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Abstract

This paper presents implementations of new methods solving LU factorization used

in engineering applications. The implementations are done on the Alliant FX/80 min-

isupercomputer and use Level 3 Basic Linear Algebra Subprograms. Three ways of

expressing the LU factorization in terms of blocked algorithms are considered.

The performance of the blocked algorithms, using the parallel vector facilities, are com-

pared to a noblock algorithm using only subprograms of level 1 and 2 BLAS.

Keywords: LU factorization, blocked LU factorization, Alliant FX/80, BLAS 3.

1 Introduction

The importance of parabolic, elliptic partial di�erential equations (PDE) and ordinary di�erential

equations (ODE) in engineering problems is well known. Most physical phenomena are modeled

either by a system of PDEs or ODEs. Using a discretization technique like �nite di�erences or �nite

elements a system of linear algebraic equations can be obtained. Even in nonlinear phenomena,

one might solve a nonlinear system by iterating over the solution of a sequence of linear systems

[6, 10, 11, 12].

Consider the solution of the dense system of linear equations,

Ax = b; (1)

where A is an n-by-n matrix and b is a vector of dimension n. One method of solving this problem

is to proceed by �rst factorizing A into a unit lower triangular matrix L and in an upper triangular

matrix U, i.e.,

A = LU; (2)

then solving for y and x in two consecutive substitution steps:

Ly = b and Ux = y: (3)

Experimental results show that in programs for applications of the above described type, more than

50% of the CPU time is usually spent in matrix factorization. This occurs because

1. the computational e�ort to factorize the matrix A is higher than for the two substitution

steps and the rest of the program.
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2. most standard programming practices used in Fortran to factorize the matrix A result in

more memory accesses than 
oating point operations. This cause the processor to be idle

during the time data is being transferred from the memory for the computation.

The �rst observation motivates why it is desirable to build a fast LU factorization algorithm.

The second observation shows where optimization can be successful: It is worth to optimize a

factorization algorithm in such a way that it makes e�cient use of the way data is transferred to

the computational unit.

To understand why the algorithms described in this paper are e�cient (not only for multiprocessor

computers but also for sequential machines) it is necessary to review the concept of a memory

hierarchy.

Normally, a central processing unit (CPU) is much faster than the time used to move the data for

a computation in the CPU. The process of moving the data is called fetching and the time used for

transferring data from a part of the memory to the CPU is called memory access time. In order

to use the processor e�ciently it is important to keep the memory access time of the data used for

computation as small as possible. Unfortunately, it is too expensive to build very fast memories

of su�cient capacity as it is necessary for scienti�c applications with thousands or even millions

of variables. Therefore, a memory hierarchy is used to decrease the cost of the memory such that

a cost e�cient memory access time can be achieved. Figure 1 shows a typical memory hierarchy.

The closer the memory level is to the registers of the processor the faster is the access.

Register

Cache

RAM

External Memory

faster
access

larger
capacity

Figure 1: Typical memory hierarchy in a computer

For example, to use data stored in the external memory it has to pass through all components of

the memory hierarchy. Often, access time can be decreased if the usage of speci�c data can be

predicted, so that data is transferred into a faster part of the hierarchy before it is actually referred.

One simple way to evaluate if a program can make use of the hierarchy in an e�cient way is to keep

the ratio of operations to data movement as large as possible. This ratio is important to achieve

high performance when exploiting concurrency and vectorization.
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For example, the following statement inside a loop performing matrix multiplication,

cij  cij + aik � bkj

requires three memory accesses to obtain the data cij ; aik; bkj , and one to store the result in cij .

Addition and multiplication count as one 
oating point operation each. The ratio of 
oating point

operations to memory access time is r = 1
2
.

A simple programming trick to improve this ratio can be obtained by �guring out how the data is

stored in the memory. One has to know that most memory organizations use speci�c strategies to

reduce the memory access time. One rule which is common on many machines is to fetch not only

one datum at a time but a block of data. In most cases the block is organized as a vector. The

distance between two elements of a vector in the memory is called stride. It is best to organize the

data in the memory in such a way that the algorithm access the data in unit stride (stride = 1).

Figure 2 and 3 show how data (a matrix) is stored in a memory using the programming languages C

and FORTRAN. Having this in mind it is obvious why C is also called a row oriented programming

language and FORTRAN is called a column oriented programming language.

Under the assumption that a machine is able to fetch � contiguous data elements from the memory

in one time step, the above FORTRAN statement can be rewritten as

ci;j  ci;j + ai;k � bk;j

+ ai;k+1 � bk+1;j

..

.

+ ai;k+��1 � bk+��1;j (4)

This leads to 2� 
oating point operations, 2 memory accesses for storing and fetching ci;j , � for

fetching the ai;k's and one for all bk;j 's. The ratio is r =
2�
3+�

.

Storing the matrix A as its transpose one can rewrite the multiplication as

cij  ci;j + atk;i � bk;j

+ atk+1;i � bk+1;j

.

.

.

+ atk+��1;i � bk+��1;j (5)

where atk;i speci�es the element in the k-th row and i-th column of the transpose At
.

Now there is only one memory access necessary to fetch even the vector a. Therefore, the ratio

is r =
�
2
. The prediction of a maximal vector length � depends on many factors: the memory

hierarchy, the actually used machine, and its fetching algorithm. Algorithms which updates not
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Figure 2: Storage of a two dimensional array in row oriented programming languages like C
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Figure 3: Storage of a two dimensional array in column oriented programming languages like

FORTRAN
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only one vector at a time but a block of contiguous vectors are known as blocked algorithm. This

way the work is done locally on a block of data.

Previous numerical experiments [9] showed that traditional linear algebra algorithms do not achieve

high performance on shared-memory multiprocessors because of lack of data locality. Therefore,

data locality is the fundamental problem in parallel computing and has great in
uence on the

performance of such machines. Use of block-based algorithms is one of the most e�cient ways to

improve the performance of shared memory machines.

Dongarra, Gustavson, and Karp [5] discussed six ways of implementing the LU factorization ob-

tained by reordering the three nested loops that constitute the algorithm for these cases. Algo-

rithm 1 explains the generic Gaussian elimination.

do ||||

do ||||

do ||||

aij  aij �
aik � akj

akk
end do

end do

end do

Algorithm 1: Gaussian Algorithm

The loop indices are i; j and k. Each of the six ways has a di�erent order of the index variables.

The three ways where loop i is lying inside loop j are the ways that access data in unit stride.

Only these three unit stride ways are applicable to the column oriented FORTRAN. These three

algorithms will be introduced later as block based algorithms with pivoting. Furthermore, the

pivoting operation can be resembled by matrix multiplication if the elements akj are scaled by

�akk such that

aij  aij + aik � a
0

kj

where a0kj is the de�ned as �
akj
akk

.

2 Basic Linear Algebra Subprograms

In many applications, as seen above, vector and matrix operations can be used to formulate algo-

rithmic solution to scienti�c problems. Programming languages like FORTRAN77 do not provide
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this kind of operations. To make programming easier for a scienti�c software engineer it is desirable

to use a library supporting this kind of routines.

A public domain set of Basic Linear Algebra Subprograms, called BLAS, has been very successful

for scienti�c applications. Many algorithms and software packages make use of these programs [4].

At the end of this section it is shown which library routines are best for building an optimized

algorithm on a shared memory multiprocessor.

Di�erent levels of BLAS are distinguished by the amount of its arithmetic complexity. The com-

plexity of programs in one level of BLAS is the same. Computations on vectors of order n can be

found in level 1 BLAS. For example the dot product of two vectors each with n elements is calcu-

lated in 2n arithmetic operations. Level 2 BLAS provides matrix-vector computations of order n2,

and level 3 BLAS provides matrix-matrix computations of order n3 operations (table 1).

Level Data type of operation Arithmetic complexity

1 vectors O(n)

2 matrix, vectors O(n2)

3 matrix, matrix O(n3)

Table 1: Arithmetic complexity of the di�erent BLAS levels

There are a number of important subprograms included in BLAS used for the algorithms presented

in this paper. For example the matrix multiplication, called GEMM, and a subprogram for solving

a triangular system, called TRSM.

These abbreviations are at �rst confusing, but the nomenclature of the BLAS programs is in fact

very simple and give information about the semantic of the subprograms. Table 2 shows the

abbreviations necessary to explain the algorithmic codings presented in this paper. Table 3 shows

the BLAS subprograms used in the di�erent implementations of the LU factorization algorithms.

Looking at the computational e�ort of the BLAS routines it is clear that the ratio between 
oating

point operations and memory accesses for the level 1 and 2 BLAS is not as good as for the level

3 BLAS which consists of more computations. Therefore, it is obvious that the strategy is to

maximize the use of level 3 BLAS.

3 Noblock Factorization using BLAS

Now a necessary basis has been established to formulate the factorization algorithms.
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Abbreviation stands for

M Matrix

V Vector

GE GEneral

TR TRiangular

Table 2: Abbreviations used in BLAS

Of the six ways of implementing LU factorization, using partial pivoting with row interchanges,

that were discussed by Dongarra, Gustavson, and Karp [5], we describe the three column-oriented

variants. These algorithms are suitable for an implementation in FORTRAN since the array struc-

ture is column-oriented.

The noblock factorization algorithms are the building blocks for the blocked algorithms. To be most

e�cient a fast noblock algorithm has to be selected. The noblock algorithms are distinguished by

the order of loops in which the factorization is done. The algorithms compared here are the jki-

noblock algorithm and the jik-noblock algorithm. Since the number of memory touches for the kji

noblock algorithm is twice as high as for the others[5], the running time for this algorithm is slower.

Therefore, only the two algorithms with the same number of memory touches are compared. The

abbreviation jik means that j is the loop index for the outermost loop and k for the inner most

loop (compare to Algorithm 1).

Comparison between the two algorithms implemented on the Alliant showed that the jik version is

faster than the jki version. Therefore, all blocked algorithms described in later sections are using

the jik version. This version is also used in LAPACK [2]. LAPACK is a collection of public domain

programs using level 3 BLAS to solve basic linear algebra problems. The name stands for Linear

Algebra PACKage.

3.1 jki-Noblock Algorithm

Before the algorithm is described in detail it is useful to visualize the data dependencies of the

matrix elements in the n�n matrix between the computational steps. The dependencies are shown

in �gure 4. If a datum in the picture is higher than another then, this datum has to be calculated

�rst. Following the data dependencies �rst u(j) is updated with the help of L(j)
. Next, l(j) is

calculated with the help of u(j) and A(j)
. Then the matrix element ljj is determined and l(j) is

updated. Therefore at time step j only the j-th column is updated. This steps are executed over
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BLAS Name (Level) Description as used in this

paper

Arithmetic

Complexity

IAMAX (1) �nds the index of the element

of a vector with the maximal

absolute value

O(n)

SCALL (1) scale a vector by dividing with

a constant

O(n)

SWAP (1) swap two vectors O(n)

GEMV (2) multiply a general matrix with

a vector

O(n2)

TRSV (2) solve a triangular system

where the result is a vector

O(n2)

GEMM (3) multiply a general matrix with

another general matrix

O(n3)

TRSM (3) solve a triangular system

where the result is a matrix

O(n3)

Table 3: List of BLAS routines used for blocked factorization algorithms
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all columns in the matrix once.

m

n

t

A

L
(j)

(j)

l
(j)

u
(j)

Figure 4: jki-noblock

The mathematical description of the algorithm is as follows:

For simplicity the algorithms are described for n� n matrices. Let A be the original n� n matrix

and L, the unit lower triangular matrix andU the upper triangular matrices after the factorization.

Let l(j) and u(j) represent the j-th column vector of the matrix L and U. The matrix A(j) speci�es

a submatrix of A. It includes all elements from the �rst column to the column j � 1 and from the

rows j + 1 to n.

In each iteration one column of U and L is updated at each iteration step. The decomposition is

generated in the following way:

Initialization:

j  1

Compute column u(j):

u(j)  (L(j))
�1
u(j)

Update l(j):

l(j)  l(j) �A(j)u(j)

Select pivot and exchange:

p  j +min

�
k
���jlkj = max

1�i�n�j+1
fjl

(j)
i jg

�
� 1

exchange row j and row p

Scaling:

l
(j)
i  l

(j)
i =ap;j 81 � i � n � j + 1

Iterate:

j  j + 1

goto Compute column u(j)
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Using the BLAS level 2 routines the algorithm 2 can be obtained for the jki-noblock version.

subroutine jki-noblock (m;n;A; ipiv; lda)

do j = 1; n

1. Apply previous interchanges to j-th column.

2. Compute elements 1 : j � 1 of j-th column.

TRSV('Lower','No transpose','Unit',j � 1; a; lda; a(1;j); 1)

3. Update elements j :m of j-th column.

GEMV('No transpose',m� j + 1; j � 1;�1; a(j;1); lda; a(1;j); 1; 1; a(j;j); 1)

4. Find pivot

p = j � 1+ IAMAX(m� j + 1; a(j;j); 1)

ipiv(j) = p

5. Apply interchange to columns 1:j.

SWAP(j; a(j;1); lda; a(p;1); lda)

if j = m then stop

6. Compute elements j+1:m of j-th column.

SCAL(m� j; 1=a(j;j); a(j+1;j); 1)

end do

Algorithm 2: jki-noblock

3.2 jik-Noblock Algorithm

In contrast to the jki-noblock algorithm the jik-noblock algorithm updates one column of L and

one row of U. This noblock algorithm is also used in LAPACK to decompose a matrix and is called

there GETF2. The jik-noblock algorithm is also known as Crout's Algorithm.

The data dependencies are shown in the �gure 5. First the vector l(j) is updated with the help of

A(j) and the vector u(j). The element of ljj is computed and u(j) is updated with the help of U (j)

and l
(j)
r .

Let l(j) represent the j-th column vector of the matrix L and u(j) the j-th row vector of the matrix

U. The matrix A(j)
speci�es a submatrix of A. It includes all elements from the �rst column to

the column j � 1 and from the rows j + 1 to n. The matrix U(j)
speci�es a submatrix of A. It

includes all elements from the �rst row to the row k � 1 and from the columns j + 1 to n.

Initialization:

j  1
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m
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r
U
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Figure 5: jik-noblock

Update l(j):

l(j)  l(j) �A(j)u(j)

Select pivot and exchange:

p  j +min

�
j
���jljj = max

1�i�n�j+1
fjl

(j)
i jg

�
� 1

exchange row j and row p

Scaling:

l
(j)
i  l

(j)
i =ap;j

if (j = n) then stop

Compute row u(j):

u(j)  u(j) � (U (j)
)
�1
l
(j)
r

Iterate:

k  j + 1

goto update l(j)

The code using level 2 BLAS subprograms is shown in algorithm 3.

Our numerical experiments on the Alliant showed that the jik-noblock's performance is superior

to the jki-noblock's performance. Therefore, the jik-noblock subroutine from LAPACK is used to

implement the block factorizing algorithms shown in a later section.

3.3 kji-Noblock Algorithm

The kji-noblock algorithm updates one column of L, one row ofU, and the remainder of the matrix

A as shown in �gure 6 and 7.

The data dependencies are shown in the �gure 6. For the updating of the rest of the matrix A

only the vectors shown in �gure 7 are needed. First the vector l(k) is factorized. Then vector u(k)
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subroutine jik-noblock(m;n;A; ipiv; lda)

do j = 1; n

1. update diagonal and subdiagonal elements

in column j

GEMV ('no transpose',m� j + 1; j � 1;�1; a(j;1); lda; a(1;j); 1; 1; a(j;j); 1)

2. �nd pivot

jp = j � 1+IDAMAX (m� j + 1; a(j;j); 1)

ipiv(j) = jp

3. apply interchange to columns 1:j

SWAP (m; a(j;1); lda; a(jp;1); lda)

if(j.lt.n)

4. compute elements j+1:m of j-th column

SCAL (m� j; 1=a(j;j); a(j+1;j); 1)

5. compute block row of u

GEMV ('transpose',j � 1; m� j;�1; a(1;j+1); lda; a(j;1); lda; 1; a(j;j+1); lda)

end if

end do

Algorithm 3: jik-noblock

is computed with the help of the factorized vector l(k). Now the Matrix remainder is updated with

th help of l(k) and u(k).

Let l(k) represent the k-th column vector of the matrix L and u(k) the k-th row vector starting from

akk of the matrix A. The matrix R(k) speci�es a submatrix of A. It includes all elements from the

�rst column k+1 to n and from the rows k + 1 to n.

Initialization:

k  1

Select pivot and exchange:

p  k +min

�
k
���jlkj = max

1�i�n�k+1
fjl

(k)
i jg

�
� 1

exchange row k and row p

Scaling:
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Figure 6: kji-noblock

m

n

t

l
(k)

u(k)

L

Figure 7: kji-noblock

l
(k)
i  l

(k)
i =ap;k

if (k = n) then stop

Compute row u(k):

u(k)  u(k) � (U (k)
)
�1
l
(k)
r

Update R(k):

R(k)
 R(k)

� Lu(k)

Iterate:

k  k + 1

goto update l(k)

The code using level 2 BLAS subprograms is shown in algorithm 4.
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subroutine kji-noblock (m;n;A; ipiv; lda)

do k = 1; n

1. �nd pivot

jp = j � 1+IDAMAX (m� j + 1; a(j;j); 1)

ipiv(j) = jp

2. compute elements j + 1 : m of j-th column

SCAL (m� j; 1=a(j;j); a(j+1;j); 1)

3. apply interchange to columns j + 1 : m

SWAP (n; a(j+1;j); lda; a(jp;j); lda)

4. compute block row of u

GEMV ('transpose',j � 1; m� j;�1; a(1;j+1); lda; a(j;1); lda; 1; a(j;j+1); lda)

5. compute remainder matrix

GEMM ('notranspose','notranspose',m� j; n� j; 1; 1; a(j+1;j);

lda; a(j;j+1); lda; 1; a(j+1;j+1); lda)

end do

Algorithm 4: kji-noblock

4 Naming convention

In literature the algorithms are often named by the basic operations inherent in the last levels of

the execution of the algorithms. The basic operation of the kji algorithm is based on the following

operation:

~z  a~x+ ~y;

where a is a scalar and ~x; ~y; ~z are vectors. This operation of a Scalar multiplied by the vector

X Plus the vector Y is called SAXPY. The basic operation of the jki algorithm is based on the

following operation:

~z  A~x+ ~y;

whereA is a matrix and ~x; ~y; ~z are vectors. Therefore, it is a generalized SAXPY operation working

on a matrix rather than on a vector. The name GAXPY is often used. The basic operation of the

jik algorithm is based on the dot product:

~z  ~xT~y;

where ~x; ~y; ~z are vectors. Therefore, it is called SDOT.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1       8       7       0.       .       .



Technical Report:

SCCS-94b

Blocked LU Factorization

on a Multiprocessor Computer 15

5 Block Factorization using BLAS

The algorithms described above are modi�ed in such a way that not only one row vector or column

is updated but a block of vectors.

In all cases work is done on blocks with � columns using a matrix-vector based elimination scheme to

reduce each block column in turn. In each of the three block-column variants pivoting is performed

only within a noblock algorithm. Any permutation resulting from this pivoting must be applied to

the remainder of the matrix.

5.1 Block jik-SDOT

At the jth iteration step of the elimination process the jik-SDOT algorithm computes one block

column of L and one block row ofU. These computations require the operations shown in �gure 8[3]:

0. Initialize: start with the �rst block

j  1

1. Update C(j):

the jth diagonal and subdiagonal blocks of C are computed using GEMM.

C(j)
 C(j)

�A(j)B(j)

2. Factorize C(j) and Pivot:

the jth block column is factorized into LU factors using the jik-noblock algorithm

apply previous interchanges to the previous blocks A
(j)
1 and U

(j)
2 .

3. Update U
(j)
2 :

a) jth block row of U is updated using GEMM.

Update U
(j)
2  U

(j)
2 �A(j)E(j)

b) j-th block row of U is calculated using TRSM.

U
(j)
2  (L(j))

�1
U
(j)
2

4. Iterate:

if no more blocks then stop

else goto [Update C(j)
:]

5.2 Block jki-GAXPY

In the jki-GAXPY algorithm, at the jth step of the elimination, a block column of both matrices

L and U is computed. These computations require the following operations:
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(j)A

Step 1

(j)
C

(j)
B

Step 2

(j)
C

L
(j)

(j)
A

(j)
EU

(j) Step 3(a) 

2
1

1

U
(j)

L
(j)

Step 3(b)
2

U
(j)

Figure 8: jik-SDOT
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subroutine jik-block(m;n;A; lda; ipiv; �)

if � = 1 then

call jik-noblock(m;n;A; lda; ipiv)

else

do j = 1; min(m;n); beta

jb = min(min(m;n)� j + 1; �)

> update diagonal and subdiagonal blocks.

call gemm('no transpose','no transpose',m� j + 1; jb; j� 1;

�1; a(j;1); lda; a(1;j); lda; 1;

a(j;j); lda)

> factorize diagonal and subdiagonal blocks and test for

singularity.

call jik-noblock(m� j + 1; jb; a(j;j); lda; ipiv(j))

> update pivot indices and apply the interchanges to the

columns on either side of the current block.

do i = j;min(m; j+ jb� 1)

ipiv(i) = j � 1 + ipiv(i)

end do

call laswp(j � 1; a; lda; j; j+ jb� 1; ipiv; 1)

call laswp(n � j � jb+ 1; a(1;j+jb); lda; j; j+ jb� 1; ipiv; 1)

if j + jb � n then

> compute block row of u.

call gemm('no transpose','no transpose',jb; n� j � jb+ 1;

j � 1;�1; a(j;1); lda; a(1;j+jb); lda;

1; a(j;j+jb); lda)

call trsm('left','lower','no transpose','unit',jb;

n� j � jb+ 1; 1; a(j;j); lda; a(j;j+jb); lda)

end if

end do

end if

Algorithm 5: jik-SDOT
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(j)A

(j)
C

Step 2

Step 1
(j)

L

L
(j)

(j)
C

L
(j) Step 3

(j)
U
2

(j)
U

(j)
U
2

1

Figure 9: jki-GAXPY
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subroutine jki-block(m;n;A; ipiv; �; lda)

if � = 1 then

call jik-noblock(m,n,A,ipiv,lda)

else

do j = 1; n; �

jb = min(n� j + 1; �)

> Apply previous interchanges to current block.

call laswp(jb; a(1j); lda; 1; j� 1; ipiv; 1)

> Apply previous transformations to current block of U.

do k = 1; j � 1; �

kb = min(�; j � k)

call trsm('left','lower','no transpose','unit',kb;

jb; 1; a(kk); lda; a(kj); lda)

call gemm('no transpose','no transpose',j � k � kb; jb;

kb;�1; a(k+kb;k); lda; a(kj); lda;

1; a(k+kb;j); lda)

end do

> Update diagonal and subdiagonal blocks.

call gemm('no transpose','no transpose',m� j + 1; jb; j� 1;

�1; a(j1); lda; a(1j); lda; 1;

a(jj); lda)

> factorize diagonal and subdiagonal blocks

call jik-noblock (m� j + 1; jb; a(jj); ipiv(j); lda)

> update pivot indices and apply the interchanges to the

columns on either side of the current block.

do i = j;min(m; j+ jb� 1)

ipiv(i) = j � 1 + ipiv(i)

end do

call slaswp(j � 1; a; lda; j; j+ jb� 1; ipiv; 1)

end do

end if

Algorithm 6: jki-GAXPY

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1       8       7       0.       .       .



Technical Report:

SCCS-94b

Blocked LU Factorization

on a Multiprocessor Computer 20

0. Initialize:

start with �rst block.

j  1

1. Pivot and Update U
(j)
2 :

apply previous interchanges to the current block U
(j)
2 .

the j-th suberdiagonal block of U is computed using TRSM. U
(j)
2  (L(j)

)
�1
U
(j)
2

2. Update C(j):

the jth diagonal and subdiagonal blocks of C are computed using GEMM.

C(j)
 C(j)

�A(j)U
(j)
2

3. Factorize C(j):

the jth block column is factorized into LU factors using a noblocked algorithm.

4. Iterate:

if no more blocks then stop

else goto [Pivot and Update U
(j)
2 :]

5.3 Block kji-SAXPY

At the kth step of the factorization process a block column of L and a block row of U are computed

and the corresponding transformations are applied to the remaining part of the matrix. This

algorithm requires the following operations:

0. Initialize:

start with �rst block.

k  1

1. Factorize C(k):

the kth block column is factorized into LU factors using the noblock algorithm.

apply previous interchanges to the previous blocks A
(k)
1 and U

(k)
2 .

2. Update U
(k)
2 :

Computing the kth block row of U using TRSM.

U
(k)
2 = L(k)U

(k)
2
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Step 1
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Figure 10: kji-SAXPY
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subroutine kji-block(m;n;A; lda; ipiv; �)

if � = 1 then

call jik-noblock(m;n;A; lda; ipiv)

else

do k = 1;min(m;n); �

kb = min(min(m;n)� k + 1; �)

> factorize diagonal and subdiagonal blocks

call jik-noblock(m� k + 1; kb; a(k;k); lda; ipiv(k); info)

> update pivot indices and apply the interchanges to

previous and following blocks of the current block.

do i = k;min(m; k+ kb� 1)

ipiv(i) = k � 1 + ipiv(wi)

end do

call laswp(k � 1; a; lda; k; k+ kb� 1; ipiv; 1)

call laswp(n� k � kb+ 1; a(1;k+kb); lda; k; k+ kb� 1; ipiv; 1)

> Compute block row of U

call trsm('left','lower','no transpose','unit',kb;

n � k � kb+ 1; one; a(k;k); lda; a(k;k+kb); lda)

> Update right-hand bottom,(n-k-kb+1) X (n-k-kb+1) block

call gemm('no transpose','no transpose',n� k � kb+ 1;

n� k � kb+ 1; kb;�one; a(k+kb;k); lda;

a(k;k+kb); lda; one; a(k+kb;k+kb); lda)

end do

end if

return

Algorithm 7: kji-SAXPY
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3. Update C(k):

Updating the remaining matrix using a block outer product using GEMM.

C(k)
= C(k)

� L(k)U
(k)
2

4. Iterate:

if no more blocks then stop

else goto Factorize C(k)

6 Arithmetic Complexity

All three blocked algorithms have the same computational complexity of approximately

2n3

3


oating point operations. The di�erence in the execution time of the algorithms is therefore caused

by the di�erent data access patterns and data locality.

7 Experimental Results

The Experiments are done on the Alliant FX/80. The FX/80 is a shared memory parallel computer

with six interactive processors (IPs) and eight pipelined advanced computational elements, called

ACEs. Each ACE contains eight 64-bit 
oating-point registers 32 elements long. The total number

of attached ACEs are also called a complex. A concurrency control bus connects the eight ACEs

and acts as a synchronization facility. The ACEs share a 512k byte write-back cache. The cache is

connected to memory by a memory bus [1].

In all cases, the assembly-coded BLAS routines of level 1, 2, and 3 from the Alliant scienti�c library

are used, as well as some routines from LAPACK. All experiments are done in double precision (64

bit). The speci�c BLAS routines are shown in table 3.

The LAPACK routines include

� jik-noblock (GETF2) for partial pivoting with row interchanges,

� LASWP to perform a series of row interchanges on a block of a matrix A based on the SWAP

routine from the Alliant scienti�c library,

� and GETRS for solving the system Ax = b after the matrix A is LU factorized by any of

the three block-LU factorization routines. This algorithm is known as back substitution.

The performance is measured in MFLOPS (Million FLoating-point Operations Per Second) for

solving the whole system Ax = b, i.e., factorizing by any of the three blocked algorithms and
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solution by GETRS. The performance is measured on a stand-alone basis
1
for matrices of size

N 2 f100; 200; :::; 1000g on 8 attached ACEs.

The programs are compiled with the optimization option of the fortran 77 compiler (-O -DAS).

The implemented algorithm uses the noblock algorithm if � = 1 and the blocked version if � > 1.

Our numerical experiments of Crout's method from LAPACK, after necessary modi�cations to use

the FX/BLAS, showed that the performance for � = 1 is higher than that for � = 32 if the matrix

size is N � 500, as shown in �gure 11.
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Figure 11: Performance of blocked jik-SDOT for di�erent block sizes (�)

Using Level 2 BLAS (GEMV and TRSV) the ratio of operations to data movement is not very high

which is, as shown before, important to achieve high performance when exploiting concurrency and

vectorization. However, parallelization at this level can provide a reasonable performance improve-

ment when e�cient parallelization tools for �ne granularity (especially low-cost synchronization)

are available. The hardware-controlled microtasking provided by the Alliant enables this. It is the

hardware concurrency control in the Alliant FX/80 that explains why the assembly-coded Level 2

BLAS can provide a reasonable performance on this machine.

On the other hand, Dayde and Du� [3] reported that their numerical experiments, on the CRAY-2,

Cyber 205, and IBM 3090-200/VF showed that the jik-SDOT version was uniformly the worst.

This is because much of the updating is done on a block row of U where the vector lengths are the

same as that of the block size. Our results also show that jik-SDOT is penalized by the short vector

1No time sharing with other users.
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length inherent in this algorithm. This is con�rmed by our results shown in Figure 11. It is clear

from Figure 11 that the performance improves as the block size increases. The best performance

is obtained for the block size equivalent to the total number of computational elements in the

hardware con�guration of the Alliant system, called complex. Since the number of ACEs used is 8,

a multiplicator of 256 elements is obtained.

Figures 12-15 show the performance comparison for the three column-oriented algorithms jik-

SDOT, JKI-GAXPY, and kji-SAXPY for a block size of 32, 64, 128, and 256 on a complex size of

8 and stand-alone timing with the performance of the jik-noblock algorithm (� = 1 and using Level

1 and 2 BLAS from the Alliant library). kji-SAXPY achieves the best performance for all block

sizes. The highest performance is obtained for a block size of 64, and this is in agreement with

the experimental results reported by Gallivan, Jalby, Meier, and Sameh [8]. Although Dongarra,

Gustavson, and Karp [5] stressed the di�erent access patterns of these three algorithms; for example,

kji-SAXPY requires about twice as many transfers to memory as jik-SDOT and jki-GAXPY,

we do not see the e�ect of this in our results. This is because memory and cache management

mechanisms mask such di�erences.
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Figure 12: Performance of di�erent blocked algorithm for � = 32 and jik-noblock
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Figure 13: Performance of di�erent blocked algorithm for � = 64 and jik-noblock
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Figure 14: Performance of di�erent blocked algorithm for � = 128 and jik-noblock
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Figure 15: Performance of di�erent blocked algorithm for � = 256 and jik-noblock
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8 Conclusion

We have described the Fortran-oriented methods for block LU factorization on a shared memory

parallel vector minisupercomputer. These methods are also ready for portable implementations

on other shared memory parallel vector computers. Our numerical experiments and performance

comparisons showed the following:

� The block jik-SDOT algorithm is very poor when block size is small due to the fact that

most vector lengths in this algorithm are the same size as the block.

� The block kji-SAXPY algorithm's performance is superior to all other blocked algorithms for

any block size.

� The jik-noblock algorithm's performance is superior to all blocked algorithms for a matrix of

size N � 500. This is due to the built-in hardware concurrency control in the Alliant FX/80.

We recommend blocked LU factorization parallelism over the assembly-coded Level 3 BLAS for

su�ciently large problems. E�cient utilization of the hardware and assembly-coded BLAS Level 1

and Level 2 should be used for small problems.

9 Future

Currently, we are testing the three blocked LU factorization algorithms in di�erent FORTRAN di-

alects on all kinds of parallel machines. We already have implementations for SIMD and distributed

memory MIMD machines as well.

As target machines the Intel iPSC/860 [7], nCube, Decmpp 12000, CM2, and the CM5 are used.

This is being done as a part of our e�ort to develop a benchmark set for FORTRAND and the

proposed HPF (High Performance Fortran).

To obtain a copy of all the software used in this study, send a one-line e-mail message \send index"

to npaclib@minerva.npac.syr.edu or use anonymous ftp from minerva.npac.syr.edu. Npaclib is a

free software distribution electronic service. The index lists information on how to access all the

programs used in this study. Users who have problems accessing these programs should send e-mail

to the authors at agm@npac.syr.edu.
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