replica	to	be	uploaded True Replica

4.7.2.2.2.3	DELETE	/replica/{name}

Deletes	an	replica	by	name

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	replica	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	replica True String

4.7.2.3	replica.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Replica

		description:	|-

		

				In	many	distributed	systems,	it	is	important	that	a	file	can	be

				replicated	among	different	systems	to	provide	faster	access.	It	is

				important	to	provide	a	mechanism	to	trace	the	pedigree	of	the	file

				while	pointing	to	its	original	source.	A	replica	will	point	to	a	file	in

				a	file	store	and	store	the	contents	in	the	file	store	instead	of	the

				replica.	The	replica	is	just	a	pointer.

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist/spec/

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/replica:

				get:

						tags:

								-	Replica

						summary:	Returns	a	list	of	replicas

						description:	Returns	a	list	of	all	replicas

						operationId:	cloudmesh.replica.list

						responses:

								'200':

										description:	The	list	of	replicas

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Replica'

								'401':

										description:	Not	authorized



		/replica/{name}:

				get:

						tags:

								-	Replica

						summary:	Returns	the	named	replica

						description:	Returns	an	replica	by	name

						operationId:	cloudmesh.replica.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	replica

						responses:

								'200':

										description:	Returning	the	information	of	the	replica

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Replica'

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	replica	could	not	be	found

				put:

						tags:

								-	Replica

						summary:	Uploads	a	replica	to	the	list	of	replicas

						description:	Uploads	a	replica	to	the	list	of	replicas

						operationId:	cloudmesh.replica.add

						requestBody:

								description:	The	replica	to	be	uploaded

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Replica'

						responses:

								'200':

										description:	Replica	updated	or	created

								'401':

										description:	Not	authorized

				delete:

						tags:

								-	Replica

						summary:	Deletes	the	named	replica

						description:	Deletes	an	replica	by	name

						operationId:	cloudmesh.replica.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	replica

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	replica	could	not	be	found

components:

		schemas:

				Replica:

						type:	object

						description:	An	entry	representing	a	file	replica	record

						properties:

								name:

										type:	string

										description:	The	name	of	the	replica

								filename:

										type:	string

										description:	The	original	filename

								endpoint:

										type:	string

										description:	The	location	of	the	file

								checksum:

										type:	string

										description:	The	checksum	of	the	file

								size:

										type:	integer

										description:	The	size	of	the	file	in	byte

4.7.3	Database



The	database	specification	allows	to	register	a	database	and	perform	elementary	operations	to
use	this	database.	We	distinguish	actions	related	to	the	registration,	the	adding	of	a	schema,	the
insertion	of	data	and	the	query	of	data.	The	data	base	is	defined	by	a	name	an	endpoint	(e.g.,
host,	port),	and	a	protocol	used	(e.g.,	SQL,	MongoDB,	graphgl,	and	others).

4.7.3.1	Schema	Database

Reference:	☁�

Property Type Description
name string Name	of	the	database
description string Description	of	the	database
endpoint string Endpoint	of	the	database
kind string the	kind	of	the	database

4.7.3.2	Schema	Schema

Reference:	☁�

Property Type Description
name string Name	of	the	database
description string Description	of	the	database
kind string The	kind	of	the	definition
content string The	schema	associated	with	the	table	or	collection

4.7.3.3	Schema	Record

Reference:	☁�

Property Type Description
status string The	status	of	the	reurn
result string The	result	of	the	quesry	in	json	string	format

4.7.3.4	Schema	Query

Reference:	☁�

Property Type Description

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/database.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/schema.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/record.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/query.yaml


status string The	query	string

4.7.3.5	Paths

HTTP Path Summary
get /database Returns	all	databases
get /database/{name}/schema Get	the	list	of	the	schema
put /database/{name}/schema Upload	a	schema

delete /database/{name}/schema Deletes	a	database	from	the	list	of
databases

get /database/{name} Query	the	named	database
put /database/{name} add	data	to	the	table	or	collection
delete /database/{name} Delete	the	objects	matching	the	query

4.7.3.5.1	/database

4.7.3.5.1.1	GET	/database

Returns	all	databases

Responses

Code Description Schema
200 List	of	databases array[Database]
401 Not	authorized String
404 Named	database	not	found String

4.7.3.5.2	/database/{name}/schema

4.7.3.5.2.1	GET	/database/{name}/schema

Responses

Code Description Schema
200 successfully	returned	the	schema array[Schema]
401 Not	authorized String
404 Named	database	not	found String



Parameters

Name Located	in Description Required Schema
name path Name	of	the	schema True String

4.7.3.5.2.2	PUT	/database/{name}/schema

Responses

Code Description Schema
200 successfully	returned	the	list Schema
401 Not	authorized String
404 Named	database	not	found String

Parameters

Name Located	in Description Required Schema
name path Name	of	the	database True String

4.7.3.5.2.3	DELETE	/database/{name}/schema

Deletes	a	database	from	the	list	of	databases

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 Named	database	not	found String

Parameters

Name Located	in Description Required Schema
name path Name	of	the	database True String

4.7.3.5.3	/database/{name}

4.7.3.5.3.1	GET	/database/{name}



Query	the	named	database

Responses

Code Description Schema
200 Successfull	query array[Record]
401 Not	authorized String
404 Named	database	not	found String

Parameters

Name Located	in Description Required Schema
name path Name	of	the	database True String
query query Database	Query True Query

4.7.3.5.3.2	PUT	/database/{name}

Responses

Code Description Schema
200 successfully	uploaded Record
401 Not	authorized String
404 Named	database	not	found String

Parameters

Name Located	in Description Required Schema
name path Name	of	the	database True String

Request	Body

Located	in Description Required Schema
Body Record	to	be	uploaded True Record

4.7.3.5.3.3	DELETE	/database/{name}

Responses



Code Description Schema
200 Successfull	query array[Record]
401 Not	authorized String
404 Named	database	not	found String

Parameters

Name Located	in Description Required Schema
name path Name	of	the	database True String
query query Database	Query True Query

4.7.3.6	database.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Database

		description:	|-

				The	database	specification	allows	to	register	a	database	and	perform

				elementary	operations	to	use	this	database.	We	distinguish	actions

				related	to	the	registration,	the	adding	of	a	schema,	the	insertion	of

				data	and	the	query	of	data.	The	data	base	is	defined	by	a	name	an	endpoint

				(e.g.,	host,	port),	and	a	protocol	used	(e.g.,	SQL,	MongoDB,	graphgl,	and

					others).

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist/spec/

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/database:

				get:

						tags:

								-	"Database	Registry"

						summary:	Returns	all	databases

						description:	Returns	all	databases

						operationId:	cloudmesh.database.get

						responses:

								'200':

										description:	List	of	databases

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	"#/components/schemas/Database"

								'401':

										description:	Not	authorized

								'404':

										description:	Named	database	not	found

		/database/{name}/schema:

				get:

						tags:

						-	"Database	Schema"

						summary:	Get	the	list	of	the	schema

						description:	""

						operationId:	"cloudmesh.database.get.schema"

						parameters:

								-	name:	name

										description:	Name	of	the	schema

										in:	path

										required:	true

										schema:



												type:	string

						responses:

								'200':

										description:	"successfully	returned	the	schema"

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	"#/components/schemas/Schema"

								'401':

										description:	Not	authorized

								'404':

										description:	Named	database	not	found

				put:

						tags:

						-	"Database	Schema"

						summary:	"Upload		a	schema"

						description:	""

						operationId:	"cloudmesh.database.put.schema"

						parameters:

								-	name:	name

										description:	Name	of	the	database

										in:	path

										required:	true

										schema:

												type:	string

						responses:

								'200':

										description:	"successfully	returned	the	list"

										content:

												application/json:

														schema:

																$ref:	"#/components/schemas/Schema"

								'401':

										description:	Not	authorized

								'404':

										description:	Named	database	not	found

				delete:

						tags:

								-	"Database	Registry"

						summary:	Deletes	a	database	from	the	list	of	databases

						description:	Deletes	a	database	from	the	list	of	databases

						operationId:	cloudmesh.database.delete

						parameters:

								-	name:	name

										description:	Name	of	the	database

										in:	path

										required:	true

										schema:

												type:	string

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

										description:	Named	database	not	found

		/database/{name}:

				get:

						tags:

						-	"Database	Data"

						summary:	Query	the	named	database

						description:	Query	the	named	database

						operationId:	"cloudmesh.database.data.get"

						parameters:

								-	name:	name

										description:	Name	of	the	database

										in:	path

										required:	true

										schema:

												type:	string

								-	in:	query

										name:	query

										description:	Database	Query

										required:	true

										schema:

												$ref:	'#/components/schemas/Query'

						responses:

								'200':

										description:	Successfull	query

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	"#/components/schemas/Record"

								'401':

										description:	Not	authorized



								'404':

										description:	Named	database	not	found

				put:

						tags:

						-	"Database	Data"

						summary:	"add	data	to	the	table	or	collection"

						description:	""

						operationId:	"cloudmesh.database.data.put"

						parameters:

								-	name:	name

										description:	Name	of	the	database

										in:	path

										required:	true

										schema:

												type:	string

						requestBody:

								description:	Record	to	be	uploaded

								required:	true

								content:

										application/json:

												schema:

														$ref:	"#/components/schemas/Record"

						responses:

								'200':

										description:	"successfully	uploaded"

										content:

												application/json:

														schema:

																$ref:	"#/components/schemas/Record"

								'401':

										description:	Not	authorized

								'404':

										description:	Named	database	not	found

				delete:

						tags:

						-	"Database	Data"

						summary:	"Delete	the	objects	matching	the	query"

						description:	""

						operationId:	"cloudmesh.database.data.delete"

						parameters:

								-	name:	name

										description:	Name	of	the	database

										in:	path

										required:	true

										schema:

												type:	string

								-	name:	query

										description:	Database	Query

										in:	query

										required:	true

										schema:

												$ref:	'#/components/schemas/Query'

						responses:

								'200':

										description:	Successfull	query

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	"#/components/schemas/Record"

								'401':

										description:	Not	authorized

								'404':

										description:	Named	database	not	found

components:

		schemas:

				Database:

						type:	object

						description:	Defines	a	database	object	as	an	entry

						properties:

								name:

										type:	string

										description:	Name	of	the	database

								description:

										type:	string

										description:	Description	of	the	database

								endpoint:

										type:	string

										description:	Endpoint	of	the	database

								kind:

										type:	string

										description:	the	kind	of	the	database

				Schema:

						type:	object

						description:	Defines	a	database

						properties:

								name:

										type:	string



										description:	Name	of	the	database

								description:

										type:	string

										description:	Description	of	the	database

								kind:

										type:	string

										description:	The	kind	of	the	definition

								content:

											type:	string

											description:	The	schema	associated	with	the	table	or	collection

				Record:

						type:	object

						description:	The	result	of	a	query

						properties:

								status:

										type:	string

										description:	The	status	of	the	reurn

								result:

										type:	string

										description:	The	result	of	the	quesry	in	json	string	format

				Query:

						type:	object

						description:	The		query

						properties:

								status:

										type:	string

										description:	The	query	string

4.7.4	Virtual	Directory

A	virtual	directory	is	a	collection	of	files,	replicas,	streams	or	other	virtual	directories.

4.7.4.1	Schema	Virtualdirectory

Reference:	☁�

Property Type Description
name string The	name	of	the	virtual	directory
description string Description	of	the	virtual	directory
host string Remote	host	of	the	virtual	directory
location string Remote	location,	e.g.,	a	directory	with	full	path	on	a	host
protocol string Access	protocol	(e.g.	HTTP,	FTP,	SSH,	etc.)
credential object Credential	to	access

4.7.4.2	Paths

HTTP Path Summary

get /virtualdirectory Returns	a	list	of	virtual
directories

get /virtualdirectory/{name} Returns	the	named	virtual
directory

put /virtualdirectory/{name} Uploads	a	virtual	directory	to	the
list	of	virtual	directories

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/virtualdirectory.yaml


delete /virtualdirectory/{name} Deletes	the	named	virtual
directory

get /virtualdirectory/{name}/{filename} Returns	the	specific	file	of	that
virtual	directory

put /virtualdirectory/{name}/{filename} Updates	or	adds	a	virtual	file	in
the	virtual	directory

delete /virtualdirectory/{name}/{filename} Delete	an	user	in	the	virtual
directory

4.7.4.2.1	/virtualdirectory

4.7.4.2.1.1	GET	/virtualdirectory

Returns	a	list	of	all	virtual	directories

Responses

Code Description Schema
200 The	list	of	virtual	directories array[Virtualdirectory]
401 Not	authorized String

4.7.4.2.2	/virtualdirectory/{name}

4.7.4.2.2.1	GET	/virtualdirectory/{name}

Returns	an	virtual	directory	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	virtual	directory Virtualdirectory
401 Not	authorized String
404 The	named	virtual	directory	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	virtual	directory True String



4.7.4.2.2.2	PUT	/virtualdirectory/{name}

Uploads	a	virtual	directory	to	the	list	of	virtual	directories

Responses

Code Description Schema
200 Virtual	directory	updated	or	created String
401 Not	authorized String
404 The	named	virtual	directory	could	not	be	found String

Request	Body

Located	in Description Required Schema
Body The	virtual	directory	to	be	uploaded True Virtualdirectory

4.7.4.2.2.3	DELETE	/virtualdirectory/{name}

Deletes	an	virtual	directory	by	name

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	virtual	directory	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	virtual	directory True String

4.7.4.2.3	/virtualdirectory/{name}/{filename}

4.7.4.2.3.1	GET	/virtualdirectory/{name}/{filename}

Returns	the	specific	file	of	that	virtual	directory

Responses



Code Description Schema
200 upload	sucessful File
401 Not	authorized String
404 The	named	virtual	directory	or	file	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	virtual	directory True String
filename path The	filename True String

4.7.4.2.3.2	PUT	/virtualdirectory/{name}/{filename}

Updates	or	adds	a	virtual	file	in	the	virtual	directory

Responses

Code Description Schema
200 User	added	sucessfully String
401 Not	authorized String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	virtual	directory True String
filename path The	filename True String

Request	Body

Located	in Description Required Schema
Body The	user	to	be	uploaded True File

4.7.4.2.3.3	DELETE	/virtualdirectory/{name}/{filename}

Delete	an	user	in	the	virtual	directory

Responses



Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	virtual	directory	or	file	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	virtual	directory True String
filename path The	filename True String

4.7.4.3	virtualdirectory.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Virtual	Directory

		description:	|-

		

				A	virtual	directory	is	a	collection	of	files,	replicas,	streams	or	other

				virtual	directories.

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup	Service

				url:	https://cloudmesh-community.github.io/nist/spec/

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/virtualdirectory:

				get:

						tags:

								-	Virtual	directory

						summary:	Returns	a	list	of	virtual	directories

						description:	Returns	a	list	of	all	virtual	directories

						operationId:	cloudmesh.virtual	directory.list

						responses:

								'200':

										description:	The	list	of	virtual	directories

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Virtualdirectory'

								'401':

										description:	Not	authorized

		/virtualdirectory/{name}:

				get:

						tags:

								-	Virtual	directory

						summary:	Returns	the	named	virtual	directory

						description:	Returns	an	virtual	directory	by	name

						operationId:	cloudmesh.virtualdirectory.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	virtual	directory

						responses:

								'200':

										description:	Returning	the	information	of	the	virtual	directory



										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Virtualdirectory'

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	virtual	directory	could	not	be	found

				put:

						tags:

								-	Virtual	directory

						summary:	Uploads	a	virtual	directory	to	the	list	of	virtual	directories

						description:	Uploads	a	virtual	directory	to	the	list	of	virtual	directories

						operationId:	cloudmesh.virtual	directory.add

						requestBody:

								description:	The	virtual	directory	to	be	uploaded

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Virtualdirectory'

						responses:

								'200':

										description:	Virtual	directory	updated	or	created

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	virtual	directory	could	not	be	found

				delete:

						tags:

								-	Virtual	directory

						summary:	Deletes	the	named	virtual	directory

						description:	Deletes	an	virtual	directory	by	name

						operationId:	cloudmesh.virtualdirectory.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	virtual	directory

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	virtual	directory	could	not	be	found

		/virtualdirectory/{name}/{filename}:

				get:

						tags:

								-	Virtual	directory

						summary:	Returns	the	specific	file	of	that	virtual	directory

						description:	Returns	the	specific	file	of	that	virtual	directory

						operationId:	cloudmesh.virtualdirectory.file.get_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	virtual	directory

								-	name:	filename

										description:	The	filename

										in:	path

										required:	true

										schema:

												type:	string

						responses:

								'200':

										description:	upload	sucessful

										content:

												application/json:

														schema:

																$ref:	"filestore.yaml#/components/schemas/File"

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	virtual	directory	or	file	could	not	be	found

				put:

						tags:

								-	Virtual	directory

						summary:	Updates	or	adds	a	virtual	file		in	the	virtual	directory

						description:	Updates	or	adds	a	virtual	file	in	the	virtual	directory

						operationId:	cloudmesh.virtualdirectory.file.add

						parameters:

								-	name:	name

										in:	path

										required:	true



										schema:

												type:	string

										description:	The	name	of	the	virtual	directory

								-	name:	filename

										description:	The	filename

										in:	path

										required:	true

										schema:

												type:	string

						requestBody:

								description:	The	user	to	be	uploaded

								required:	true

								content:

										application/json:

												schema:

														$ref:	"filestore.yaml#/components/schemas/File"

						responses:

								'200':

										description:	User	added	sucessfully

								'401':

										description:	Not	authorized

						'404':

								description:	The	named	virtual	directory	or	file	could	not	be	found

				delete:

						tags:

								-	Virtual	directory

						summary:	Delete	an	user	in	the	virtual	directory

						description:	Delete	an	user	in	the	virtual	directory

						operationId:	cloudmesh.virtualdirectory.file.delete

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	virtual	directory

								-	name:	filename

										description:	The	filename

										in:	path

										required:	true

										schema:

												type:	string

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	virtual	directory	or	file	could	not	be	found

components:

		schemas:

				Virtualdirectory:

						type:	object

						description:	the	virtual	directory

						properties:

								name:

										description:	The	name	of	the	virtual	directory

										type:	string

								description:

										description:	Description	of	the	virtual	directory

										type:	string

								host:

										description:	Remote	host	of	the	virtual	directory

										type:	string

								location:

										description:	Remote	location,	e.g.,	a	directory	with	full	path	on	a

												host

										type:	string

								protocol:

										description:	Access	protocol	(e.g.	HTTP,	FTP,	SSH,	etc.)

										type:	string

								credential:

										description:	Credential	to	access

										type:	object

4.8	COMPUTE	MANAGEMENT	-	VIRTUAL	CLUSTERS

4.8.1	Virtual	Cluster

A	Virtual	Cluster	is	modeled	as	manager	node,	and	one	or	more	compute	nodes.	The	manager



node	 usually	 serves	 as	 a	 login	 node	 and	 can	 be	 accessed	 from	 outside	 via	 a	 public	 IP.	 The
compute	 nodes	 are	 connected	 to	 the	manager	 node	 via	 a	 private,	 usually	 high	 performance
(high	 throughput	and	 low	latency)	network	and	 thus	accessible	only	from	the	manager	node.
To	 use	 the	 virtual	 cluster,	 login	 to	 the	manager	 node,	 and	 from	 there	 one	 can	 login	 to	 any
compute	node,	or	submit	a	job	to	run	on	the	compute	nodes.

4.8.1.1	Schema	Virtualcluster

Reference:	☁�

Property Type Description
name string The	name	of	the	virtual	cluster
description string A	description	of	the	virtual	cluster
owner string Username	of	the	owner	of	the	virtual	cluster
manager Node Manager	node	of	the	virtual	cluster
nodes array[Node] List	of	nodes	of	the	virtual	cluster

4.8.1.2	Schema	Node

Reference:	☁�

Property Type Description
name string Name	of	the	node
state string Power	state	of	the	node
ncpu integer Number	of	virtual	CPUs	of	the	node
ram string RAM	size	of	the	node
disk string Disk	size	of	the	node
nics array[NIC] List	of	network	interfaces	of	the	node

4.8.1.3	Schema	NIC

Reference:	☁�

Property Type Description
mac string MAC	address	of	the	node
ip string IP	address	of	the	node

4.8.1.4	Paths

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/virtualcluster.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/node.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/nic.yaml


HTTP Path Summary
get /virtualcluster Returns	a	list	of	virtual	clusters
get /virtualcluster/{name} Returns	the	named	virtual	cluster

put /virtualcluster/{name} Uploads	an	virtual	cluster	to	the	list	of
virtual	clusters

delete /virtualcluster/{name} Deletes	the	named	virtual	cluster
get /virtualcluster/{name}/{node} Node	of	the	named	virtual	cluster

put /virtualcluster/{name}/{node} Updates	or	adds	a	node	to	the	virtual
cluster

delete /virtualcluster/{name}/{node} Delete	a	node	in	the	virtual	cluster

4.8.1.4.1	/virtualcluster

4.8.1.4.1.1	GET	/virtualcluster

Returns	a	list	of	all	virtual	clusters

Responses

Code Description Schema
200 The	list	of	virtual	clusters array[Virtualcluster]
401 Not	authorized String

4.8.1.4.2	/virtualcluster/{name}

4.8.1.4.2.1	GET	/virtualcluster/{name}

Returns	an	virtual	cluster	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	virtual	cluster Virtualcluster
401 Not	authorized String
404 The	named	virtual	cluster	could	not	be	found String

Parameters



Name Located	in Description Required Schema
name path The	name	of	the	virtual	cluster True String

4.8.1.4.2.2	PUT	/virtualcluster/{name}

Uploads	an	virtual	cluster	to	the	list	of	virtual	clusters

Responses

Code Description Schema
200 Virtual	cluster	updated	or	created String
401 Not	authorized String
404 The	named	virtual	cluster	could	not	be	found String

Request	Body

Located	in Description Required Schema
Body The	virtual	cluster	to	be	uploaded True Virtualcluster

4.8.1.4.2.3	DELETE	/virtualcluster/{name}

Deletes	an	virtual	cluster	by	name

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	virtual	cluster	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	virtual	cluster True String

4.8.1.4.3	/virtualcluster/{name}/{node}

4.8.1.4.3.1	GET	/virtualcluster/{name}/{node}



Returns	 the	 specific	 node	 of	 the	 named	 virtual	 cluster.	 If	 the	 node	 name	 is	 manager,	 the
manager	node	is	used.	A	compute	node	can	not	be	named	manager

Responses

Code Description Schema
200 Node	info Node
401 Not	authorized String
404 The	named	virtual	cluster	or	node	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	virtual	cluster True String
node path The	node	name True String

4.8.1.4.3.2	PUT	/virtualcluster/{name}/{node}

Updates	or	adds	a	node	to	the	virtual	cluster.	If	the	node	name	is	manager,	the	manager	node	is
uploaded.

Responses

Code Description Schema
200 Node	added	sucessfully String
401 Not	authorized String
404 The	named	virtual	cluster	or	node	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	virtual	cluster True String
node path The	node	name True String

Request	Body

Located	in Description Required Schema
Body The	node	to	be	uploaded True Node



4.8.1.4.3.3	DELETE	/virtualcluster/{name}/{node}

Delete	a	node	in	the	virtual	cluster

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	virtual	cluster	or	node	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	virtual	cluster True String
node path The	node	name True String

4.8.1.5	virtualcluster.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Virtual	Cluster

		description:	|-

				A	Virtual	Cluster	is	modeled	as	manager	node,	and	one	or	more

				compute	nodes.	The	manager	node	usually	serves	as	a	login	node	and

				can	be	accessed	from	outside	via	a	public	IP.	The	compute	nodes	are

				connected	to	the	manager	node	via	a	private,	usually	high	performance	(high

				throughput	and	low	latency)	network	and	thus	accessible	only	from	the

				manager	node.	To	use	the	virtual	cluster,	login	to	the	manager	node,	and

				from	there	one	can	login	to	any	compute	node,	or	submit	a	job	to	run	on	the

				compute	nodes.

				

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup	Service

				url:	https://cloudmesh-community.github.io/nist/spec/

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/virtualcluster:

				get:

						tags:

								-	Virtual	cluster

						summary:	Returns	a	list	of	virtual	clusters

						description:	Returns	a	list	of	all	virtual	clusters

						operationId:	cloudmesh.virtualcluster.list

						responses:

								'200':

										description:	The	list	of	virtual	clusters

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Virtualcluster'

								'401':

										description:	Not	authorized



		/virtualcluster/{name}:

				get:

						tags:

								-	Virtual	cluster

						summary:	Returns	the	named	virtual	cluster

						description:	Returns	an	virtual	cluster	by	name

						operationId:	cloudmesh.virtualcluster.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	virtual	cluster

						responses:

								'200':

										description:	Returning	the	information	of	the	virtual	cluster

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Virtualcluster'

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	virtual	cluster	could	not	be	found

				put:

						tags:

								-	Virtual	cluster

						summary:	Uploads	an	virtual	cluster	to	the	list	of	virtual	clusters

						description:	Uploads	an	virtual	cluster	to	the	list	of	virtual	clusters

						operationId:	cloudmesh.virtualcluster.add

						requestBody:

								description:	The	virtual	cluster	to	be	uploaded

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Virtualcluster'

						responses:

								'200':

										description:	Virtual	cluster	updated	or	created

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	virtual	cluster	could	not	be	found

				delete:

						tags:

								-	Virtual	cluster

						summary:	Deletes	the	named	virtual	cluster

						description:	Deletes	an	virtual	cluster	by	name

						operationId:	cloudmesh.virtualcluster.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	virtual	cluster

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	virtual	cluster	could	not	be	found

		/virtualcluster/{name}/{node}:

				get:

						tags:

								-	Virtual	cluster

						summary:	Node	of	the	named	virtual	cluster

						description:	Returns	the	specific	node	of	the	named	virtual	cluster.	If

																			the	node	name	is	manager,	the	manager	node	is	used.	A

																			compute	node	can	not	be	named	manager

						operationId:	cloudmesh.virtualcluster.node.get_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	virtual	cluster

								-	name:	node

										description:	The	node	name

										in:	path

										required:	true

										schema:

												type:	string

						responses:

								'200':



										description:	Node	info

										content:

												application/json:

														schema:

																$ref:	"#/components/schemas/Node"

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	virtual	cluster	or	node	could	not	be	found

				put:

						tags:

								-	Virtual	cluster

						summary:	Updates	or	adds	a	node	to	the	virtual	cluster

						description:	Updates	or	adds	a	node	to	the	virtual	cluster.	If

								the	node	name	is	manager,	the	manager	node	is	uploaded.

						operationId:	cloudmesh.virtualcluster.node.add

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	virtual	cluster

								-	name:	node

										description:	The	node	name

										in:	path

										required:	true

										schema:

												type:	string

						requestBody:

								description:	The	node	to	be	uploaded

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Node'

						responses:

								'200':

										description:	Node	added	sucessfully

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	virtual	cluster	or	node	could	not	be	found

				delete:

						tags:

								-	Virtual	cluster

						summary:	Delete	a	node	in	the	virtual	cluster

						description:	Delete	a	node	in	the	virtual	cluster

						operationId:	cloudmesh.virtualcluster.node.delete

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	virtual	cluster

								-	name:	node

										description:	The	node	name

										in:	path

										required:	true

										schema:

												type:	string

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	virtual	cluster	or	node	could	not	be	found

components:

		schemas:

				Virtualcluster:

						type:	object

						properties:

								name:

										description:	The	name	of	the	virtual	cluster

										type:	string

								description:

										type:	string

										description:	A	description	of	the	virtual	cluster

								owner:

										type:	string

										description:	Username	of	the	owner	of	the	virtual	cluster

								manager:

										description:	Manager	node	of	the	virtual	cluster

										$ref:	"#/components/schemas/Node"

								nodes:

										description:	List	of	nodes	of	the	virtual	cluster

										type:	array



										items:

												$ref:	"#/components/schemas/Node"

				Node:

						type:	object

						properties:

								name:

										type:	string

										description:	Name	of	the	node

								state:

										type:	string

										description:	Power	state	of	the	node

								ncpu:

										type:	integer

										description:	Number	of	virtual	CPUs	of	the	node

								ram:

										type:	string

										description:	RAM	size	of	the	node

								disk:

										type:	string

										description:	Disk	size	of	the	node

								nics:

										type:	array

										description:	List	of	network	interfaces	of	the	node

										items:

												$ref:	"#/components/schemas/NIC"

				NIC:

						type:	object

						properties:

								mac:

										type:	string

										description:	MAC	address	of	the	node

								ip:

										type:	string

										description:	IP	address	of	the	node

4.8.2	Network	of	Nodes

A	Network	 of	 Nodes	 (NON)	 contains	 a	 number	 of	 compute	 nodes	 that	 are	 connected	 by	 a
network	 and	 can	 be	 reached	 from	 each	 other.	 The	 concept	 is	 a	 generalization	 of	 the	 term
Network	of	Workstations.	In	contrast	to	a	Virtual	Cluster	it	doe	snot	have	a	dedicated	manager
node.	 Network	 of	 nodes	 can	 be	 real	 or	 virtual.	 The	 same	 security	 context	 can	 be	 used	 to
authenticate	to	all	nodes	in	the	network	of	nodes.	This	is	typically	done	with	a	public	keystore
in	which	all	keys	are	stored	that	allow	access	to	the	nodes.

4.8.2.1	Schema	Non

Reference:	☁�

Property Type Description
name string The	name	of	the	network	of	nodes
description string A	description	of	the	network	of	nodes
nodes array[Node] List	of	nodes	of	the	network	of	nodes

4.8.2.2	Paths

HTTP Path Summary
get /non Returns	a	list	of	network	of	nodess

Uploads	a	network	of	nodes	to	the	list	of

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/non.yaml


put /non/{name} network	of	nodess

get /non/{name}/publickeystore Returns	the	information	of	the	keystore
delete /non/{name}/publickeystore Deletes	the	keystore
put /non/{name}/publickeystore Adds	a	keystore
get /non/{name}/node Returns	the	named	network	of	nodes
delete /non/{name}/node Deletes	the	named	network	of	nodes
get /non/{name}/node/{node} Node	of	the	named	network	of	nodes

put /non/{name}/node/{node} Updates	or	adds	a	node	to	the	network
of	nodes

delete /non/{name}/node/{node} Delete	a	node	in	the	network	of	nodes

4.8.2.2.1	/non

4.8.2.2.1.1	GET	/non

Returns	a	list	of	all	network	of	nodess

Responses

Code Description Schema
200 The	list	of	network	of	nodess array[Non]
401 Not	authorized String

4.8.2.2.2	/non/{name}

4.8.2.2.2.1	PUT	/non/{name}

Uploads	a	network	of	nodes	to	the	list	of	network	of	nodess

Responses

Code Description Schema
200 Network	of	nodes	updated	or	created. String
400 Error	updating	network	of	nodes String
401 Not	authorized String

Request	Body



Located	in Description Required Schema
Body The	network	of	nodes	to	be	uploaded True Non

4.8.2.2.3	/non/{name}/publickeystore

4.8.2.2.3.1	GET	/non/{name}/publickeystore

Returns	a	network	of	nodes	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	network	of	nodes string
401 Not	authorized String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	network	of	nodes True String

4.8.2.2.3.2	DELETE	/non/{name}/publickeystore

Deletes	a	network	of	nodes	by	name

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	network	of	nodes True String

4.8.2.2.3.3	PUT	/non/{name}/publickeystore

Updates	or	adds	a	node	to	the	network	of	nodes.



Responses

Code Description Schema
200 Node	keystore	added	sucessfully String
401 Not	authorized String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	network	of	nodes True String

4.8.2.2.4	/non/{name}/node

4.8.2.2.4.1	GET	/non/{name}/node

Returns	a	network	of	nodes	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	node Non
401 Not	authorized String
404 The	named	network	of	nodes	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	network	of	nodes True String

4.8.2.2.4.2	DELETE	/non/{name}/node

Deletes	a	network	of	nodes	by	name

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	network	of	nodes	could	not	be	found String



Parameters

Name Located	in Description Required Schema
name path The	name	of	the	network	of	nodes True String

4.8.2.2.5	/non/{name}/node/{node}

4.8.2.2.5.1	GET	/non/{name}/node/{node}

Returns	the	specific	node	of	the	named	network	of	nodes.

Responses

Code Description Schema
200 Node	info Node
401 Not	authorized String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	network	of	nodes True String
node path The	node	name True String

4.8.2.2.5.2	PUT	/non/{name}/node/{node}

Updates	or	adds	a	node	to	the	network	of	nodes

Responses

Code Description Schema
200 Node	added	sucessfully String
401 Not	authorized String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	network	of	nodes True String



node path The	node	name True String

Request	Body

Located	in Description Required Schema
Body The	node	to	be	uploaded True Node

4.8.2.2.5.3	DELETE	/non/{name}/node/{node}

Delete	a	node	in	the	network	of	nodes

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	network	of	nodes True String
node path The	node	name True String

4.8.2.3	non.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Network	of	Nodes

		description:	|-

				A	Network	of	Nodes	(NON)	contains	a	number	of	compute	nodes	that	are

				connected	by	a	network	and	can	be	reached	from	each	other.	The	concept	is	a

				generalization	of	the	term	Network	of	Workstations.	In	contrast	to	a

				Virtual	Cluster	it	doe	snot	have	a	dedicated	manager	node.	Network	of

				nodes	can	be	real	or	virtual.	The	same	security	context	can	be	used	to

				authenticate	to	all	nodes	in	the	network	of	nodes.	This	is	typically	done

				with	a	public	keystore	in	which	all	keys	are	stored	that	allow	access	to

				the	nodes.

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup	Service

				url:	https://cloudmesh-community.github.io/nist/spec/

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/non:

				get:

						tags:



								-	Network	of	nodes

						summary:	Returns	a	list	of	network	of	nodess

						description:	Returns	a	list	of	all	network	of	nodess

						operationId:	cloudmesh.non.list

						responses:

								'200':

										description:	The	list	of	network	of	nodess

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Non'

								'401':

										description:	Not	authorized

		/non/{name}:

				put:

						tags:

								-	Network	of	nodes

						summary:	Uploads	a	network	of	nodes	to	the	list	of	network	of	nodess

						description:	Uploads	a	network	of	nodes	to	the	list	of	network	of	nodess

						operationId:	cloudmesh.non.add

						requestBody:

								description:	The	network	of	nodes	to	be	uploaded

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Non'

						responses:

								'200':

										description:	Network	of	nodes	updated	or	created.

								'400':

										description:	Error	updating	network	of	nodes

								'401':

										description:	Not	authorized

		/non/{name}/publickeystore:

				get:

						tags:

								-	Non

						summary:	Returns	the	information	of	the	keystore

						description:	Returns	a	network	of	nodes	by	name

						operationId:	cloudmesh.non.keystore.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	network	of	nodes

						responses:

								'200':

										description:	Returning	the	information	of	the	network	of	nodes

										content:

												application/json:

														schema:

																type:	string

																description:	the	endpoint	of	the	publickeystore

								'401':

										description:	Not	authorized

				delete:

						tags:

								-	Network	of	nodes

						summary:	Deletes	the	keystore

						description:	Deletes	a	network	of	nodes	by	name

						operationId:	cloudmesh.non.keystore.delete

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	network	of	nodes

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

				put:

						tags:

								-	Network	of	nodes

						summary:	Adds	a	keystore

						description:	Updates	or	adds	a	node	to	the	network	of	nodes.

						operationId:	cloudmesh.non.keystore.add

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string



										description:	The	name	of	the	network	of	nodes

						responses:

								'200':

											description:	Node	keystore	added	sucessfully

								'401':

										description:	Not	authorized

		/non/{name}/node:

				get:

						tags:

								-	Non

						summary:	Returns	the	named	network	of	nodes

						description:	Returns	a	network	of	nodes	by	name

						operationId:	cloudmesh.non.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	network	of	nodes

						responses:

								'200':

										description:	Returning	the	information	of	the	node

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Non'

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	network	of	nodes	could	not	be	found

				delete:

						tags:

								-	Network	of	nodes

						summary:	Deletes	the	named	network	of	nodes

						description:	Deletes	a	network	of	nodes	by	name

						operationId:	cloudmesh.non.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	network	of	nodes

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	network	of	nodes	could	not	be	found

		/non/{name}/node/{node}:

				get:

						tags:

								-	Network	of	nodes

						summary:	Node	of	the	named	network	of	nodes

						description:	Returns	the	specific	node	of	the	named	network	of	nodes.

						operationId:	cloudmesh.non.node.get_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	network	of	nodes

								-	name:	node

										description:	The	node	name

										in:	path

										required:	true

										schema:

												type:	string

						responses:

								'200':

										description:	Node	info

										content:

												application/json:

														schema:

																$ref:	"virtualcluster.yaml#/components/schemas/Node"

								'401':

										description:	Not	authorized

				put:

						tags:

								-	Network	of	nodes

						summary:	Updates	or	adds	a	node	to	the	network	of	nodes

						description:	Updates	or	adds	a	node	to	the	network	of	nodes

						operationId:	cloudmesh.non.node.add

						parameters:

								-	name:	name

										in:	path



										required:	true

										schema:

												type:	string

										description:	The	name	of	the	network	of	nodes

								-	name:	node

										description:	The	node	name

										in:	path

										required:	true

										schema:

												type:	string

						requestBody:

								description:	The	node	to	be	uploaded

								required:	true

								content:

										application/json:

												schema:

														$ref:	"virtualcluster.yaml#/components/schemas/Node"

						responses:

								'200':

											description:	Node	added	sucessfully

								'401':

										description:	Not	authorized

				delete:

						tags:

								-	Network	of	nodes

						summary:	Delete	a	node	in	the	network	of	nodes

						description:	Delete	a	node	in	the	network	of	nodes

						operationId:	cloudmesh.non.node.delete

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	network	of	nodes

								-	name:	node

										description:	The	node	name

										in:	path

										required:	true

										schema:

												type:	string

						responses:

								'200':

											description:	Deletion	successful

								'401':

										description:	Not	authorized

components:

		schemas:

				Non:

						type:	object

						properties:

								name:

										description:	The	name	of	the	network	of	nodes

										type:	string

								description:

										type:	string

										description:	A	description	of	the	network	of	nodes

								nodes:

										description:	List	of	nodes	of	the	network	of	nodes

										type:	array

										items:

												$ref:	"virtualcluster.yaml#/components/schemas/Node"

4.8.3	Scheduler

A	scheduler	allows	to	control	the	execution	of	tasks	based	on	a	policy.	Schedulers	may	allow
the	assignment	of	differnt	policies	to	define	the	order	of	the	tasks.	A	scheduler	returns	the	next
task	to	be	executed.	Tasks	can	be	added	and	deleted.

4.8.3.1	Schema	Task

Reference:	☁�

Property Type Description
name string name	of	the	scheduler

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/task.yaml


user string the	username	the	task	belongs	to
description string The	description	of	the	task
kind string The	kind	of	the	task

4.8.3.2	Schema	Policy

Reference:	☁�

Property Type Description
name string name	of	the	scheduler	policy
description string The	description	of	the	policy
kind string The	kind	of	the	policy
parameters string parameters	to	define	the	behaviour	of	the	scheduler

4.8.3.3	Paths

HTTP Path Summary
get /task Returns	a	list	of	tasks
get /task/{name} Returns	the	named	task
put /task/{name} Uploads	a	task	to	the	list	of	tasks
delete /task/{name} Deletes	the	named	task
get /policy Returns	the	policy	found
put /policy Uploads	the	policy

4.8.3.3.1	/task

4.8.3.3.1.1	GET	/task

Returns	a	list	of	all	tasks

Responses

Code Description Schema
200 The	list	of	tasks array[Task]
401 Not	authorized String

4.8.3.3.2	/task/{name}

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/policy.yaml


4.8.3.3.2.1	GET	/task/{name}

Returns	an	task	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	task Task
401 Not	authorized String
404 The	named	task	could	not	be	found String

Parameters

Name Located
in Description Required Schema

name path The	name	of	the	task True String

operation query Show	the	task	but	do	not	remove	it	from
the	queue False String

4.8.3.3.2.2	PUT	/task/{name}

Uploads	a	task	to	the	list	of	tasks

Responses

Code Description Schema
200 Task	updated String
401 Not	authorized String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	task True String

Request	Body

Located	in Description Required Schema
Body The	task	to	be	uploaded True Task



4.8.3.3.2.3	DELETE	/task/{name}

Deletes	an	task	by	name

Responses

Code Description Schema
200 Deletion	successful String
400 Error	to	delete	the	task String
401 Not	authorized String
404 The	named	task	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	task True String

4.8.3.3.3	/policy

4.8.3.3.3.1	GET	/policy

Returns	the	policy

Responses

Code Description Schema
200 The	policy array[Policy]
401 Not	authorized String

4.8.3.3.3.2	PUT	/policy

Uploads	a	task	to	the	list	of	tasks

Responses

Code Description Schema
200 Task	updated String
400 Error	updating String
401 Not	authorized String



Request	Body

Located	in Description Required Schema
Body The	policy	to	be	uploaded True Policy

4.8.3.4	scheduler.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Queue

		description:	|-

		

				A	scheduler	allows	to	control	the	execution	of	tasks	based	on	a	policy.

				Schedulers	may	allow	the	assignment	of	differnt	policies	to	define	the

				order	of	the	tasks.	A	scheduler	returns	the	next	task	to	be	executed.

				Tasks	can	be	added	and	deleted.

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3/scheduler

paths:

		/task:

				get:

						tags:

								-	Scheduler

						summary:	Returns	a	list	of	tasks

						description:	Returns	a	list	of	all	tasks

						operationId:	cloudmesh.scheduler.task.list

						responses:

								'200':

										description:	The	list	of	tasks

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Task'

								'401':

										description:	Not	authorized

		/task/{name}:

				get:

						tags:

								-	Scheduler

						summary:	Returns	the	named	task

						description:	Returns	an	task	by	name

						operationId:	cloudmesh.scheduler.task.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	task

								-	in:	query

										name:	operation

										description:	Show	the	task	but	do	not	remove	it			from	the	queue

										schema:

												type:	string

												enum:

														-	info

						responses:

								'200':

										description:	Returning	the	information	of	the	task

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Task'

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	task	could	not	be	found



				put:

						tags:

								-	Scheduler

						summary:	Uploads	a	task	to	the	list	of	tasks

						description:	Uploads	a	task	to	the	list	of	tasks

						operationId:	cloudmesh.scheduler.task.add

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	task

						requestBody:

								description:	The	task	to	be	uploaded

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Task'

						responses:

								'200':

										description:	Task	updated

								'401':

										description:	Not	authorized

				delete:

						tags:

								-	Scheduler

						summary:	Deletes	the	named	task

						description:	Deletes	an	task	by	name

						operationId:	cloudmesh.scheduler.task.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	task

						responses:

								'200':

										description:	Deletion	successful

								'400':

										description:	Error	to	delete	the	task

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	task	could	not	be	found

		/policy:

				get:

						tags:

								-	Scheduler

						summary:	Returns	the	policy	found

						description:	Returns	the	policy

						operationId:	cloudmesh.scheduler.policy.list

						responses:

								'200':

										description:	The	policy

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Policy'

								'401':

										description:	Not	authorized

				put:

						tags:

								-	Scheduler

						summary:	Uploads	the	policy

						description:	Uploads	a	task	to	the	list	of	tasks

						operationId:	cloudmesh.scheduler.policy.add

						requestBody:

								description:	The	policy	to	be	uploaded

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Policy'

						responses:

								'200':

										description:	Task	updated

								'400':

										description:	Error	updating

								'401':

										description:	Not	authorized

components:

		schemas:

				Task:

						type:	object

						description:	the	scheduler



						properties:

								name:

										type:	string

										description:	name	of	the	scheduler

								user:

										type:	string

										description:	the	username	the	task	belongs	to

								description:

										type:	string

										description:	The	description	of	the	task

								kind:

										type:	string

										description:	The	kind	of	the	task

				Policy:

						type:	object

						description:	The	policy	of	the	scheduler

						properties:

								name:

										type:	string

										description:	name	of	the	scheduler	policy

								description:

										type:	string

										description:	The	description	of	the	policy

								kind:

										type:	string

										description:	The	kind	of	the	policy

								parameters:

										type:	string

										description:	parameters	to	define	the	behaviour	of	the	scheduler

4.8.4	Queue

The	queue	is	a	special	scheduler	that	allows	tasks	to	be	scheduled	witle	doing	queue	policies,
such	as	LIFO,	FIFO,	and	so	on.	A	queue	 returns	 the	next	 task	 to	be	executed.	Tasks	can	be
added	and	deleted.

4.8.4.1	Schema	Task

Reference:	☁�

Property Type Description
name string Name	of	the	scheduler
user string The	username	the	task	belongs	to
description string The	description	of	the	task
kind string The	kind	of	the	task
content string The	content	of	the	task

4.8.4.2	Schema	Policy

Reference:	☁�

Property Type Description
name string Name	of	the	scheduler	policy
description string The	description	of	the	policy
kind string The	kind	of	the	policy

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/task.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/policy.yaml


parameters string parameters	to	define	the	behaviour	of	the	scheduler

4.8.4.3	Paths

HTTP Path Summary
get /task Returns	a	list	of	tasks
get /task/{name} Returns	the	named	task
put /task/{name} Uploads	a	task	to	the	list	of	tasks
delete /task/{name} Deletes	the	named	task
get /policy Returns	the	policy
put /policy Uploads	the	policy

4.8.4.3.1	/task

4.8.4.3.1.1	GET	/task

Returns	a	list	of	all	tasks

Responses

Code Description Schema
200 The	list	of	tasks array[Task]
400 No	tasks	found String
401 Not	authorized String

4.8.4.3.2	/task/{name}

4.8.4.3.2.1	GET	/task/{name}

Returns	an	task	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	task Task
400 No	task	found String
401 Not	authorized String
404 The	named	task	could	not	be	found String



Parameters

Name Located	in Description Required Schema
name path The	name	of	the	task True String
operation query ERROR:	description	missing False String

4.8.4.3.2.2	PUT	/task/{name}

Uploads	a	task	to	the	list	of	tasks

Responses

Code Description Schema
200 Task	updated String
400 Error	updating	task. String
401 Not	authorized String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	task True String

Request	Body

Located	in Description Required Schema
Body The	task	to	be	uploaded True Task

4.8.4.3.2.3	DELETE	/task/{name}

Deletes	an	task	by	name

Responses

Code Description Schema
200 Deletion	successful String
400 No	task	found String
401 Not	authorized String



404 The	named	task	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	task True String

4.8.4.3.3	/policy

4.8.4.3.3.1	GET	/policy

Returns	the	polocy

Responses

Code Description Schema
200 The	policy array[Policy]
400 No	tasks	found String
401 Not	authorized String

4.8.4.3.3.2	PUT	/policy

Uploads	a	task	to	the	list	of	tasks

Responses

Code Description Schema
200 Task	updated String
400 Error	updating	task String
401 Not	authorized String

Request	Body

Located	in Description Required Schema
Body The	Policy True Policy

4.8.4.4	queue.yaml

openapi:	"3.0.2"

info:



		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Scheduler

		description:	|-

		

				The	queue	is	a	special	scheduler	that	allows	tasks	to	be	scheduled

				witle	doing	queue	policies,	such	as	LIFO,	FIFO,	and	so	on.

				A	queue	returns	the	next	task	to	be	executed.	Tasks	can	be	added

					and

				deleted.

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3/scheduler

paths:

		/task:

				get:

						tags:

								-	Task

						summary:	Returns	a	list	of	tasks

						description:	Returns	a	list	of	all	tasks

						operationId:	cloudmesh.task.list

						responses:

								'200':

										description:	The	list	of	tasks

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Task'

								'400':

										description:	No	tasks	found

								'401':

										description:	Not	authorized

		/task/{name}:

				get:

						tags:

								-	Task

						summary:	Returns	the	named	task

						description:	Returns	an	task	by	name

						operationId:	cloudmesh.task.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	task

								-	in:	query

										name:	operation

										schema:

												type:	string

												enum:

														-	info

														-	pop

						responses:

								'200':

										description:	Returning	the	information	of	the	task

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Task'

								'400':

										description:	No	task	found

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	task	could	not	be	found

				put:

						tags:

								-	Task

						summary:	Uploads	a	task	to	the	list	of	tasks

						description:	Uploads	a	task	to	the	list	of	tasks

						operationId:	cloudmesh.task.add

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	task



						requestBody:

								description:	The	task	to	be	uploaded

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Task'

						responses:

								'200':

										description:	Task	updated

								'400':

										description:	Error	updating	task.

								'401':

										description:	Not	authorized

				delete:

						tags:

								-	Task

						summary:	Deletes	the	named	task

						description:	Deletes	an	task	by	name

						operationId:	cloudmesh.task.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	task

						responses:

								'200':

										description:	Deletion	successful

								'400':

										description:	No	task	found

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	task	could	not	be	found

		/policy:

				get:

						tags:

								-	Task

						summary:	Returns	the	policy

						description:	Returns	the	polocy

						operationId:	cloudmesh.task.policy.list

						responses:

								'200':

										description:	The	policy

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Policy'

								'400':

										description:	No	tasks	found

								'401':

										description:	Not	authorized

				put:

						tags:

								-	Task

						summary:	Uploads	the	policy

						description:	Uploads	a	task	to	the	list	of	tasks

						operationId:	cloudmesh.task.policy.add

						requestBody:

								description:	The	Policy

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Policy'

						responses:

								'200':

										description:	Task	updated

								'400':

										description:	Error	updating	task

								'401':

										description:	Not	authorized

components:

		schemas:

				Task:

						type:	object

						description:	The	scheduler

						properties:

								name:

										type:	string

										description:	Name	of	the	scheduler

								user:

										type:	string

										description:	The	username	the	task	belongs	to

								description:



										type:	string

										description:	The	description	of	the	task

								kind:

										type:	string

										description:	The	kind	of	the	task

								content:

										type:	string

										description:	The	content	of	the	task

				Policy:

						type:	object

						description:	The	policy	of	the	scheduler

						properties:

								name:

										type:	string

										description:	Name	of	the	scheduler	policy

								description:

										type:	string

										description:	The	description	of	the	policy

								kind:

										type:	string

										description:	The	kind	of	the	policy

								parameters:

										type:	string

										description:	parameters	to	define	the	behaviour	of	the	scheduler

4.9	COMPUTE	MANAGEMENT	-	VIRTUAL	MACHINES

This	section	summarizes	a	basic	interface	specification	of	virtual	machines.

4.9.1	Image

To	 execute	 virtual	 machines,	 we	 need	 an	 image	 that	 specifies	 the	 details	 of	 the	 operating
system.

4.9.1.1	Schema	Image

Reference:	☁�

Property Type Description
name string A	unique	name	of	the	image
cloud string The	name	of	the	cloud
label string A	label	that	can	be	defined	by	the	user	for	the	image
description string A	description	for	the	image
osType string The	OS	type	of	the	image
osVersion string The	OS	version	of	the	image
status string The	status	of	the	image
progress integer The	loading	progress	percentage	of	the	image
visibility string The	visibility	of	the	image
requirement Requirements Minimum	requirement	to	run	the	image

4.9.1.2	Schema	Requirements

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/image.yaml


Reference:	☁�

Property Type Description
size integer Minimum	disk	size	in	bytes	required	for	the	image
ram integer Minimum	ram	size	in	bytes	to	run	the	image
cpu string CPU	required	to	run	the	image
cores integer Minimum	number	of	cores

4.9.1.3	Paths

HTTP Path Summary
get /image/{cloud} Returns	a	list	of	images	for	the	cloud
get /image/{cloud}/{name} Returns	the	named	image
put /image/{cloud}/{name} Add	a	image
delete /image/{cloud}/{name} Deletes	the	named	image

4.9.1.3.1	/image/{cloud}

4.9.1.3.1.1	GET	/image/{cloud}

Returns	a	list	of	all	images

Responses

Code Description Schema
200 The	list	of	images array[Image]
401 Not	authorized String

Parameters

Name Located	in Description Required Schema
cloud path The	name	of	the	cloud True String

4.9.1.3.2	/image/{cloud}/{name}

4.9.1.3.2.1	GET	/image/{cloud}/{name}

Returns	a	image	by	name

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/requirements.yaml


Responses

Code Description Schema
200 Returning	the	information	of	the	image Image
401 Not	authorized String
404 The	named	image	could	not	be	found String

Parameters

Name Located	in Description Required Schema
cloud path The	name	of	the	cloud True String
name path The	name	of	the	image True String

4.9.1.3.2.2	PUT	/image/{cloud}/{name}

Sets	the	named	image

Responses

Code Description Schema
200 Image	updated	or	created String
401 Not	authorized String
404 The	named	image	could	not	be	found String

Parameters

Name Located	in Description Required Schema
cloud path The	name	of	the	cloud True String

Request	Body

Located	in Description Required Schema
Body The	image	to	add	or	modify True Image

4.9.1.3.2.3	DELETE	/image/{cloud}/{name}

Deletes	a	image	by	name



Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	image	could	not	be	found String

Parameters

Name Located	in Description Required Schema
cloud path The	name	of	the	cloud True String
name path The	name	of	the	image True String

4.9.1.4	image.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Image

		description:	|-

		

				To	execute	virtual	machines,	we	need	an	image	that	specifies	the

				details	of	the	operating	system.

				

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist/spec/

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/image/{cloud}:

				get:

						tags:

								-	Image

						summary:	Returns	a	list	of	images	for	the	cloud

						description:	Returns	a	list	of	all	images

						operationId:	cloudmesh.image.list

						parameters:

								-	name:	cloud

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	cloud

						responses:

								'200':

										description:	The	list	of	images

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Image'

								'401':

										description:	Not	authorized

		/image/{cloud}/{name}:

				get:

						tags:

								-	Image

						summary:	Returns	the	named	image

						description:	Returns	a	image	by	name

						operationId:	cloudmesh.image.find_by_name



						parameters:

								-	name:	cloud

										in:	path

										description:	The	name	of	the	cloud

										required:	true

										schema:

												type:	string

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	image

						responses:

								'200':

										description:	Returning	the	information	of	the	image

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Image'

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	image	could	not	be	found

				put:

						tags:

								-	Image

						summary:	Add	a	image

						description:	Sets	the	named	image

						operationId:	cloudmesh.image.add

						parameters:

								-	name:	cloud

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	cloud

						requestBody:

								description:	The	image	to	add	or	modify

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Image'

						responses:

								'200':

										description:	Image	updated	or	created

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	image	could	not	be	found

				delete:

						tags:

								-	Image

						summary:	Deletes	the	named	image

						description:	Deletes	a	image	by	name

						operationId:	cloudmesh.image.delete_by_name

						parameters:

								-	name:	cloud

										description:	The	name	of	the	cloud

										in:	path

										required:	true

										schema:

												type:	string

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	image

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	image	could	not	be	found

components:

		schemas:

				Image:

						type:	object

						properties:

								name:

										type:	string

										description:	A	unique	name	of	the	image

								cloud:

										type:	string

										description:	The	name	of	the	cloud

								label:



										type:	string

										description:	A	label	that	can	be	defined	by	the	user	for	the	image

								description:

										type:	string

										description:	A	description	for	the	image

								osType:

										type:	string

										description:	The	OS	type	of	the	image

								osVersion:

										type:	string

										description:	The	OS	version	of	the	image

								status:

										type:	string

										description:	The	status	of	the	image

								progress:

										type:	integer

										description:	The	loading	progress	percentage	of	the	image

								visibility:

										description:	The	visibility	of	the	image

										type:	string

								requirement:

										$ref:	"#/components/schemas/Requirements"

										description:	Minimum	requirement	to	run	the	image

				Requirements:

						type:	object

						properties:

								size:

										type:	integer

										description:	Minimum	disk	size	in	bytes	required	for	the	image

								ram:

										type:	integer

										description:	Minimum	ram	size	in	bytes	to	run	the	image

								cpu:

										type:	string

										description:	CPU	required	to	run	the	image

								cores:

										type:	integer

										description:		Minimum	number	of	cores

4.9.2	Flavor

The	 flavor	 specifies	 elementary	 information	 about	 a	 virtual	machine	 or	 compute	 node.	 This
information	includes	name,	id,	label,	ram	size,	swap	size,	disk	space,	availability	of	ephemeral
disk,	available	bandwidth,	price	value,	cloud	name.	Flavors	and	the	corresponding	information
are	essential	to	size	a	virtual	cluster	appropriately.

4.9.2.1	Schema	Flavor

Reference:	☁�

Property Type Description
name string Name	of	the	flavor
id string The	id	of	the	flavor	for	the	named	cloud
label string A	label	that	a	user	can	set	for	this	flavor
description string A	description	for	the	flavor
ram integer Number	of	bytes	used	for	the	image	in	RAM
swap integer Number	of	bytes	used	for	the	image	in	SWAP
disk integer Number	of	bytes	used	for	the	disk
ephemeral_disk boolean Specifies	whether	the	flavor	features	an	ephemeral	disk
bandwidth integer Bandwidth	of	the	node

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/flavor.yaml


price number Price	for	the	flavor
cloud string Name	of	the	cloud	this	flavor	is	used	in

4.9.2.2	Paths

HTTP Path Summary
get /flavor/{cloud} Returns	a	list	of	flavors	for	the	cloud
get /flavor/{cloud}/{name} Returns	the	named	flavor
put /flavor/{cloud}/{name} Add	a	flavor
delete /flavor/{cloud}/{name} Deletes	the	named	flavor

4.9.2.2.1	/flavor/{cloud}

4.9.2.2.1.1	GET	/flavor/{cloud}

Returns	a	list	of	all	flavors

Responses

Code Description Schema
200 The	list	of	flavors array[Flavor]
401 Not	authorized String

Parameters

Name Located	in Description Required Schema
cloud path The	name	of	the	cloud True String

4.9.2.2.2	/flavor/{cloud}/{name}

4.9.2.2.2.1	GET	/flavor/{cloud}/{name}

Returns	a	flavor	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	flavor Flavor



401 Not	authorized String
404 The	named	flavor	could	not	be	found String

Parameters

Name Located	in Description Required Schema
cloud path The	name	of	the	cloud True String
name path The	name	of	the	flavor True String

4.9.2.2.2.2	PUT	/flavor/{cloud}/{name}

Sets	the	named	flavor

Responses

Code Description Schema
200 Flavor	updated String
401 Not	authorized String
404 The	named	flavor	could	not	be	found String

Parameters

Name Located	in Description Required Schema
cloud path The	name	of	the	cloud True String

Request	Body

Located	in Description Required Schema
Body The	flavor	to	add	or	modify True Flavor

4.9.2.2.2.3	DELETE	/flavor/{cloud}/{name}

Deletes	a	flavor	by	name

Responses

Code Description Schema
200 Deletion	successful String



401 Not	authorized String
404 The	named	flavor	could	not	be	found String

Parameters

Name Located	in Description Required Schema
cloud path The	name	of	the	cloud True String
name path The	name	of	the	flavor True String

4.9.2.3	flavor.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Flavor

		description:	|-

		

				The	flavor	specifies	elementary	information	about	a	virtual	machine

				or	compute	node.	This	information	includes	name,	id,	label,	ram	size,

				swap	size,	disk	space,	availability	of	ephemeral	disk,	available

				bandwidth,	price	value,	cloud	name.	Flavors	and	the	corresponding

				information	are	essential	to	size	a

				virtual	cluster	appropriately.

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/flavor/{cloud}:

				get:

						tags:

								-	Flavor

						summary:	Returns	a	list	of	flavors	for	the	cloud

						description:	Returns	a	list	of	all	flavors

						operationId:	cloudmesh.flavor.list

						parameters:

								-	name:	cloud

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	cloud

						responses:

								'200':

										description:	The	list	of	flavors

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Flavor'

								'401':

										description:	Not	authorized

		/flavor/{cloud}/{name}:

				get:

						tags:

								-	Flavor

						summary:	Returns	the	named	flavor

						description:	Returns	a	flavor	by	name

						operationId:	cloudmesh.flavor.find_by_name

						parameters:

								-	name:	cloud

										in:	path

										description:	The	name	of	the	cloud

										required:	true

										schema:



												type:	string

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	flavor

						responses:

								'200':

										description:	Returning	the	information	of	the	flavor

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Flavor'

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	flavor	could	not	be	found

				put:

						tags:

								-	Flavor

						summary:	Add	a	flavor

						description:	Sets	the	named	flavor

						operationId:	cloudmesh.flavor.add

						parameters:

								-	name:	cloud

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	cloud

						requestBody:

								description:	The	flavor	to	add	or	modify

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Flavor'

						responses:

								'200':

										description:	Flavor	updated

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	flavor	could	not	be	found

				delete:

						tags:

								-	Flavor

						summary:	Deletes	the	named	flavor

						description:	Deletes	a	flavor	by	name

						operationId:	cloudmesh.flavor.delete_by_name

						parameters:

								-	name:	cloud

										description:	The	name	of	the	cloud

										in:	path

										required:	true

										schema:

												type:	string

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	flavor

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	flavor	could	not	be	found

components:

		schemas:

				Flavor:

						type:	object

						description:	The	flavor

						properties:

								name:

										type:	string

										description:	Name	of	the	flavor

								id:

										type:	string

										description:	The	id	of	the	flavor	for	the	named	cloud

								label:

										type:	string

										description:	A	label	that	a	user	can	set	for	this	flavor

								description:

										type:	string

										description:	A	description	for	the	flavor



								ram:

										type:	integer

										description:	Number	of	bytes	used	for	the	image	in	RAM

								swap:

										type:	integer

										description:	Number	of	bytes	used	for	the	image	in	SWAP

								disk:

										type:	integer

										description:	Number	of	bytes	used	for	the	disk

								ephemeral_disk:

										type:	boolean

										description:	Specifies	whether	the	flavor	features	an	ephemeral	disk

								bandwidth:

										type:	integer

										description:	Bandwidth	of	the	node

								price:

										type:	number

										description:	Price	for	the	flavor

								cloud:

										type:	string

										description:	Name	of	the	cloud	this	flavor	is	used	in

4.9.3	Virtual	Machine

Vm	is	used	to	manage	virtual	machines.

4.9.3.1	Schema	Vm

Reference:	☁�

Property Type Description
provider string Name	of	the	provider
name string the	unique	name	of	the	virtual	machine
image string the	image	name	for	the	virtual	machine
flavor string the	flavor	name	for	the	virtual	machine
region string an	optional	region
state string The	state	of	the	virtual	machine
private_ips string The	private	IPs
public_ips string The	public	IPS
metadata string The	meta	data	passed	along	to	the	virtual	machine

4.9.3.2	Paths

HTTP Path Summary
get /vm/{cloud} Returns	a	list	of	virtual	machines	for	the	cloud
get /vm/{cloud}/{name} Returns	the	named	virtual	machine
put /vm/{cloud}/{name} Add	a	virtual	machine
delete /vm/{cloud}/{name} Deletes	the	named	virtual	machine

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/vm.yaml


4.9.3.2.1	/vm/{cloud}

4.9.3.2.1.1	GET	/vm/{cloud}

Returns	a	list	of	all	virtual	machines

Responses

Code Description Schema
200 The	list	of	virtual	machines array[Vm]
400 No	Vm	found String
401 Not	authorized String

Parameters

Name Located	in Description Required Schema
cloud path The	name	of	the	cloud True String

4.9.3.2.2	/vm/{cloud}/{name}

4.9.3.2.2.1	GET	/vm/{cloud}/{name}

Returns	a	virtual	machine	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	virtual	machine Vm
400 Error	updating	virtual	machine String
401 Not	authorized String
404 The	named	virtual	machine	or	cloud	could	not	be	found String

Parameters

Name Located	in Description Required Schema
cloud path The	name	of	the	cloud True String
name path The	name	of	the	virtual	machine True String

4.9.3.2.2.2	PUT	/vm/{cloud}/{name}



Sets	the	named	virtual	machine

Responses

Code Description Schema
200 Vm	updated String
400 Error	updating	virtual	machine String
401 Not	authorized String
404 The	named	virtual	machine	or	cloud	could	not	be	found String

Parameters

Name Located	in Description Required Schema
cloud path The	name	of	the	cloud True String

Request	Body

Located	in Description Required Schema
Body The	virtual	machine	to	add	or	modify True Vm

4.9.3.2.2.3	DELETE	/vm/{cloud}/{name}

Deletes	a	virtual	machine	by	name

Responses

Code Description Schema
200 Deletion	successful String
400 Error	updating	virtual	machine String
401 Not	authorized String
404 The	named	virtual	machine	or	cloud	could	not	be	found String

Parameters

Name Located	in Description Required Schema
cloud path The	name	of	the	cloud True String
name path The	name	of	the	virtual	machine True String



4.9.3.3	vm.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Virtual	Machine

		description:	|-

				Vm	is	used	to	manage	virtual	machines.

				

		termsOfService:	https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt

		contact:

				name:	NIST	BDRA	Interface	Subgroup	Service

				url:	https://cloudmesh-community.github.io/nist/spec/

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/vm/{cloud}:

				get:

						tags:

								-	Vm

						summary:	Returns	a	list	of	virtual	machines	for	the	cloud

						description:	Returns	a	list	of	all	virtual	machines

						operationId:	cloudmesh.vm.list

						parameters:

								-	name:	cloud

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	cloud

						responses:

								'200':

										description:	The	list	of	virtual	machines

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Vm'

								'400':

											description:	No	Vm	found

								'401':

										description:	Not	authorized

		/vm/{cloud}/{name}:

				get:

						tags:

								-	Vm

						summary:	Returns	the	named	virtual	machine

						description:	Returns	a	virtual	machine	by	name

						operationId:	cloudmesh.vm.find_by_name

						parameters:

								-	name:	cloud

										in:	path

										description:	The	name	of	the	cloud

										required:	true

										schema:

												type:	string

								-	name:	name

										in:	path

										description:	The	name	of	the	virtual	machine

										required:	true

										schema:

												type:	string

						responses:

								'200':

										description:	Returning	the	information	of	the	virtual	machine

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Vm'

								'400':

										description:	Error	updating	virtual	machine

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	virtual	machine	or	cloud	could	not	be	found

				put:

						tags:

								-	Vm

						summary:	Add	a	virtual	machine

						description:	Sets	the	named	virtual	machine



						operationId:	cloudmesh.vm.add

						parameters:

								-	name:	cloud

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	cloud

						requestBody:

								description:	The	virtual	machine	to	add	or	modify

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Vm'

						responses:

								'200':

										description:	Vm	updated

								'400':

										description:	Error	updating	virtual	machine

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	virtual	machine	or	cloud	could	not	be	found

				delete:

						tags:

								-	Vm

						summary:	Deletes	the	named	virtual	machine

						description:	Deletes	a	virtual	machine	by	name

						operationId:	cloudmesh.vm.delete_by_name

						parameters:

								-	name:	cloud

										description:	The	name	of	the	cloud

										in:	path

										required:	true

										schema:

												type:	string

								-	name:	name

										in:	path

										description:	The	name	of	the	virtual	machine

										required:	true

										schema:

												type:	string

						responses:

								'200':

										description:	Deletion	successful

								'400':

											description:	Error	updating	virtual	machine

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	virtual	machine	or	cloud	could	not	be	found

components:

		schemas:

				Vm:

						type:	object

						properties:

								provider:

										type:	string

										description:	Name	of	the	provider

								name:

										type:	string

										description:	the	unique	name	of	the	virtual	machine

								image:

										type:	string

										description:	the	image	name	for	the	virtual	machine

								flavor:

										type:	string

										description:	the	flavor	name	for	the	virtual	machine

								region:

										type:	string

										description:	an	optional	region

								state:

										type:	string

										description:	The	state	of	the	virtual	machine

								private_ips:

										type:	string

										description:	The	private	IPs

								public_ips:

										type:	string

										description:	The	public	IPS

								metadata:

										type:	string

										description:	The	meta	data	passed	along	to	the	virtual	machine

4.9.4	Secgroup	



A	security	group	defines	the	incoming	and	outgoing	security	rules	which	can	then	be	assigned
to	a	node.	The	connection	to	and	from	the	node	will	be	determined	by	the	security	group	rules,
in	 addition	 to	 any	 other	 possible	 rules	 applied	 on	 network	 devices	 or	 from	 the	 instance’s
firewall	 settings.	 A	 security	 group	 may	 have	 one	 or	 multiple	 rules	 and	 a	 node	 may	 be
associated	with	one	or	more	security	groups.

4.9.4.1	Schema	Secgroup

Reference:	☁�

Property Type Description
name string Name	of	the	security	group
description string Describes	what	the	security	group	is	for
rules array[SecGroupRule] List	of	Security	group	rules

4.9.4.2	Schema	SecGroupRule

Reference:	☁�

Property Type Description
name string Unique	name	of	the	rule
ingress boolean The	defined	security	group	rule	is	for	ingress	if	True
egress boolean The	defined	security	group	rule	is	for	egress	if	True

remote_group string Name	of	the	group	if	the	rule	is	defined	by	group	instead
of	IP	range

protocol string The	protocol	used	such	as	TCP,	UDP,	ICMP
from_port integer Port	range	starting	port
to_port integer Port	range	ending	port
cidr string The	source	or	destination	network	in	CIDR	notation,

4.9.4.3	Paths

HTTP Path Summary
get /secgroup Returns	all	security	groups
get /secgroup/{name} Return	the	security	group	by	name
post /secgroup/{name} Create	the	named	security	group

Get	an	existing	rule	from	the	specified

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/secgroup.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/secgrouprule.yaml


get /secgroup/{name}/rule/{rule} security	group

put /secgroup/{name}/rule/{rule} Create	or	update	specified	security
group

delete /secgroup/{name}/rule/{rule} Delete	an	existing	rule	from	the
specified	security	group

4.9.4.3.1	/secgroup

4.9.4.3.1.1	GET	/secgroup

Returns	all	security	groups

Responses

Code Description Schema
200 security	group	information array[Secgroup]
401 Not	authorized String

4.9.4.3.2	/secgroup/{name}

4.9.4.3.2.1	GET	/secgroup/{name}

Return	the	security	group	by	name

Responses

Code Description Schema
200 security	group	information Secgroup
401 Not	authorized String
404 The	named	security	group	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path name	of	the	security	group True String

4.9.4.3.2.2	POST	/secgroup/{name}



Create	a	new	named	security	group

Responses

Code Description Schema
201 Created String
400 The	group	could	not	be	created String
401 Not	authorized String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	security	group	to	create True String

4.9.4.3.3	/secgroup/{name}/rule/{rule}

4.9.4.3.3.1	GET	/secgroup/{name}/rule/{rule}

Create	a	new	rule	in	security	group

Responses

Code Description Schema
200 The	security	group	rule	definition	info Secgrouprule
401 Not	authorized String
404 The	named	security	group	or	role	could	not	be	found String

Parameters

Name Located
in Description Required Schema

name path The	named	of	the	security	group	from
which	the	rule	will	be	deleted True String

rule path The	rule	to	be	added True String

4.9.4.3.3.2	PUT	/secgroup/{name}/rule/{rule}

Create	a	new	rule	in	security	group



Responses

Code Description Schema
200 Created String
401 Not	authorized String
404 The	named	security	group	or	role	could	not	be	found String

Parameters

Name Located
in Description Required Schema

name path The	name	of	the	new	security	group	to
create True String

Request	Body

Located	in Description Required Schema
Body The	new	security	group	rule	to	create True SecGroupRule

4.9.4.3.3.3	DELETE	/secgroup/{name}/rule/{rule}

Create	a	new	rule	in	security	group

Responses

Code Description Schema
200 Deleted	sucessfully String
401 Not	authorized String
404 The	named	security	group	or	role	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	named	secgroup True String
rule path The	secgroup	rule True String

4.9.4.4	secgroup.yaml



openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Secgroup

		description:	|-

		

			A	security	group	defines	the	incoming	and	outgoing	security	rules

			which	can	then	be	assigned	to	a	node.	The	connection	to	and	from	the	node

			will	be	determined	by	the	security	group	rules,	in	addition	to	any	other

			possible	rules	applied	on	network	devices	or	from	the	instance's	firewall

			settings.	A	security	group	may	have	one	or	multiple	rules	and	a	node	may	be

			associated	with	one	or	more	security	groups.

			

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/secgroup:

				get:

						tags:

						-	Security	group

						summary:	Returns	all	security	groups

						description:	Returns	all	security	groups

						operationId:	cloudmesh.secgroup.get

						responses:

								'200':

										description:	security	group	information

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	"#/components/schemas/Secgroup"

								'401':

										description:	Not	authorized

		/secgroup/{name}:

				get:

						tags:

						-	Security	group

						summary:	Return	the	security	group	by	name

						description:	Return	the	security	group	by	name

						operationId:	cloudmesh.secgroup.get_by_name

						parameters:

								-	name:	name

										description:	name	of	the	security	group

										in:	path

										required:	true

										schema:

												type:	string

						responses:

								'200':

										description:	security	group	information

										content:

												application/json:

														schema:

																$ref:	"#/components/schemas/Secgroup"

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	security	group	could	not	be	found

				post:

						tags:

						-	Security	group

						summary:	Create	the	named	security	group

						description:	Create	a	new	named	security	group

						operationId:	cloudmesh.secgroup.create

						parameters:

								-	in:	path

										name:	name

										required:	true

										description:	The	name	of	the	security	group	to	create

										schema:

												type:	string

						responses:

								'201':

										description:	Created

								'400':

										description:	The	group	could	not	be	created

								'401':

										description:	Not	authorized

		/secgroup/{name}/rule/{rule}:

				get:



						tags:

						-	Security	group

						summary:	Get	an	existing	rule	from	the	specified	security	group

						description:	Create	a	new	rule	in	security	group

						operationId:	cloudmesh.secgroup.get_rule

						parameters:

								-	in:	path

										name:	name

										required:	true

										description:	The	named	of	the	security	group	from	which	the	rule	will	be	deleted

										schema:

												type:	string

								-	in:	path

										name:	rule

										required:	true

										description:	The	rule	to	be	added

										schema:

												type:	string

						responses:

								'200':

										description:	The	security	group	rule	definition	info

										content:

												application/json:

														schema:

																		$ref:	"#/components/schemas/SecGroupRule"

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	security	group	or	role	could	not	be	found

				put:

						tags:

						-	Security	group

						summary:	Create	or	update	specified	security	group

						description:	Create	a	new	rule	in	security	group

						operationId:	cloudmesh.secgroup.add_rule

						parameters:

								-	in:	path

										name:	name

										required:	true

										description:	The	name	of	the	new	security	group	to	create

										schema:

												type:	string

						requestBody:

								description:	The	new	security	group	rule	to	create

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/SecGroupRule'

						responses:

								'200':

										description:	Created

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	security	group	or	role	could	not	be	found

				delete:

						tags:

						-	Security	group

						summary:	Delete	an	existing	rule	from	the	specified	security	group

						description:	Create	a	new	rule	in	security	group

						operationId:	cloudmesh.secgroup.delete_rule

						parameters:

								-	in:	path

										name:	name

										required:	true

										description:	The	named	secgroup

										schema:

												type:	string

								-	in:	path

										name:	rule

										required:	true

										description:	The	secgroup	rule

										schema:

												type:	string

						responses:

								'200':

										description:	Deleted	sucessfully

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	security	group	or	role	could	not	be	found

components:

		schemas:

				Secgroup:

						type:	object

						description:	the	security	group	object

						properties:

								name:



										type:	string

										description:	Name	of	the	security	group

								description:

										type:	string

										description:	Describes	what	the	security	group	is	for

								rules:

										type:	array

										description:	List	of	Security	group	rules

										items:

												$ref:	"#/components/schemas/SecGroupRule"

				SecGroupRule:

						type:	object

						description:	security	group	rule

						properties:

								name:

										type:	string

										description:	Unique	name	of	the	rule

								ingress:

										type:	boolean

										description:	The	defined	security	group	rule	is	for	ingress	if	True

								egress:

										type:	boolean

										description:	The	defined	security	group	rule	is	for	egress	if	True

								remote_group:

										type:	string

										description:	Name	of	the	group	if	the	rule	is	defined	by	group

																							instead	of	IP	range

								protocol:

										type:	string

										description:	The	protocol	used	such	as	TCP,	UDP,	ICMP

										example:	TCP

								from_port:

										type:	integer

										description:	Port	range	starting	port

								to_port:

										type:	integer

										description:	Port	range	ending	port

								cidr:

										type:	string

										description:	The	source	or	destination	network	in	CIDR	notation,

										example:	129.79.0.0/16

4.9.5	Nic

A	resource	store	Network	Interface	Controller	(NIC)	information.

4.9.5.1	Schema	Nic

Reference:	☁�

Property Type Description
name string Name	of	the	network	interface	controller
kind string Kind	of	the	network	interface	controller	(wifi,	WAN,	…)
mac string The	mac	address
ip string The	IP	address
mask string The	network	mask
broadcast string The	broadcast	address
gateway string The	gateway	address
mtu integer The	MTU	of	the	NIC
bandwidth integer The	bandwidth	in	bps

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/nic.yaml


4.9.5.2	Paths

HTTP Path Summary
get /nic Returns	a	list	of	network	interface	controllers
get /nic/{name} Returns	the	named	network	interface	controller
put /nic/{name} Set	a	network	interface	controller
delete /nic/{name} Deletes	the	named	network	interface	controller

4.9.5.2.1	/nic

4.9.5.2.1.1	GET	/nic

Returns	a	list	of	all	network	interface	controllers

Responses

Code Description Schema
200 The	list	of	network	interface	controllers array[Nic]
401 Not	authorized String

4.9.5.2.2	/nic/{name}

4.9.5.2.2.1	GET	/nic/{name}

Returns	a	network	interface	controller	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	network	interface	controller Nic
401 Not	authorized String
404 The	named	network	interface	controller	could	not	be	found String

Parameters

Name Located
in Description Required Schema

name path The	name	of	the	network	interface
controller True String



4.9.5.2.2.2	PUT	/nic/{name}

Sets	the	named	network	interface	controller

Responses

Code Description Schema
200 Nic	updated String
401 Not	authorized String

Request	Body

Located	in Description Required Schema
Body The	new	nic	to	create	or	update True Nic

4.9.5.2.2.3	DELETE	/nic/{name}

Deletes	a	network	interface	controller	by	name

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	network	interface	controller	could	not	be	found String

Parameters

Name Located
in Description Required Schema

name path The	name	of	the	network	interface
controller True String

4.9.5.3	nic.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Nic

		description:	|-

		

				A	resource	store	Network	Interface	Controller	(NIC)	information.



		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/nic:

				get:

						tags:

								-	Nic

						summary:	Returns	a	list	of	network	interface	controllers

						description:	Returns	a	list	of	all	network	interface	controllers

						operationId:	cloudmesh.nic.list

						responses:

								'200':

										description:	The	list	of	network	interface	controllers

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Nic'

								'401':

										description:	Not	authorized

		/nic/{name}:

				get:

						tags:

								-	Nic

						summary:	Returns	the	named	network	interface	controller

						description:	Returns	a	network	interface	controller	by	name

						operationId:	cloudmesh.nic.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	network	interface	controller

						responses:

								'200':

										description:	Returning	the	information	of	the	network	interface	controller

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Nic'

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	network	interface	controller	could	not	be	found

				put:

						tags:

								-	Nic

						summary:	Set	a	network	interface	controller

						description:	Sets	the	named	network	interface	controller

						operationId:	cloudmesh.nic.add

						requestBody:

								description:	The	new	nic	to	create	or	update

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Nic'

						responses:

								'200':

										description:	Nic	updated

								'401':

										description:	Not	authorized

				delete:

						tags:

								-	Nic

						summary:	Deletes	the	named	network	interface	controller

						description:	Deletes	a	network	interface	controller	by	name

						operationId:	cloudmesh.nic.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	network	interface	controller

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':



											description:	The	named	network	interface	controller	could	not	be	found

components:

		schemas:

				Nic:

						type:	object

						description:	The	network	interface	controller

						properties:

								name:

										type:	string

										description:	Name	of	the	network	interface	controller

								kind:

										type:	string

										description:	Kind	of	the	network	interface	controller	(wifi,	WAN,	...)

								mac:

										type:	string

										description:	The	mac	address

								ip:

										type:	string

										description:	The	IP	address

								mask:

										type:	string

										description:	The	network	mask

								broadcast:

										type:	string

										description:	The	broadcast	address

								gateway:

										type:	string

										description:	The	gateway	address

								mtu:

										type:	integer

										description:	The	MTU	of	the	NIC

								bandwidth:

										type:	integer

										description:	The	bandwidth	in	bps

4.10	COMPUTE	MANAGEMENT	-	CONTAINERS

4.10.1	Containers

Numerous	different	containers	are	 likely	 to	be	created	and	handling	them	becomes	more	and
more	 time	 consuming	 as	 their	 number	 increases.	 This	 service	 helps	 to	 solve	 that	 issue	 by
storing	containers	and	their	corresponding	information.

4.10.1.1	Schema	Container

Reference:	☁�

Property Type Description
name string Name	of	the	container
version string Version	of	the	container
label string Label	of	the	container
type string Type	of	the	container
definition string Definition	or	manifest	of	the	container
imgURI string URI	of	the	container
tags array[string] Tags	of	the	container

4.10.1.2	Paths

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/container.yaml


HTTP Path Summary
get /container Returns	a	list	of	containers
get /container/{name} Returns	the	named	container
put /container/{name} Set	an	container
delete /container/{name} Deletes	the	named	container

4.10.1.2.1	/container

4.10.1.2.1.1	GET	/container

Returns	a	list	of	all	containers

Responses

Code Description Schema
200 The	list	of	containerses array[Container]
401 Not	authorized String

4.10.1.2.2	/container/{name}

4.10.1.2.2.1	GET	/container/{name}

Returns	an	container	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	container Container
400 No	Container	found String
401 Not	authorized String
404 The	named	container	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	container True String

4.10.1.2.2.2	PUT	/container/{name}



Sets	the	named	container

Responses

Code Description Schema
200 Container	updated String
401 Not	authorized String
400 Error	updating	container String

Request	Body

Located	in Description Required Schema
Body The	new	container	to	create True Container

4.10.1.2.2.3	DELETE	/container/{name}

Deletes	an	container	by	name

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	container	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	container True String

4.10.1.3	containers.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Containers

		description:	|-

				Numerous	different	containers	are	likely	to	be	created	and	handling	them	

				becomes	more	and	more	time	consuming	as	their	number	increases.	This	service	

				helps	to	solve	that	issue	by	storing	containers	and	their	corresponding	

				information.	

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:



				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/container:

				get:

						tags:

								-	Container

						summary:	Returns	a	list	of	containers

						description:	Returns	a	list	of	all	containers

						operationId:	cloudmesh.container.list

						responses:

								'200':

										description:	The	list	of	containerses

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Container'

								'401':

										description:	Not	authorized

		/container/{name}:

				get:

						tags:

								-	Container

						summary:	Returns	the	named	container

						description:	Returns	an	container	by	name

						operationId:	cloudmesh.container.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	container

						responses:

								'200':

										description:	Returning	the	information	of	the	container

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Container'

								'400':

											description:	No	Container	found

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	container	could	not	be	found

				put:

						tags:

								-	Container

						summary:	Set	an	container

						description:	Sets	the	named	container

						operationId:	cloudmesh.container.add

						requestBody:

								description:	The	new	container	to	create

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Container'

						responses:

								'200':

										description:	Container	updated

								'401':

										description:	Not	authorized

								'400':

										description:	Error	updating	container

				delete:

						tags:

								-	Container

						summary:	Deletes	the	named	container

						description:	Deletes	an	container	by	name

						operationId:	cloudmesh.container.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	container

						responses:

								'200':

										description:	Deletion	successful



								'401':

										description:	Not	authorized

								'404':

											description:	The	named	container	could	not	be	found

components:

		schemas:

				Container:

						type:	object

						description:	A	record	representing	a	container

						properties:

								name:

										type:	string

										description:	Name	of	the	container

								version:

										type:	string

										description:	Version	of	the	container

								label:

										type:	string

										description:	Label	of	the	container

								type:

										type:	string

										description:	Type	of	the	container

								definition:

										type:	string

										description:	Definition	or	manifest	of	the	container

								imgURI:

										type:	string

										description:	URI	of	the	container

								tags:

										type:	array

										description:	Tags	of	the	container

										items:

												type:	string

4.11	COMPUTE	MANAGEMENT	-	MAP	REDUCE

4.11.1	Map	Reduce

A	service	to	store	the	information	of	a	mapreduce	deployment	definition.	All	of	the	attributes
are	stored	as	Strings.

4.11.1.1	Schema	Map

Reference:	☁�

Property Type Description
name string The	name	of	the	map	function
kind string The	kind	in	which	the	specification	is	provided
content string The	kind	in	which	the	specification	is	provided

4.11.1.2	Schema	Reduce

Reference:	☁�

Property Type Description
name string The	name	of	the	reduce	function
kind string The	kind	in	which	the	specification	is	provided

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/map.yaml
https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/reduce.yaml


content string The	kind	in	which	the	specification	is	provided

4.11.1.3	Schema	Data

Reference:	☁�

Property Type Description
name string The	name	of	the	data
content string The	content	of	tehe	data

4.11.1.4	Paths

HTTP Path Summary

get /mapreduce Returns	the	data	identified	by	the
mapreduce	resource

get /mapreduce/{name} Returns	the	data	identified	by	the	map
and	function

put /mapreduce/map/{name} Create	or	update	the	map	function

get /mapreduce/map/{name} Returns	the	data	identified	bythe	map
function

put /mapreduce/reduce/{name} Create	or	update	the	reduce	function

get /mapreduce/reduce/{name} Returns	the	data	identified	bythe	reduce
function

4.11.1.4.1	/mapreduce

4.11.1.4.1.1	GET	/mapreduce

Returns	the	data	identified	by	the	mapreduce	resource

Responses

Code Description Schema
200 mapreduce	names array[String]
401 Not	authorized String

4.11.1.4.2	/mapreduce/{name}

4.11.1.4.2.1	GET	/mapreduce/{name}

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/data.yaml


Returns	the	data	identified	bythe	reduce	function.

Responses

Code Description Schema
200 The	data	identified	by	reduce array[Data]
401 Not	authorized String
404 The	resource	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	function True String

4.11.1.4.3	/mapreduce/map/{name}

4.11.1.4.3.1	PUT	/mapreduce/map/{name}

Create	or	update	the	map	function

Responses

Code Description Schema
200 The	map	function	was	created	or	updated String
401 Not	authorized String
404 The	resource	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	function True String

Request	Body

Located	in Description Required Schema
Body The	new	default	to	create True Map

4.11.1.4.3.2	GET	/mapreduce/map/{name}



Returns	the	data	identified	bythe	map	function

Responses

Code Description Schema
200 The	data	identified	by	map array[Data]
401 Not	authorized String
404 The	resource	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	function True String

4.11.1.4.4	/mapreduce/reduce/{name}

4.11.1.4.4.1	PUT	/mapreduce/reduce/{name}

Create	or	update	the	reduce	function

Responses

Code Description Schema
200 The	reduce	function	was	created	or	updated String
401 Not	authorized String
404 The	resource	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	function True String

Request	Body

Located	in Description Required Schema
Body The	new	default	to	create True Reduce

4.11.1.4.4.2	GET	/mapreduce/reduce/{name}



Returns	the	data	identified	bythe	reduce	function

Responses

Code Description Schema
200 The	data	identified	by	reduce array[Data]
401 Not	authorized String
404 The	resource	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	function True String

4.11.1.5	mapreduce.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	MapReduce

		description:	|-

		

				A	service	to	store	the	information	of	a	mapreduce	deployment	definition.

				All	of	the	attributes	are	stored	as	Strings.

				

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/mapreduce:

				get:

						tags:

						-	mapreduce

						summary:	Returns	the	data	identified	by	the	mapreduce	resource

						description:	Returns	the	data	identified	by	the	mapreduce	resource

						operationId:	cloudmesh.mapreduce.list

						responses:

								'200':

										description:	mapreduce	names

										content:

												application/json:

														schema:

																type:	array

																items:

																		type:	string

								'401':

										description:	Not	authorized

		/mapreduce/{name}:

				get:

						tags:

								-	mapreduce

						summary:	Returns	the	data	identified	by	the	map	and	function

						description:	Returns	the	data	identified	bythe	reduce	function.

						operationId:	cloudmesh.mapreduce.get

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string



										description:	The	name	of	the	function

						responses:

								'200':

										description:	The	data	identified	by	reduce

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Data'

								'401':

										description:	Not	authorized

								'404':

										description:	The	resource	could	not	be	found

		/mapreduce/map/{name}:

				put:

						tags:

								-	mapreduce

						summary:	Create	or	update	the	map	function

						description:	Create	or	update	the	map	function

						operationId:	cloudmesh.mapreduce.map.put

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	function

						requestBody:

								description:	The	new	default	to	create

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Map'

						responses:

								'200':

										description:	The	map	function	was	created	or	updated

								'401':

										description:	Not	authorized

								'404':

										description:	The	resource	could	not	be	found

				get:

						tags:

								-	mapreduce

						summary:	Returns	the	data	identified	bythe	map	function

						description:	Returns	the	data	identified	bythe	map	function

						operationId:	cloudmesh.mapreduce.map.get

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	function

						responses:

								'200':

										description:	The	data	identified	by	map

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Data'

								'401':

										description:	Not	authorized

								'404':

										description:	The	resource	could	not	be	found

		/mapreduce/reduce/{name}:

				put:

						tags:

								-	mapreduce

						summary:	Create	or	update	the	reduce	function

						description:	Create	or	update	the	reduce	function

						operationId:	cloudmesh.mapreduce.reduce.put

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	function

						requestBody:

								description:	The	new	default	to	create

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Reduce'



						responses:

								'200':

										description:	The	reduce	function	was	created	or	updated

								'401':

										description:	Not	authorized

								'404':

										description:	The	resource	could	not	be	found

				get:

						tags:

								-	mapreduce

						summary:	Returns	the	data	identified	bythe	reduce	function

						description:	Returns	the	data	identified	bythe	reduce	function

						operationId:	cloudmesh.mapreduce.reduce.get

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	function

						responses:

								'200':

										description:	The	data	identified	by	reduce

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Data'

								'401':

										description:	Not	authorized

								'404':

										description:	The	resource	could	not	be	found

components:

		schemas:

				Map:

						type:	object

						description:	The	specification	of	the	map	function

						properties:

								name:

										type:	string

										description:	The	name	of	the	map	function

								kind:

										type:	string

										description:	The	kind	in	which	the	specification	is	provided

								content:

										type:	string

										description:	The	kind	in	which	the	specification	is	provided

				Reduce:

						type:	object

						description:	The	specification	of	the	reduce	function

						properties:

								name:

										type:	string

										description:	The	name	of	the	reduce	function

								kind:

										type:	string

										description:	The	kind	in	which	the	specification	is	provided

								content:

										type:	string

										description:	The	kind	in	which	the	specification	is	provided

				Data:

						type:	object

						description:	The	specification	of	the	function

						properties:

								name:

										type:	string

										description:	The	name	of	the	data

								content:

										type:	string

										description:	The	content	of	tehe	data

4.12	COMPUTE	MANAGEMENT	-	FUNCTIONS

4.12.1	Microservice

As	part	of	microservices,	a	function	with	parameters	that	can	be	invoked	has	been	defined.

4.12.1.1	Schema	Microservice



Reference:	☁�

Property Type Description
name string Name	of	the	microservice
endpoint string The	end	point	of	the	microservice
function string The	function	the	microservice	represents
description The	description	of	the	microservice

4.12.1.2	Paths

HTTP Path Summary
get /microservice Returns	a	list	of	microservicees
get /microservice/{name} Returns	the	named	microservice
put /microservice/{name} Set	an	microservice
delete /microservice/{name} Deletes	the	named	microservice

4.12.1.2.1	/microservice

4.12.1.2.1.1	GET	/microservice

Returns	a	list	of	all	microservicees

Responses

Code Description Schema
200 The	list	of	microserviceses array[Microservice]
401 Not	authorized String

4.12.1.2.2	/microservice/{name}

4.12.1.2.2.1	GET	/microservice/{name}

Returns	the	named	microservice

Responses

Code Description Schema
200 Returns	the	microservice Microservice

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/microservice.yaml


401 Not	authorized String
404 The	named	microservice	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	microservice True String

4.12.1.2.2.2	PUT	/microservice/{name}

Sets	the	named	microservice

Responses

Code Description Schema
200 Microservice	updated String
400 Error	updating	microservice String
401 Not	authorized String

Request	Body

Located	in Description Required Schema
Body The	new	microservice	to	create True Microservice

4.12.1.2.2.3	DELETE	/microservice/{name}

Deletes	an	microservice	by	name

Responses

Code Description Schema
200 Deletion	successful String
400 Error	deleting	microservice String
401 Not	authorized String
404 The	named	microservice	could	not	be	found String

Parameters



Name Located	in Description Required Schema
name path The	name	of	the	microservice True String

4.12.1.3	microservice.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Microservice

		description:	|-

		

				As	part	of	microservices,	a	function	with	parameters	that	can	be

				invoked	has	been	defined.

		termsOfService:	"https://github.com/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/microservice:

				get:

						tags:

								-	Microservice

						summary:	Returns	a	list	of	microservicees

						description:	Returns	a	list	of	all	microservicees

						operationId:	cloudmesh.microservice.list

						responses:

								'200':

										description:	The	list	of	microserviceses

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Microservice'

								'401':

										description:	Not	authorized

		/microservice/{name}:

				get:

						tags:

								-	Microservice

						summary:	Returns	the	named	microservice

						description:	Returns	the	named	microservice

						operationId:	cloudmesh.microservice.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	microservice

						responses:

								'200':

										description:	Returns	the	microservice

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Microservice'

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	microservice	could	not	be	found

				put:

						tags:

								-	Microservice

						summary:	Set	an	microservice

						description:	Sets	the	named	microservice

						operationId:	cloudmesh.microservice.add

						requestBody:

								description:	The	new	microservice	to	create

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Microservice'

						responses:



								'200':

										description:	Microservice	updated

								'400':

										description:	Error	updating	microservice

								'401':

										description:	Not	authorized

				delete:

						tags:

								-	Microservice

						summary:	Deletes	the	named	microservice

						description:	Deletes	an	microservice	by	name

						operationId:	cloudmesh.microservice.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	microservice

						responses:

								'200':

										description:	Deletion	successful

								'400':

										description:	Error	deleting	microservice

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	microservice	could	not	be	found

components:

		schemas:

				Microservice:

						type:	object

						description:	The	microservice

						properties:

								name:

										type:	string

										description:	Name	of	the	microservice

								endpoint:

										type:	string

										description:	The	end	point	of	the	microservice

								function:

										type:	string

										description:	The	function	the		microservice	represents

								description:

										type	string:

										description:	The	description	of	the	microservice

4.13	RESERVATION

4.13.1	Reservation

Some	services	may	consume	a	considerable	amount	of	resources,	necessitating	the	reservation
of	resources.

4.13.1.1	Schema	Reservation

Reference:	☁�

Property Type Description
name string Name	of	the	reservation

service string The	name	of	the	service	for	which	the	reservation	is
applied

description string The	description	of	the	reservation
start string(date) The	start	time	and	date
end string(date) The	end	time	and	date

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/reservation.yaml


4.13.1.2	Paths

HTTP Path Summary
get /reservation Returns	a	list	of	reservations
get /reservation/{name} Returns	the	named	reservation
put /reservation/{name} Uploads	a	reservation	to	the	list	of	reservations
delete /reservation/{name} Deletes	the	named	reservation

4.13.1.2.1	/reservation

4.13.1.2.1.1	GET	/reservation

Returns	a	list	of	all	reservations

Responses

Code Description Schema
200 The	list	of	reservations array[Reservation]
400 No	Reservations	found String

4.13.1.2.2	/reservation/{name}

4.13.1.2.2.1	GET	/reservation/{name}

Returns	an	reservation	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	reservation Reservation
400 No	reservation	found String
401 Not	authorized String
404 The	named	reservation	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	reservation True String



4.13.1.2.2.2	PUT	/reservation/{name}

Uploads	a	reservation	to	the	list	of	reservations

Responses

Code Description Schema
200 Reservation	updated String
400 Error	updating	reservation String

Request	Body

Located	in Description Required Schema
Body The	reservation	to	be	uploaded True Reservation

4.13.1.2.2.3	DELETE	/reservation/{name}

Deletes	an	reservation	by	name

Responses

Code Description Schema
200 Deletion	successful String
400 No	reservation	found String
401 Not	authorized String
404 The	named	reservation	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	reservation True String

4.13.1.3	reservation.yaml

openapi:	'3.0.2'

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Reservation

		description:	|-

		

				Some	services	may	consume	a	considerable	amount	of	resources,

				necessitating	the	reservation	of	resources.

				



		termsOfService:	'https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt'

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/reservation:

				get:

						tags:

								-	Reservation

						summary:	Returns	a	list	of	reservations

						description:	Returns	a	list	of	all	reservations

						operationId:	cloudmesh.reservation.list

						responses:

								'200':

										description:	The	list	of	reservations

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Reservation'

								'400':

										description:	No	Reservations	found

		/reservation/{name}:

				get:

						tags:

								-	Reservation

						summary:	Returns	the	named	reservation

						description:	Returns	an	reservation	by	name

						operationId:	cloudmesh.reservation.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	reservation

						responses:

								'200':

										description:	Returning	the	information	of	the	reservation

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Reservation'

								'400':

										description:	No	reservation	found

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	reservation	could	not	be	found

				put:

						tags:

								-	Reservation

						summary:	Uploads	a	reservation	to	the	list	of	reservations

						description:	Uploads	a	reservation	to	the	list	of	reservations

						operationId:	cloudmesh.reservation.add

						requestBody:

								description:	The	reservation	to	be	uploaded

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Reservation'

						responses:

								'200':

										description:	Reservation	updated

								'400':

										description:	Error	updating	reservation

				delete:

						tags:

								-	Reservation

						summary:	Deletes	the	named	reservation

						description:	Deletes	an	reservation	by	name

						operationId:	cloudmesh.reservation.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	reservation

						responses:

								'200':

										description:	Deletion	successful

								'400':



										description:	No	reservation	found

								'401':

										description:	Not	authorized

								'404':

										description:	The	named	reservation	could	not	be	found

components:

		schemas:

				Reservation:

						type:	object

						description:	The	reservation

						properties:

								name:

										type:	string

										description:	Name	of	the	reservation

								service:

										type:	string

										description:	The	name	of	the	service	for	which	the	reservation	is

																							applied

								description:

										type:	string

										description:	The	description	of	the	reservation

								start:

										type:	string

										format:	date

										description:	The	start	time	and	date

								end:

										type:	string

										format:	date

										description:	The	end	time	and	date

4.14	DATA	STREAMS

4.14.1	Stream

The	stream	object	describes	a	data	flow,	providing	information	about	 the	rate	and	number	of
items	 exchanged	while	 issuing	 requests	 to	 the	 stream.	A	 stream	may	 return	 data	 items	 in	 a
specific	format	that	is	defined	by	the	stream.

4.14.1.1	Schema	Stream

Reference:	☁�

Property Type Description
name string Name	of	the	stream
format string Format	of	the	stream
rate integer The	rate	of	messages
limit integer The	limit	of	items	send
endpoint string The	endpoint	of	the	stream
protocol string DThe	definition	of	the	protocol	used

4.14.1.2	Paths

HTTP Path Summary
get /stream Returns	a	list	of	streams

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/stream.yaml


get /stream/{name} Returns	the	named	stream
put /stream/{name} Set	an	stream
delete /stream/{name} Deletes	the	named	stream

4.14.1.2.1	/stream

4.14.1.2.1.1	GET	/stream

Returns	a	list	of	all	streams

Responses

Code Description Schema
200 The	list	of	streamses array[Stream]
400 No	Stream	found String
401 Not	authorized String

4.14.1.2.2	/stream/{name}

4.14.1.2.2.1	GET	/stream/{name}

Returns	an	stream	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	stream Stream
401 Not	authorized String
404 The	named	stream	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	stream True String

4.14.1.2.2.2	PUT	/stream/{name}

Sets	the	named	stream



Responses

Code Description Schema
200 Stream	updated String
401 Not	authorized String

Request	Body

Located	in Description Required Schema
Body The	new	stream	to	create True Stream

4.14.1.2.2.3	DELETE	/stream/{name}

Deletes	an	stream	by	name

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	stream	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	stream True String

4.14.1.3	stream.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Stream

		description:	|-

		

			The	stream	object	describes	a	data	flow,	providing	information

			about	the	rate	and	number	of	items	exchanged	while	issuing	requests

			to	the	stream.	A	stream	may	return	data	items	in	a	specific	format

			that	is	defined	by	the	stream.

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3



paths:

		/stream:

				get:

						tags:

								-	Stream

						summary:	Returns	a	list	of	streams

						description:	Returns	a	list	of	all	streams

						operationId:	cloudmesh.stream.list

						responses:

								'200':

										description:	The	list	of	streamses

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Stream'

								'400':

											description:	No	Stream	found

								'401':

										description:	Not	authorized

		/stream/{name}:

				get:

						tags:

								-	Stream

						summary:	Returns	the	named	stream

						description:	Returns	an	stream	by	name

						operationId:	cloudmesh.stream.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	stream

						responses:

								'200':

										description:	Returning	the	information	of	the	stream

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Stream'

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	stream	could	not	be	found

				put:

						tags:

								-	Stream

						summary:	Set	an	stream

						description:	Sets	the	named	stream

						operationId:	cloudmesh.stream.add

						requestBody:

								description:	The	new	stream	to	create

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Stream'

						responses:

								'200':

										description:	Stream	updated

								'401':

										description:	Not	authorized

				delete:

						tags:

								-	Stream

						summary:	Deletes	the	named	stream

						description:	Deletes	an	stream	by	name

						operationId:	cloudmesh.stream.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	stream

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	stream	could	not	be	found

components:

		schemas:

				Stream:

						type:	object

						description:	The	stream

						properties:



								name:

										type:	string

										description:	Name	of	the	stream

								format:

										type:	string

										description:	Format	of	the	stream

								rate:

										type:	integer

										description:	The	rate	of	messages

								limit:

										type:	integer

										description:	The	limit	of	items	send

								endpoint:

										type:	string

										description:	The	endpoint	of	the	stream

								protocol:

										type:	string

										description:	DThe	definition	of	the	protocol	used

4.14.2	Filter

Filters	 can	 operate	 on	 a	 variety	 of	 objects	 and	 reduce	 the	 information	 received	 based	 on	 a
search	criterion.

4.14.2.1	Schema	Filter

Reference:	☁�

Property Type Description
name string Name	of	the	filter
function string The	function	used	to	filter	the	data	in	the	stream
kind string The	filter	kind	or	type

4.14.2.2	Paths

HTTP Path Summary
get /filter Returns	a	list	of	filteres
get /filter/{name} Returns	the	named	filter
put /filter/{name} Set	an	filter
delete /filter/{name} Deletes	the	named	filter

4.14.2.2.1	/filter

4.14.2.2.1.1	GET	/filter

Returns	a	list	of	all	filteres

Responses

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/filter.yaml


Code Description Schema
200 The	list	of	filterses array[Filter]
401 Not	authorized String

4.14.2.2.2	/filter/{name}

4.14.2.2.2.1	GET	/filter/{name}

Returns	an	filter	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	filter Filter
401 Not	authorized String
404 The	named	filter	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	filter True String

4.14.2.2.2.2	PUT	/filter/{name}

Sets	the	named	filter

Responses

Code Description Schema
200 Filter	updated String
401 Not	authorized String
400 Error	updating	filter String

Request	Body

Located	in Description Required Schema
Body The	new	filter	to	create True Filter



4.14.2.2.2.3	DELETE	/filter/{name}

Deletes	an	filter	by	name

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	filter	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	filter True String

4.14.2.3	filter.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Filter

		description:	|-

		

				Filters	can	operate	on	a	variety	of	objects	and	reduce	the

				information	received	based	on	a	search	criterion.

				

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/filter:

				get:

						tags:

								-	Filter

						summary:	Returns	a	list	of	filteres

						description:	Returns	a	list	of	all	filteres

						operationId:	cloudmesh.filter.list

						responses:

								'200':

										description:	The	list	of	filterses

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Filter'

								'401':

										description:	Not	authorized

		/filter/{name}:

				get:

						tags:

								-	Filter

						summary:	Returns	the	named	filter

						description:	Returns	an	filter	by	name

						operationId:	cloudmesh.filter.find_by_name

						parameters:

								-	name:	name



										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	filter

						responses:

								'200':

										description:	Returning	the	information	of	the	filter

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Filter'

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	filter	could	not	be	found

				put:

						tags:

								-	Filter

						summary:	Set	an	filter

						description:	Sets	the	named	filter

						operationId:	cloudmesh.filter.add

						requestBody:

								description:	The	new	filter	to	create

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Filter'

						responses:

								'200':

										description:	Filter	updated

								'401':

										description:	Not	authorized

								'400':

										description:	Error	updating	filter

				delete:

						tags:

								-	Filter

						summary:	Deletes	the	named	filter

						description:	Deletes	an	filter	by	name

						operationId:	cloudmesh.filter.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	filter

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	filter	could	not	be	found

components:

		schemas:

				Filter:

						type:	object

						description:	The	filter

						properties:

								name:

										type:	string

										description:	Name	of	the	filter

								function:

										type:	string

										description:	The	function	used	to	filter	the	data

												in	the	stream

								kind:

										type:	string

										description:	The	filter	kind	or	type

4.15	DEPLOYMENT

4.15.1	Deployment

A	resource	to	store	software	deployments.	The	deployment	is	formulated	in	aspecification	file.
To	distinguish	the	format	of	the	specification	file	a	string	is	used	that	defines	the	kind	of	the
deployment.	In	case	the	specification	uses	an	external	service	an	endpoint	to	the	service	can	be



used	and	the	name	of	the	specification	is	used	to	identify	the	deployment.

4.15.1.1	Schema	Deployment

Reference:	☁�

Property Type Description
name string The	name	of	the	deployment
kind string The	kind	of	the	deployment
specification string The	specification	of	the	deployment
endpoint string The	location	of	the	deployment	service

endpointname string
in	case	an	endpoint	is	used,	the	endpointname	is	used	to
uniquly	identify	the	deployment	within	the	endpoint
defined	service

4.15.1.2	Paths

HTTP Path Summary
get /deployment Returns	a	list	of	deploymentes
get /deployment/{name} Returns	the	named	deployment
put /deployment/{name} Set	an	deployment
delete /deployment/{name} Deletes	the	named	deployment

4.15.1.2.1	/deployment

4.15.1.2.1.1	GET	/deployment

Returns	a	list	of	all	deploymentes

Responses

Code Description Schema
200 The	list	of	deploymentses array[Deployment]
401 Not	authorized String

4.15.1.2.2	/deployment/{name}

4.15.1.2.2.1	GET	/deployment/{name}

https://github.com/cloudmesh/cloudmesh-nist/blob/master/spec/deployment.yaml


Returns	an	deployment	by	name

Responses

Code Description Schema
200 Returning	the	information	of	the	deployment Deployment
401 Not	authorized String
404 The	named	deployment	could	not	be	found String

Parameters

Name Located	in Description Required Schema
name path The	name	of	the	deployment True String

4.15.1.2.2.2	PUT	/deployment/{name}

Sets	the	named	deployment

Responses

Code Description Schema
200 Deployment	updated String
401 Not	authorized String

Request	Body

Located	in Description Required Schema
Body The	new	deployment	to	create True Deployment

4.15.1.2.2.3	DELETE	/deployment/{name}

Deletes	an	deployment	by	name

Responses

Code Description Schema
200 Deletion	successful String
401 Not	authorized String
404 The	named	deployment	could	not	be	found String



Parameters

Name Located	in Description Required Schema
name path The	name	of	the	deployment True String

4.15.1.3	deployment.yaml

openapi:	"3.0.2"

info:

		version:	3.2.0

		x-date:	17-06-2019

		x-status:	defined

		title:	Deployment

		description:	|-

		

				A	resource	to	store	software	deployments.	The	deployment	is	formulated	in

				aspecification	file.	To	distinguish	the	format	of	the	specification	file

				a	string	is	used	that	defines	the	kind	of	the	deployment.	In	case	the

				specification	uses	an		external	service	an	endpoint	to	the	service	can

				be	used	and	the	name	of	the	specification	is	used	to	identify	the

				deployment.

				

		termsOfService:	"https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt"

		contact:

				name:	NIST	BDRA	Interface	Subgroup

				url:	https://cloudmesh-community.github.io/nist

		license:

				name:	Apache	2.0

				url:	https://github.com/cloudmesh/cloudmesh-nist/blob/master/LICENSE.txt

servers:

		-	url:	/cloudmesh/v3

paths:

		/deployment:

				get:

						tags:

								-	Deployment

						summary:	Returns	a	list	of	deploymentes

						description:	Returns	a	list	of	all	deploymentes

						operationId:	cloudmesh.deployment.list

						responses:

								'200':

										description:	The	list	of	deploymentses

										content:

												application/json:

														schema:

																type:	array

																items:

																		$ref:	'#/components/schemas/Deployment'

								'401':

										description:	Not	authorized

		/deployment/{name}:

				get:

						tags:

								-	Deployment

						summary:	Returns	the	named	deployment

						description:	Returns	an	deployment	by	name

						operationId:	cloudmesh.deployment.find_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	deployment

						responses:

								'200':

										description:	Returning	the	information	of	the	deployment

										content:

												application/json:

														schema:

																$ref:	'#/components/schemas/Deployment'

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	deployment	could	not	be	found

				put:

						tags:

								-	Deployment



						summary:	Set	an	deployment

						description:	Sets	the	named	deployment

						operationId:	cloudmesh.deployment.add

						requestBody:

								description:	The	new	deployment	to	create

								required:	true

								content:

										application/json:

												schema:

														$ref:	'#/components/schemas/Deployment'

						responses:

								'200':

										description:	Deployment	updated

								'401':

										description:	Not	authorized

				delete:

						tags:

								-	Deployment

						summary:	Deletes	the	named	deployment

						description:	Deletes	an	deployment	by	name

						operationId:	cloudmesh.deployment.delete_by_name

						parameters:

								-	name:	name

										in:	path

										required:	true

										schema:

												type:	string

										description:	The	name	of	the	deployment

						responses:

								'200':

										description:	Deletion	successful

								'401':

										description:	Not	authorized

								'404':

											description:	The	named	deployment	could	not	be	found

components:

		schemas:

				Deployment:

						type:	object

						description:	the	deployment

						properties:

								name:

										type:	string

										description:	The	name	of	the	deployment

								kind:

										type:	string

										description:	The	kind	of	the	deployment

								specification:

										type:	string

										description:	The	specification	of	the	deployment

								endpoint:

										type:	string

										description:	The	location	of	the	deployment	service

								endpointname:

										type:	string

										description:	in	case	an	endpoint	is	used,	the	endpointname	is	used

																							to	uniquly	identify	the	deployment	within	the

																							endpoint	defined	service



5	ACRONYMS	AND	TERMS

The	following	acronyms	and	terms	are	used	in	this	volume.

ACID

Atomicity,	Consistency,	Isolation,	Durability

API

Application	Programming	Interface

ASCII

American	Standard	Code	for	Information	Interchange

BASE

Basically	Available,	Soft	state,	Eventual	consistency

Container

See	http://csrc.nist.gov/publications/drafts/800-180/sp800-180_draft.pdf

Cloud	Computing

The	practice	of	using	a	network	of	remote	servers	hosted	on	the	Internet	to	store,	manage,
and	 process	 data,	 rather	 than	 a	 local	 server	 or	 a	 personal	 computer.	 See
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf.

DevOps

A	clipped	compound	of	software	DEVelopment	and	information	technology	OPerationS

Deployment

The	action	of	installing	software	on	resources

HTTP

HyperText	Transfer	Protocol	HTTPS	HTTP	Secure

Hybrid

Cloud	See	http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf.

http://csrc.nist.gov/publications/drafts/800-180/sp800-180_draft.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf


IaaS

Infrastructure	as	a	Service	SaaS	Software	as	a	Service

ITL

Information	Technology	Laboratory

Microservice	Architecture

Is	 an	 approach	 to	 build	 applications	 based	 on	 many	 smaller	 modular	 services.	 Each
module	supports	a	specific	goal	and	uses	a	simple,	well-defined	interface	to	communicate
with	other	sets	of	services.

NBD-PWG

NIST	Big	Data	Public	Working	Group

NBDRA

NIST	Big	Data	Reference	Architecture

NBDRAI

NIST	Big	Data	Reference	Architecture	Interface

NIST

National	Institute	of	Standards	and	Technology

OS

Operating	System

REST

REpresentational	State	Transfer

Replica

A	duplicate	of	a	file	on	another	resource	to	avoid	costly	transfer	costs	in	case	of	frequent
access.

Serverless	Computing

Serverless	computing	specifies	the	paradigm	of	function	as	a	service	(FaaS).	It	is	a	cloud
computing	 code	 execution	 model	 in	 which	 a	 cloud	 provider	 manages	 the	 function
deployment	and	utilization	while	clients	can	utilize	them.	The	charge	model	is	based	on



execution	of	the	function	rather	than	the	cost	to	manage	and	host	the	VM	or	container.

Software	Stack

A	set	of	programs	and	services	that	are	installed	on	a	resource	to	support	applications.

Virtual	File	System

An	abstraction	layer	on	top	of	a	distributed	physical	file	system	to	allow	easy	access	to
the	files	by	the	user	or	application.

Virtual	Machine

A	VM	is	a	 software	computer	 that,	 like	a	physical	computer,	 runs	an	operating	system
and	applications.	The	VM	is	composed	of	a	set	of	specification	and	configuration	 files
and	is	backed	by	the	physical	resources	of	a	host.

Virtual	Cluster

A	virtual	cluster	 is	a	software	cluster	 that	 integrate	either	VMs,	containers,	or	physical
resources	into	an	agglomeration	of	compute	resources.	A	virtual	cluster	allows	users	to
authenticate	and	authorize	to	the	virtual	compute	nodes	to	utilize	them	for	calculations.
Optional	 high-level	 services	 that	 can	 be	 deployed	 on	 a	 virtual	 cluster	 may	 simplify
interaction	with	the	virtual	cluster	or	provide	higher-level	services.

Workflow

The	sequence	of	processes	or	tasks

WWW

World	Wide	Web



BIBLIOGRAPHY

[1]	 NIST,	 “Big	 Data	 Public	 Working	 Group	 (NBD-PWG).”	 [Online].	 Available:
https://bigdatawg.nist.gov/

[2]	 W.	 L.	 Chang	 (Co-Chair),	 N.	 Grady	 (Subgroup	 Co-chair),	 and	 NIST	 Big	 Data	 Public
Working	Group,	“NIST	Big	Data	Interoperability	Framework:	Volume	1,	Big	Data	Definitions
(NIST	 SP	 1500-1	 VERSION	 3),”	 National	 Institute	 of	 Standards;	 Technology	 (NIST),
Gaithersburg,	 MD,	 Jul.	 2019	 [Online].	 Available:
https://bigdatawg.nist.gov/show_InputDoc.php

[3]	 W.	 L.	 Chang	 (Co-Chair),	 N.	 Grady	 (Subgroup	 Co-chair),	 and	 NIST	 Big	 Data	 Public
Working	 Group,	 “NIST	 Big	 Data	 Interoperability	 Framework:	 Volume	 2,	 Big	 Data
Taxonomies	 (NIST	 SP	 1500-2	 VERSION	 3),”	 National	 Institute	 of	 Standards;	 Technology
(NIST),	 Gaithersburg,	 MD,	 Jul.	 2019	 [Online].	 Available:
https://bigdatawg.nist.gov/show_InputDoc.php

[4]	W.	L.	Chang	(Co-Chair),	G.	Fox	(Subgroup	Co-chair),	and	NIST	Big	Data	Public	Working
Group,	 “NIST	 Big	 Data	 Interoperability	 Framework:	 Volume	 3,	 Big	 Data	 Use	 Cases	 and
General	 Requirements	 (NIST	 SP	 1500-3	 VERSION	 3),”	 National	 Institute	 of	 Standards;
Technology	 (NIST),	 Gaithersburg,	 MD,	 Jul.	 2019	 [Online].	 Available:
https://bigdatawg.nist.gov/show_InputDoc.php

[5]	W.	 L.	 Chang	 (Co-Chair),	 A.	 Roy	 (Subgroup	 Co-chair),	 M.	 Underwood	 (Subgroup	 Co-
chair),	 and	 NIST	 Big	 Data	 Public	 Working	 Group,	 “NIST	 Big	 Data	 Interoperability
Framework:	 Volume	 4,	 Big	 Data	 Security	 and	 Privacy	 (NIST	 SP	 1500-4	 VERSION	 3),”
National	 Institute	 of	 Standards;	 Technology	 (NIST),	 Gaithersburg,	MD,	 Jul.	 2019	 [Online].
Available:	https://bigdatawg.nist.gov/show_InputDoc.php

[6]	W.	L.	Chang	(Co-Chair),	S.	Mishra	(Editor),	and	NIST	Big	Data	Public	Working	Group,
“NIST	Big	Data	Interoperability	Framework:	Volume	5,	Big	Data	Architectures	White	Paper
Survey	(NIST	SP	1500-5	VERSION	1),”	National	Institute	of	Standards;	Technology	(NIST),
Gaithersburg,	 MD,	 Sep.	 2019	 [Online].	 Available:
https://bigdatawg.nist.gov/show_InputDoc.php

[7]	W.	L.	Chang	(Co-Chair),	D.	Boyd	(Subgroup	Co-chair),	O.	Levin	(Version	1	Subgroup	Co-
Chair),	 and	 NIST	 Big	 Data	 Public	 Working	 Group,	 “NIST	 Big	 Data	 Interoperability
Framework:	 Volume	 6,	 Big	 Data	 Reference	 Architecture	 (NIST	 SP	 1500-6	 VERSION	 3),”
National	 Institute	 of	 Standards;	 Technology	 (NIST),	 Gaithersburg,	MD,	 Jul.	 2019	 [Online].
Available:	https://bigdatawg.nist.gov/show_InputDoc.php

[8]	W.	L.	Chang	(Co-Chair),	R.	Reinsch	(Subgroup	Co-chair),	D.	Boyd	(Version	1	Subgroup
Co-chair),	C.	Buffington	(Version	1	Subgroup	Co-chair),	and	NIST	Big	Data	Public	Working
Group,	“NIST	Big	Data	Interoperability	Framework:	Volume	7,	Big	Data	Standards	Roadmap

https://bigdatawg.nist.gov/
https://bigdatawg.nist.gov/show_InputDoc.php
https://bigdatawg.nist.gov/show_InputDoc.php
https://bigdatawg.nist.gov/show_InputDoc.php
https://bigdatawg.nist.gov/show_InputDoc.php
https://bigdatawg.nist.gov/show_InputDoc.php
https://bigdatawg.nist.gov/show_InputDoc.php


(NIST	 SP	 1500-7	 VERSION	 3),”	 National	 Institute	 of	 Standards;	 Technology	 (NIST),
Gaithersburg,	 MD,	 Jul.	 2019	 [Online].	 Available:
https://bigdatawg.nist.gov/show_InputDoc.php

[9]	W.	L.	Chang	(Co-Chair),	G.	von	Laszewski	(Editor),	and	NIST	Big	Data	Public	Working
Group,	 “NIST	 Big	 Data	 Interoperability	 Framework:	 Volume	 8,	 Big	 Data	 Reference
Architecture	 Interfaces	 (NIST	 SP	 1500-9	 VERSION	 2),”	 National	 Institute	 of	 Standards;
Technology	 (NIST),	 Gaithersburg,	 MD,	 Jul.	 2019	 [Online].	 Available:
https://bigdatawg.nist.gov/show_InputDoc.php

[10]	W.	L.	Chang	(Co-Chair),	R.	Reinsch	(Subgroup	Co-chair),	C.	Austin	(Editor),	and	NIST
Big	 Data	 Public	 Working	 Group,	 “NIST	 Big	 Data	 Interoperability	 Framework:	 Volume	 9,
Adoption	 and	 Modernization	 (NIST	 SP	 1500-10	 VERSION	 2),”	 National	 Institute	 of
Standards;	 Technology	 (NIST),	 Gaithersburg,	 MD,	 Jul.	 2019	 [Online].	 Available:
https://bigdatawg.nist.gov/show_InputDoc.php

[11]	NIST,	“V1.0	final	version	page	of	the	nbd-pwg	website.”	Web	Page,	Sep-2015	[Online].
Available:	https://bigdatawg.nist.gov/V1_output_docs.php

[12]	NIST,	“21.0	final	version	page	of	the	nbd-pwg	website.”	Web	Page,	Sep-2015	[Online].
Available:	https://bigdatawg.nist.gov/V2_output_docs.php

[13]	The	White	House	Office	of	Science	 and	Technology	Policy,	 “Big	Data	 is	 a	Big	Deal.”
OSTP	 Blog,	 Feb-2014	 [Online].	 Available:	 http://www.whitehouse.gov/blog/2012/03/29/big-
data-big-deal

[14]	Department	of	Defense,	“The	dodaf	architecture	framework	version	2.02,”	Department	of
Defense,	Report	 2.02,	Apr.	 2010	 [Online].	Available:	 https://dodcio.defense.gov/library/dod-
architecture-framework/

[15]	 G.	 von	 Laszewski,	 “NIST	 bdra	 vol	 8.	 GitHub	 issues.”	 GitHub,	 Jun-2019	 [Online].
Available:	https://github.com/cloudmesh/cloudmesh-nist/issues

[16]	 G.	 von	 Laszewski,	 “Nist	 bdra	 volume	 8	 github	 history.”	 GitHub,	 Jun-2019	 [Online].
Available:	https://github.com/cloudmesh/cloudmesh-nist/commits/master/docs/nistvol8-2.epub

[17]	G.	von	Laszewski	et	al.,	“NIST	big	data	interoperability	framework:	Volume	8,	reference
architecture	 interfaces,”	 National	 Institute	 of	 Standards;	 Technology	 (NIST),	 Gaithersburg,
MD,	 Special	 Publication	 (NIST	 SP),	 Oct.	 2015	 [Online].	 Available:
https://github.com/cloudmesh/cloudmesh-nist/raw/master/history/NIST.SP.1500-9.pdf

[18]	G.	von	Laszewski,	F.	Wang,	B.	Abdul-Wahid,	H.	Lee,	G.	C.	Fox,	 and	and	Wo	Chang,
“Cloudmesh	in	support	of	the	nist	big	data	architecture	framework,”	Indiana	University,	2017
[Online].	Available:	https://github.com/cyberaide/nist/blob/master/vonLaszewski-nist.pdf

[19]	 G.	 von	 Laszewski,	 “NIST	 bdra	 vol	 8.	 OpenAPI	 specifications.”	 GitHub,	 Jun-2019

https://bigdatawg.nist.gov/show_InputDoc.php
https://bigdatawg.nist.gov/show_InputDoc.php
https://bigdatawg.nist.gov/show_InputDoc.php
https://bigdatawg.nist.gov/V1_output_docs.php
https://bigdatawg.nist.gov/V2_output_docs.php
http://www.whitehouse.gov/blog/2012/03/29/big-data-big-deal
https://dodcio.defense.gov/library/dod-architecture-framework/
https://github.com/cloudmesh/cloudmesh-nist/issues
https://github.com/cloudmesh/cloudmesh-nist/commits/master/docs/nistvol8-2.epub
https://github.com/cloudmesh/cloudmesh-nist/raw/master/history/NIST.SP.1500-9.pdf
https://github.com/cyberaide/nist/blob/master/vonLaszewski-nist.pdf


[Online].	Available:	https://github.com/cloudmesh-community/nist/tree/master/spec

[20]	 G.	 von	 Laszewski,	 “Configuration	 file	 example:	 Coudmesh4.yaml.”	 GitHub,	 Jun-2019
[Online].	 Available:	 https://github.com/cloudmesh/cloudmesh-
cloud/blob/master/cloudmesh/etc/cloudmesh4.yaml

[21]	 Internet2	 Middleware	 Architecture	 Committee	 for	 Education,	 “EduPerson	 object	 class
specification,”	 Internet2,	 2016,	 201602,	 Mar.	 2016	 [Online].	 Available:
http://software.internet2.edu/eduperson/internet2-mace-dir-eduperson-201602.html

https://github.com/cloudmesh-community/nist/tree/master/spec
https://github.com/cloudmesh/cloudmesh-cloud/blob/master/cloudmesh/etc/cloudmesh4.yaml
http://software.internet2.edu/eduperson/internet2-mace-dir-eduperson-201602.html

	NIST Big Data Interoperability Framework: Volume 8, Reference Architecture Interfaces
	1 Introduction
	1.1 Background
	1.2 Scope and Objectives of the Reference Architectures Subgroup
	1.3 Report Production
	1.4 Report Structure

	2 NBDRA Interface Requirements
	2.1 High-Level Requirements of the Interface Approach
	2.1.1 Technology- and Vendor-Agnostic
	2.1.2 Support of Plug-In Compute Infrastructure
	2.1.3 Orchestration of Infrastructure and Services
	2.1.4 Orchestration of Big Data Applications and Experiments
	2.1.5 Reusability
	2.1.6 Execution Workloads
	2.1.7 Security and Privacy Fabric Requirements

	2.2 Component-Specific Interface Requirements
	2.2.1 System Orchestrator Interface Requirements
	2.2.2 Data Provider Interface Requirements
	2.2.3 Data Consumer Interface Requirements
	2.2.4 Big Data Application Interface Provider Requirements
	2.2.5 Big Data Provider Framework Interface Requirements
	2.2.6 Big Data Application Provider to Big Data Framework Provider Interface


	3 Specification Paradigm
	3.1 Hybrid and Multiple Frameworks
	3.2 Design by Resource-Oriented Architecture
	3.3 Design by Example
	3.4 Version Management
	3.5 Interface Compliancy
	3.6 Refernce implementations

	4 Specification
	4.1 List of specifications
	4.2 Authentication
	4.3 Status Codes and Error Responses
	4.4 Timestamp
	4.4.1 Timestamp

	4.5 Identity
	4.5.1 Organization
	4.5.2 User
	4.5.3 Account
	4.5.4 Public Key Store

	4.6 Variable, Defualt, and Alias
	4.6.1 Alias
	4.6.2 Variables
	4.6.3 Default

	4.7 Data Management
	4.7.1 Filestore
	4.7.2 Replica
	4.7.3 Database
	4.7.4 Virtual Directory

	4.8 Compute Management - Virtual Clusters
	4.8.1 Virtual Cluster
	4.8.2 Network of Nodes
	4.8.3 Scheduler
	4.8.4 Queue

	4.9 Compute Management - Virtual Machines
	4.9.1 Image
	4.9.2 Flavor
	4.9.3 Virtual Machine
	4.9.4 Secgroup
	4.9.5 Nic

	4.10 Compute Management - Containers
	4.10.1 Containers

	4.11 Compute Management - Map Reduce
	4.11.1 Map Reduce

	4.12 Compute Management - Functions
	4.12.1 Microservice

	4.13 Reservation
	4.13.1 Reservation

	4.14 Data Streams
	4.14.1 Stream
	4.14.2 Filter

	4.15 Deployment
	4.15.1 Deployment


	5 Acronyms and Terms
	Bibliography

