
Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 0

Applications Benchmark Set

for Fortran-D

and High Performance Fortran

A. Gaber Mohamed, Geo�rey C. Fox, Gregor von Laszewski

Manish Parashar, Tomasz Haupt, Kim Mills

Ying-Hua Lu, Neng-Tan Lin and Nang-kang Yeh

Contents

1 INTRODUCTION 2

1.1 Outline of the Fortran-D Design : 3

2 OVERVIEW OF THE HPF/FORTRAN-D BENCHMARKING SUITE 4

2.1 Validation Strategy : 4

2.2 Current Status : 5

3 ARCHITECTURES 8

3.1 The Connection Machine CM-2 Architecture : 8

3.2 The DECmpp 12000 Machine Architecture : 8

3.3 The Intel iPSC/860 Architecture : 9

4 PURDUE BENCHMARKING SET 9

5 LAPACK SUBSET 14

5.1 LU-Factorization : 14

5.1.1 Parallel Blocked jki-GAXPY : 14

5.1.2 Parallel Blocked jik-SDOT : 15

5.1.3 Parallel Blocked kji-SAXPY : 16

5.2 QR Factorization : 19

5.3 Cholesky Factorization : 21

6 ELECTROMAGNETIC SCATTERING FROM CONDUCTING BODY 33

7 STOCK OPTION PRICING 37

8 CONCLUSION 45

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 1

Applications Benchmark Set

for Fortran-D

and High Performance Fortran

A. Gaber Mohamed, Geo�rey C. Fox, Gregor von Laszewski

Manish Parashar, Tomasz Haupt, Kim Mills

Ying-Hua Lu, Neng-Tan Lin and Nang-kang Yeh

Keywords: CompilerBenchmarking, FORTRAN 90D, FORTRAN 77D, HPF

ABSTRACT

Fortran77, the currently accepted Fortran standard worldwide, is essentially a sequential language which

hides the parallelism of a problem in sequential constructs like loops, etc. Consequently, scientists wishing

to use parallel computers must rewrite their programs in an extension of Fortran that explicitly reects the

architecture of the underlying machine, such as a message-passing dialect for MIMD distributed-memory

machines, array syntax for SIMD machines, or an explicitly parallel dialect with synchronization for MIMD

shared-memory machines. This conversion is di�cult, error prone, and the resulting parallel codes are

machine-speci�c.

To overcome these problems a new Fortran standard, or more precisely, a standard of Fortran extensions,

are necessary to establish a machine independent programming model that is easy to use and yet, is ac-

ceptably e�cient on di�erent parallel architectures. Thus research is now concentrated on the provision of

appropriate high-level language constructs to enable users to design programs in much the same way as they

are accustomed to on a sequential machine. Several proposals have been put forth in recent months for a

set of language extension to achieve this. To coordinate these e�orts the High Performance Fortran Forum

(HPFF) has been created. HPFF is a coalition of industrial and academic groups working to develop an

industry-wide standard of extensions to Fortran which provide support for high performance programming

on a wide variety of machines, portable from workstations to massively parallel SIMD and MIMD super-

computers. Fortran-D, a version of Fortran enhanced with data decomposition directives, can provide such

a programming model. We believe that it can make parallel computing truly usable.

One of the elements of this program is to establish a reliable validation strategy. In order to evaluate the

e�ciency of automatic data partitioning schemes, a dedicated benchmarking suite is being developed at

NPAC and is described in this paper. Currently, the suite is oriented towards validation of the Fortran-D

compiler, which is also being developed at NPAC in collaboration with Rice University. We plan to augment

it with applications written in other proposed HPF dialects. 1

1This work was sponsored by DARPA under contract #DABT63-91-C-0028. The content of the information

does not necessarily reect the position or the policy of the Government and no o�cial endorsement should be

inferred. Additional support was also provided by CRPC under NSF Cooperative agreement Nos. CCR-9120008 and

CDA-8619893 with support from the Keck foundation

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 2

1 INTRODUCTION

It is widely recognized that parallel computing represents the only plausible way to continue to

increase the computational power available to scientists and engineers. Unfortunately, its advan-

tages are hindered by the di�culty of parallel programming and the lack of portability of resulting

programs. As a result, although parallel computers have been commercially available for some

time, their use has been mostly limited to academic and research institutions. It is our goal, at the

Northeast Parallel Architectures Center (NPAC) at Syracuse University, to introduce parallel com-

puting to industry. Since Fortran has been the language in which most industrial and governmental

software investments have been made, we have decided to focus on ways to make Fortran portable

to parallel computers with an acceptable e�ciency. Fortran-D, a version of Fortran enhanced with

data decomposition directives [13], can provide such a programming model. We believe that it can

make parallel computing truly usable.

Since its introduction over three decades ago, Fortran has been the language of choice for scien-

ti�c programming. Fortran77, the currently accepted Fortran standard worldwide, is essentially a

sequential language which hides the parallelism of a problem in sequential constructs like loops,

etc.. Consequently, scientists wishing to use parallel computers must rewrite their programs in

an extension of Fortran that explicitly reects the architecture of the underlying machine, such

as a message-passing dialect for MIMD distributed-memory machines, array syntax for SIMD ma-

chines, or an explicitly parallel dialect with synchronization for MIMD shared-memory machines.

This conversion is di�cult, error prone, and the resulting parallel codes are machine-speci�c.

To overcome these problems a new Fortran standard, or more precisely, a standard of Fortran

extensions, are necessary to establish a machine independent programming model that is easy to use

and yet, is acceptably e�cient on di�erent parallel architectures. Thus, research is now concentrated

on the provision of appropriate high-level language constructs to enable users to design programs in

much the same way as they are accustomed to on a sequential machine. Several proposals have been

put forth in recent months for a set of language extension to achieve this (like Fortran-D [6], Vienna

Fortran [2], Digital Equipment Corporation's High Performance Fortran proposal [19], the language

extensions to cf77 planned by Cray Research Inc. [40], suggested extension from Thinking Machines

Co. [43], and others); and research towards language de�nition is accompanied by research in

compiler technology. To coordinate these e�orts the High Performance Fortran Forum (HPFF) has

been created. HPFF is a coalition of industrial and academic groups working to develop a industry-

wide standard of extensions to Fortran which provide support for high performance programming

on a wide variety of machines, portable from workstations to massively parallel SIMD and MIMD

supercomputers.

One of the elements of this program is to establish a reliable validation strategy. In order to

evaluate the e�ciency of automatic data partitioning schemes, a dedicated benchmarking suite is

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 3

being developed at NPAC and is described in this paper. Currently, the suite is oriented towards

validation of the Fortran-D compiler, which is also being developed at NPAC in collaboration with

Rice University. We plan to augment it with applications written in other proposed HPF dialects.

This paper is organized as follows. The remaining part of the introduction describes the main fea-

tures of Fortran-D. Chapter 2 provides an overview of NPAC's benchmark suite. Chapter 3 briey

summarizes the architectures of target machines used to develop the parallel codes included in this

suite. The next chapters contain descriptions of the benchmark applications, their implementa-

tion strategies on di�erent architectures and their performance. Chapter 4 describes the Purdue

benchmarking set. Chapter 5 describes parallelization of a set of matrix factorization routines from

the LAPACK library. Chapter 6 describes the problem of electromagnetic scattering from a plane

conductor. Chapter 7 describes modeling of stock option pricing. Final remarks and conclusions

are summarized in the last chapter.

1.1 Outline of the Fortran-D Design

Fortran-D is a machine independent set of compiler directives to Fortran77 and/or Fortran90 and is

expected to be the core of the emerging HPF standard. The model of parallel computation adopted

for Fortran-D is based on the idea of \Annotated Complete Program" [42]. The programmer writes

standard serial code and parallelization is achieved by providing the compiler with indications as

to how data structures should be partitioned among processors. In addition, the programmer

may specify how the program can be parallelized, in particular, by indicating loops that can be

performed in parallel. If these compiler directives are ignored the program can be run without

change on a sequential machine. The compiler for parallel machines can use the directives not only

to decompose data structures but also to infer parallelism, based on the principle that only the

owner of a datum computes its value. In other words, the compiler attempts to �nd additional

parallelism beyond that explicitly indicated by the programmer.

The advantage of this approach is that serial programs annotated solely with data distribution

declarations are easier to write than explicitly parallel programs and promise reasonably low cost

of porting existing sequential applications to parallel supercomputers. The key question regarding

this model is how well a sophisticated compiler will be able to identify parallelism, and generate

e�cient communications, and how e�cient the resulting parallel program will be in comparison to

explicitly parallel programs for the same algorithms. Currently, this is an open research issue. The

NPAC benchmark suite is meant to provide \experimental data" to address these questions.

Perhaps the most important intellectual step in preparing a program for execution on a distributed-

memory parallel computer is to choose a decomposition for the fundamental data structures used

in the program. Once selected, this data domain decomposition scheme often determines the paral-

lelism in the resulting program. Unfortunately, there are no existing tools to help the programmer

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 4

perform this important step correctly. From this point of view an important issue is the Vchoice

between Fortran-77 and Fortran-90 as the base language for the High Performance Fortran. The

argument for Fortran-90 is that it may prove to be better suited for a data-parallel programming

style and thus simplifying the programmer's task of selecting the most e�cient decomposition.

Again, it is an open research issue. To address this question, there are two dialect of Fortran-

D under development, Fortran77-D (Rice University) and Fortran90-D (NPAC), and the NPAC's

benchmark suite is unique in the sense that it provides codes in both Fortran dialects.

The detailed description of the Fortran-D language and the compiler can be found elsewhere [13,

6, 7]. The exact syntax of the language is a subject of research at NPAC and Rice University as

well as a subject of discussion at the High Performance Fortran Forum.

2 OVERVIEW OF THE HPF/FORTRAN-D BENCHMARK-

ING SUITE

2.1 Validation Strategy

The primary purpose of the suite is to provide a fair test for the prototype Fortran-D compiler and

data partitioner. Our validation strategy involves providing source codes of each application in 6

Fortran dialects:

1. Fortran77

2. Fortran77+hand coded message passing (Fortran77+MP)

3. Sequentialized version of Fortran77+message passing (Fortran77jj)

4. Fortran77-D

5. Fortran90

6. Fortran90-D

Version 1, written in plain Fortran77, is the original application. Version 2 is an optimized, to

the best of our knowledge, hand-coded message passing version of the original application. We

do not claim that this algorithm is the optimal for a the target machine. The target machine is

the Intel's hypercube iPSC/860, and message-passing is implemented using the proprietary Intel

message passing library and/or portable communication libraries like Express [39] or PICL [15, 14].

Version 3 is based on the exact same algorithm as the massage passing program version 2 except

that all explicit message-passing and blocked loops are removed. Fortran77-D, version 4, is based

on version 3 extended by the Fortran-D compiler directives. Version 5 is the Fortran90 version

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 5

of the original application. Actually, we provide two versions, one written in TMC's CMFortran

(to be run on CM2 and/or CM5) and DEC/Maspar's mpfortran (to be run on DECmpp 12000).

Finally, version 6 is Fortran90 + Fortran-D directives. For the HPFF purposes we will augment

the suite by codes written in other HPF dialects, when available.

To validate the Fortran77-D and Fortran90-D compilers we will compare the running time of the

hand-coded Fortran77+MP (version 2 above) with the running time of the output obtained by

compiling the Fortran77-D (version 4) and Fortran90-D (version 6), respectively. Since we do

not yet expect Fortran-D compiler to perform high-level algorithm changes, we decided to use

sequentialized version of the message-passing codes to build the Fortran-77D programs.

An important feature of this suite is that we provide both SIMD and MIMD version of each

application. This allows for an independent evaluation of how well di�erent algorithms may be

implemented on di�erent types of computer's architectures.

2.2 Current Status

Currently, the NPAC's benchmarking suit consists of 45 items, divided into ten groups, as listed in

Table 1 and 2. It is expected that more applications will be added soon.

The �rst three groups, Vsuite, General Mathematical Applications and the Purdue Set, collect

applications designed for the initial test of the Fortran-D compiler. The applications are simple, but

diverse. They selectively address di�erent aspects of parallel computing and thus enable systematic,

clear testing of the compiler at the development phase. Of particular value in this context is

the Purdue Set, a benchmarking suite to test parallel language designs proposed by the Purdue

University Group [41]. Actually, most of the computational problems included in the set have been

extracted from larger computations and thus are somewhat arti�cial by themselves. Nevertheless,

the suite does comprise a rich sample of practical computations, as shown in Table 3 . The results

of the Fortran-D compiler tests based on the Purdue Set will be presented in a forthcoming paper.

The problems of the Vsuite, General Mathematical Applications, and Purdue Set are too small and

simple to demonstrate the power of massively parallel supercomputers. Therefore, we deliberately

avoid a direct comparison of their performance on di�erent architectures. However, they help to

understand the principles of data parallel programming. In fact, they are used as a teaching aid

for training purposes as well.

The other seven groups comprise a suite of complete, \real life" applications coming from indepen-

dent research on parallel algorithms in linear programming, matrix algebra, computational physics,

�nancial modeling, weather and climate modeling, electro-magnetic �elds simulation, and Numer-

ical Aerodynamic Simulation (NAS) benchmarking set [1]. Selected applications are described in

the chapters 4, 5, 6, and 7. These applications along with other applications currently under

development, will be used for the actual validation of the compiler.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 6

Applications F77 F77+MP CMF F77k F77D F90D

I. Vsuite

5 Simple Examples X X

II. General Math. Applications

1. Gaussian Elimination X X X X X X

2. � Integration X X X X X X

3. Laplace Solver X X X X X X

4. 2DFFT X X X X X X

III. Purdue set (J.R. Rice set)

1. Trapezoidal rule X X X X X X

2. reduction functions 1 X X X X X X

3. reduction functions 2 X X X X X X

4. reduction functions 3 X X X X X X

5. simple search X X X X X X

6. tridiagonal set of lin. equations X X X X X X

7. Lagrange interpolation X X X X X X

8. divided di�erences X X X X X X

9. �nite di�erences X X X X X X

10. Fourier's moments X X X X X X

11. array's construction X X X X X X

12. WHERE construct X X X X X X

13. Simpson's and Gauss' integration X X X X X X

14. Chebyshev interpolation X X X X X X

X= Available Now, A=Available by August,

S= Available by October, D= Available by December 1992

Table 1: Current status of elementary applications of the Fortran-D Benchmarking Suite

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 7

Applications F77 F77+MP CMF F77k F77D F90D

IV. Linear Programming

1. Modi�ed Simplex Method X X X X X X

V. LAPACK

1. Block LU Factorization-SDOT X X X X X X

2. Block LU Factorization-SAXPY X X X X X X

3. Block LU Factorization-GAXPY X X X X X X

4. Block QR Factorization X X X X X X

5. Block Cholesky Factorization X X X X X X

VI. Physics

1. Conventional Spin X X X A A A

2. Cluster Spin A A A A A A

VII. Financial

1. Option pricing X A X A A A

VIII. Weather and Climate

1. Climate Model (Keppenne) X X X A A A

2. Severe Storm Model (CAPS) X S X S S S

IX. Electromagnetic Field

1. EM Scattering from Slots(TE case) X A X A A A

2. EM Scattering from Slots(TM case) X D D D D D

3. EM Near-Field To Far-Field Trans. X S S S S S

X. NAS set

1. Embarrassingly Parallel X X X S S S

2. Multigrid X X X S S S

3. Conjugate Gradient X X X S S S

4. 3DFFT PDE X X X S S S

5. Integer Sorting X X X S S S

6. LU-solver X X X S S S

7. Pentadiagonal Solver X X X S S S

8. Block Tridiagonal Solver X X X S S S

X= Available Now, A=Available by August,

S= Available by October, D= Available by December 1992

Table 2: Current status of real life applications of the Fortran-D Benchmarking Suite

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 8

3 ARCHITECTURES

For the evaluation of the algorithms the Connection Machine CM2, the DECmpp-12000 and the

Intel iPSC/860 is used. A brief description of these machines follows.

3.1 The Connection Machine CM-2 Architecture

The Connection Machine 2 system 2 is a massively data parallel computer with 65536 processors

[45]. Each processor has 1 Megabit of local memory, so the machine has an overall memory capacity

of 8 Gigabytes. The processors (and their associated memories) are arranged 16 to a chip in

hardware. Each \node" consists of a pair of chips (32 processors) and is supported by a oating-

point accelerator.

The CM-2 operates in \single-instruction multiple-data"(SIMD) mode; that is, an identical instruc-

tion set is broadcast to each processor. Therefore, it is very e�cient for problems which require

simultaneous operation on all of the data present. The CM-2 is further characterized by a very

sophisticated communications network linking all of its processors. The above mentioned features

make the CM-2 well-suited for many problems in computational science and engineering.

The CM-2 system uses a conventional front-end computer. The front-end executes the control

structure of programs, issuing commands to the CM-2 processors whenever necessary.

3.2 The DECmpp 12000 Machine Architecture

The DECmpp 12000 computer system 3 includes a RISC-style Array Control Unit with a Harvard

architecture and a data-parallel processor (the data parallel unit or DPU) which includes 8192

Processor Elements (PEs) [5, 30]. Each PE is a load/store arithmetic processor with dedicated

register space and RAM. Each PE has a 1.8-MIPS control processor, forty 32-bit registers, and

16 KBytes of RAM. The peak performance is 650 MFLOPS DP, 117 Gbyte/sec overall memory

bandwidth, and 1.5 Gbtye/sec overall router bandwidth.

The computational core of the machine system is an array of PEs arranged in a rectangular two-

dimensional lattice which execute the same tasks in parallel (SIMD parallelism). This core is tightly

coupled to a Sun 4 front-end host and also to high-speed overlapping I/O subsystem.

DECmpp 12000 is in the MP-1 family of Data-Parallel computers. The unique characteristics of the

MP-1 architecture are the combination of scalable architecture in terms of the number of processing

elememts, system memory, and system communication bandwidth; \RISC-like" instruction set

design that leverages optimizing compiler technology; and adherence to industry standard oating

2Connection Machine is a registered trademark of Thinking Machines Corporation
3DECmpp 12000 is a registered trademark of Digital Equipment Corporation

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 9

point design, speci�cally VAX and IEEE oating point. The architecture provides not only a high

computational capability, but also a mesh and global interconnect style of communication.

3.3 The Intel iPSC/860 Architecture

The Intel iPSC/860 is an Intel i860 processor based hypercube attached to a 80386 host processor

(System Resource Manager). Each i860 node has an 8 KByte cache and 8 to 16 MBytes of main

memory. The clock speed is 40 MHz and each node has a theoretical peak performance of 80

MFLOPS for single precision and 40 MFLOPS for double precision. The i860 processor uses

pipelining and instruction caching allowing it to process more than one instruction per clock cycle.

Communication is supported by direct-connect modules present at each node [38] which allow the

nodes to be treated as though they are directly connected. The direct-connect modules control eight

bidirectional channels, each supporting a peak bandwidth of 2.8 Mbyte/sec. The communication

time for a message is a linear function of the size of the message. Hence, the time, tm to transmit a

message of length n bytes from an arbitrary source node to an arbitrary destination node is given

by:

tm = ts + tb � n

where ts is the �xed startup overhead and tb is the transmission time per byte.

4 PURDUE BENCHMARKING SET

General Features of the Purdue Set

The comprehensive discussion of the Purdue Benchmarking Set can be found elsewhere [12]. In

this paper we outline the most important features and conclusions.

The Purdue set is a collection of 17 computational problems proposed by the Purdue University

group [41]. Actually, most of the problems of the set have been extracted from larger computations

and thus are somewhat arti�cial by themselves. However, they do represent a sampling of practical

computations, even though not always the most e�cient algorithms have been selected. The great

value of the Purdue set is that the problems address many di�erent aspect of parallel computing.

In particular, they represent various schemes of data dependencies, from very simple with almost

no interprocessor communication required to more complex with large communication overhead to

irregular problems, di�cult to parallelize.

There are many advantages of including simple applications to the compiler benchmarking suite.

First of all, they are very useful for initial tests of a compiler performance. This includes comparison

of automatic parallelization performed by the compiler to hand written codes and \hand compiled"

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 10

Table 3: List of the problems of the Purdue Set

1. evaluate the trapezoidal rule estimate of an integral of f(x)

2. compute the value of e� =
nP
i=1

mQ
j=1

�
1 + 0:5

�ji�jj+0:001

�
3. compute the value of S =

nP
i=1

mQ
j=1

aij

4. compute the value of R =
nP
i=1

1

xi

5. given a table of the i-th student's score on the j-th test calculate the average score of each student,

increase all above average by 10%, give the lowest score that is above average and �nally �nd a genius

- a student who has all scores above average.

6. compute polynomial interpolant values of f(x) using Lagrange interpolation formulas:

p (x) =

nX
i=1

f (xi) li (x) ; li (x) =

Q
(x� xj)Q
(xi � xj)

(1)

7. compute the �rst M columns of the divided di�erence table f [xi; xi+1; :::; xi+k], where

f [xi; xi+1; :::; xi+k] =
f [xi+1; :::; xi+k]� f [xi; :::; xi+k�1]

xi+k � xi
(2)

8. given an array ui;j replace each value by the average of its value plus those of all its neighbors, i.e.

ui;j =

 P
neighbors

uij

!
= (Number of neighbors)

9. do a logarithmic transformation di = lg (1 + di) for a set of data di , i=1,N, and compute �rst four

Fourier moments Fj =
NP
i=1

di cos (�j= (N + 1))

10. given the m by m matrix A, the 1 by m vector R, the m by 1 vector C, and a number a, construct the

array

ABIG =

�
A C

R a

�
(3)

11. For given vectors a, b, c, and d of dimension N, com-

pute the new vector ai = ai sin b
i. ai < cos (ci) then ai = ai + ci otherwise ai = ai � di

and then compute e =
NP
i=1

a2
i

12. carry out a test of there methods to integrate a function

13. carry out a comparison of two types of interpolation points (equidistant and Chebyshev spaced) for

Hermite interpolation using piecewise cubic polynomials.

14. carry out a test of three methods to integrate a function

15. carry out a comparison of two types of interpolation points (equidistant and Chebyshev spaced) for

Hermite interpolation using piecewise cubic polynomials.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 11

programs. The latter is expected to be a very powerful tool to determinate the completeness of the

proposed compiler directives. In addition, since the original fortran77 codes are easy to understand,

they can be used for educational purposes as well.

It is a well known fact that parallel supercomputers are e�cient for su�ciently large problems only.

Therefore, the problems of the Purdue set has been modi�ed by increasing size of matrices, and

some parts of the code are computed several times in a loop in order to increase the number of

arithmetical operations. Few minor bugs in the fortran77 codes has been �xed as well. Finally, we

decided to drop 3 of 17 applications of the original set because very similar applications already

exist in our benchmarking suite. The problems used in the suite are listed in Table 1.

Parallelization of the Purdue Set

The performance of the parallelized versions on the Thinking Machines 16k-processors CM2 (SIMD

architecture), and Intel's iPSC/860 (MIMD), is demonstrated in Figures 1 and 2, respectively. For

the CM2, the speedup

s =
TDECstation 5000=120

TCM2

(4)

is shown as a function of the problem size, while for iPSC/860 the speedup de�ned as

s =
T1

Tn
(5)

is plotted as a function of number of processors, n, for �xed problem size. T is elapsed time of

execution excluding loading and I/O.

Deliberately, we avoid the direct comparison of di�erent architectures. The reason for that is

we recognize the Purdue set as not representative enough for that purpose. Instead, our goal is

to demonstrate that the Purdue set has been e�ciently implemented on both SIMD and MIMD

machines and therefore can be used for validation of the compiler.

The �rst 4 problems (see Table 3) are very regular and can be easily expressed in array syntax

of Fortran90. The resulting code can be compiled for a SIMD machine 'as is' or converted for

MIMD architecture by aligning Fortran90 arrays with, in this case, a cyclic decomposition to be

distributed over nodes.

Problem 5 is hardly a real life application, however it introduces an interesting structure of the do-

loops. Since the most e�cient implementations on SIMD and MIMD architectures require di�erent

loop arrangements, it is a valuable test for the compiler performance.

Problem 6 deals with interpolation. In principle two extreme cases can be considered here: in-

terpolation using high order Lagrange polynomials or interpolation of many points using the low

order polynomials. We parallelized the Fortran77 code assuming the latter case as we found it more

practical but leads to very asymmetric matrices, i.e. matrices with dimension in one direction much

larger than in the other. This requires a careful mapping of the problem on the processors grid to

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 12

minimize communication overhead. For a distributed memory machine a cyclic decomposition is

e�cient, however, the redundant computation of the Lagrange coe�cients is di�cult to avoid.

Problem 7 addresses interpolation in a di�erent way. The algorithm can be easily expressed in

Fortran90, even though the interprocessor communication is quite complex. Thus the e�ciency of

the SIMD code depends to large extend on the compiler (CMF, mpfortran) performance. Appro-

priate compiler directives help increasing the speedup. The most e�ective MIMD implementation

requires a block decomposition.

The next problem involves an intensive \next neighbor" communication. Again, it is easy to

convert to the array syntax for SIMD architectures. For distributed memory systems the natural

decomposition is a block one. This algorithm is a very good example to demonstrate how tedious

(and error prone!) may be coding a MIMD machine without �xing the number of processors, even

if the pattern of message passing is very simple and regular.

Problems 10 and 11 address the opposite aspects of parallel computing: interprocessor communica-

tion without arithmetic operations and asynchronous oating point operations, respectively, while

problem 9 is a mixture of both. Problem 10 can be very conveniently and clearly coded using array

sections, but a careful alignment is crucial to minimize communication overhead. The allocatable

and assumed-shape arrays of Fortran90 allow for easy changes of the size of arrays, however, to

take a full advantage of this, a dynamic alignment should be possible as well. This feature is not

supported either by CM-fortran of Thinking Machines or mp-fortran of Maspar/DEC. The MIMD

implementation of problem 10 require a block decomposition and the dynamic alignment of the

arrays to the decomposition would be desired in Fortran-D too. The polymorphism of Fortran90's

intrinsic functions makes possible to avoid tedious coding of do-loops in problem 11. The best load

balance for this problem is achieved by a cyclic decomposition.

Finally, problems 12 and 13 compare di�erent method of integration and interpolation. The real

value of the comparison lies in the di�erent ratio of communication to computation. For an e�cient

SIMD implementation of problem 12 one would need a possibility to de�ne elemental (or even

better, polymorphic) functions. Unfortunately, this feature is not supported yet by CM-fortran nor

mp-fortran, even so the user de�ned polymorphic functions are part of the ISO/ANSI standard

of Fortran90. In our implementation, we de�ned a subroutine taking an assumed-shape array of

the function arguments as an input and returning an assumed-shape array of function values. For

more advanced applications there may be necessary to dynamically redistribute and/or realign

parameters of functions and subroutines, especially when using libraries of compiled modules. We

acknowledge this feature as a part of the Fortran-D design. Problem 13 indicate to another language

construct which may be very useful for programmers: nested WHERE constructs. Apparently,

they are natural \parallel equivalents" of nested IF constructs and would simplify the conversion

of Fortran77 do-loops into array syntax. In spite of the fact that the nested WHERE may prove

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 13

to be very ine�cient for SIMD architectures, they may be very useful in Fortran90D.

0

20

40

60

80

100

120

140

160

180

16384 65536 262144

sp
ee

du
p

problem size

Connection Machine CM2

’01’
’02’
’03’
’04’
’05’
’06’
’07’
’08’
’09’
’10’
’11’
’12’
’13’

Figure 1: Speedups for the Purdue problems on CM2 over DECstation 5000/120

0

2

4

6

8

10

12

14

16

18

20

1 4 8 16

sp
ee

du
p

nodes

Intel’s hypercube iPSC/860

’01’
’02’
’03’
’04’
’05’
’06’
’07’
’08’
’09’
’10’
’11’
’12’
’13’

Figure 2: Speedups for the Purdue problems on Intel's hypercube iPSC/860

Remarks on the Purdue Set

Although the problems of the Purdue set do not allow to demonstrate the power of massively

parallel supercomputers, they help to understand the principles of (data) parallel programming. In

fact, they are used for training purposes as well as for initial tests of the Fortran-D compiler.

One of the most important conclusions from parallelization of the Purdue set is that all algorithms

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 14

included in the set can be easily expressed using the array syntax of the Fortran90 and such

conversion leads generally to more compact and yet more clear codes. Moreover, in this way

data parallelism is easier to understand and easier to implement. The directives of the Fortran-D

compiler seems to be su�cient for e�cient automatic conversion of the Fortran90 codes to source

codes for MIMD machines. It remains to be shown, however, that these conclusions hold for more

complex applications, in particular those not well suited for the SIMD architecture.

5 LAPACK SUBSET

The LAPACK subset consists of a collection of Matrix factorization routines commonly used in

engineering and scienti�c applications.

5.1 LU-Factorization

Let A~x = ~b denote a dense system of linear equations, where A is a n-by-n matrix and ~b, ~x

are vectors of dimension n. One method to �nd ~x is to factorize A into a unit lower triangular

matrix L and an upper triangular matrix U, solve L~y = ~b for ~y and then solve U~x = ~y to get ~x.

The computational complexity of the substitution steps is O(n2), while that of the factorization

steps is O(2
3
n3). Therefore, it is worthwhile to parallelize decomposition of A. On distributed

and shared memory MIMD machines with a hierarchical memory structure, blocked algorithms

increase the number of computations per memory access and are one of the most e�cient ways to

improve performance [35, 48]. The benchmark suite contains the jik-SDOT, jki-GAXPY, and kji-

SAXPY blocked algorithms for LU factorization which are suited to the column oriented Fortran.

These algorithms are based on the e�cient jik-noblock algorithm used to factorize a single matrix

block [35].

5.1.1 Parallel Blocked jki-GAXPY

The sequential jki-GAXPY algorithm computes a block column of both matrices L and U at the

jth step of the elimination. The following operations are required (compare with Figure 3):

0. Initialize: Start with �rst block. j 1

1. Pivot and Update U
(j)
2 : Apply previous interchanges to the block U

(j)
2 .

The jth superdiagonal block of U is computed:

U
(j)
2

�
L(j)
�
�1
U
(j)
2

2. Update C(j)
: The jth diagonal and subdiagonal blocks of C are computed:

C(j)
 C(j)

� A(j)U
(j)
2

3. Factorize C(j)
: The jth block column is factorized into LU factors using a noblock algo-

rithm (jik-noblock).

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 15

4. Iterate: IF no more blocks THEN stop ELSE GOTO Step 1.

Because the sequential algorithm updates only one block at a time, a corresponding parallel version

of this algorithm should be restricted to this block. Nevertheless, to be e�cient the parallel algo-

rithm works in a pipelined fashioned way on di�erent processors. Therefore, the data is distributed

in a block cyclic manner over the processors as shown in Figure 4. In this and the following �gures

data dependencies are expressed by the height of the matrix element in the �gure. If a datum

is higher than another one, then this datum has to be calculated �rst. Information is exchanged

between the processors after the factorization step is completed. Looking at the data dependencies

of the sequential algorithm it is clear that in order to update the matrix each processor has to

know the lower triangular matrix L computed so far and A(j) even if they are generated in another

processor. Hence, each processor has to store a complete copy of the factorized matrix.

One di�erence between the sequential and the parallel algorithm is that in the parallel algorithm

the computation of C is distributed over time. In case of n processors, n � 1 intermediate results

are needed to complete the computation of C in each processor. Only one processor does the

factorization at a time. This processor also updates more parts of the submatrix U than the other

processors, which only updates one part. In later steps more time is spent on updating than on

factorization which makes the algorithm e�cient.

The disadvantage of this algorithm is clearly the need for storing the matrix in each processor.

This data redundancy limits the use of this algorithm to small matrices. The advantage of the

algorithm is that it is fast due to the data redundancy and the pipelined execution. To allow even

bigger matrices to be calculated on a parallel machine with restricted memory capacity, the SDOT

and SAXPY based algorithms are useful.

5.1.2 Parallel Blocked jik-SDOT

In the blocked jik-SDOT [9] algorithm, one block column of L and one block row ofU are computed

in each iteration. The basic steps involved in the jth iteration are shown in Figure 5 along with the

data dependencies involved in each step. In the jth iteration, the jth block depends on all of the

j � 1 previously factorized blocks.

0. Initialize Start with the �rst block j 1

1. Update C(j) The diagonal and subdiagonal blocks of the jth block column are computed using

SGEMM:

C(j)
 C(j)

� A(j)B(j)

2. Factorize C(j)
and Pivot The jth block column, C(j) is factorized into LU factors using the

jik-noblock algorithm.

The row interchanges are applied to blocks on both sides of the current block.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 16

3. Update U
(j)
2 a) The jth block row of U is updated (SGEMM):

U
(j)
2 U

(j)
2 �A(j)E(j)

b) The jth block row of U is computed (STRSM):

U
(j)
2

�
L(j)

�
�1
U
(j)
2

4. Iterate: IF no more blocks remaining THEN stop ELSE goto Step 1.

With the matrix laid out onto the processor (as shown in Figure 6) in a manner similar to that

presented in the parallel GAXPY algorithm, this dependency requires that the factorized matrix is

stored in each processor. As a consequence, the size of the matrix which can be factorized by this

algorithm is limited by the available memory at each node. This limitation can be overcome to a

certain extent by observing that in each iteration, the block to be factorized depends only on the

portion of the factorized submatrix which includes and which is located below the current block

row. In the implementation the factorized submatrix is stored in a work array. At the beginning

of each iteration, the work array is reshaped so as to retain only that portion of the factorized

submatrix required for subsequent computations, thereby overcoming the memory limitation.

The structure of the algorithm requires that the blocks of the matrix are factorized in a sequential

order. A pipelined approach is used to avoid this inherent bottleneck [10]. In this approach, the

iterations of the algorithm are pipelined so as to overlap the factorization of the jth block column

(steps 1 and 2) with the update of the block row associated with the j� 1th block column (step 3).

Figure 6 shows the layout of the matrix onto the processor along with the operations in the third

iteration. The activities of each of the processors in the pipelined algorithm are shown in Figure 9

for a four processor system.

Although, using the pipelined implementation did provide some performance improvement for large

matrices when compared with the non pipelined version, this improvement was very limited. The

reason being that the amount of work involved in updating and computing the block row, i.e. step

3 is small compared to work required to update and factorize the subdiagonal block which is only

done on one processor at a time. This unbalance of work along with the overhead involved in

reshaping the work matrix in each iteration prevents the pipeline from remaining full and limits

the improvement in performance that can be obtained.

5.1.3 Parallel Blocked kji-SAXPY

In the jth step, one block column of L and one block row of U are computed and the corresponding

transformations are applied to the remaining sub-matrix. The basic steps and data dependencies

involved in the jth iteration are shown in Figure 7. In the jth iteration, the jth block depends on

j � 1th factorized block:

0. Initialize Start with the �rst block

j 1

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 17

1. Factorize C(j) The jth block column is factorized into LU factors, L(j) & U
(j)
1 , using the jik-

noblock algorithm (SGETF2).

The row interchanges (pivoting) are applied to blocks on both sides of the current

block.

2. Update U
(j)
2 The jth block row of U is computed using STRSM:

U
(j)
2

�
L(j)

�
�1
U
(j)
2

3. Update C(j) Updating the remaining matrix using a block outer product (SGEMM):

C(j)
 C(j)

� L(j)U
(j)
2

4. Iterate: IF no more blocks remaining THEN stop ELSE goto Step 1.

Figure 8 shows the layout of the matrix onto the processing nodes. Like in the SDOT algorithm a

pipelined approach is used.

Figure 8 shows the operation of the parallel blocked algorithm in the second iteration. Here

processor 1 has factorized its panel and has shipped the factorized panel to the other processors.

Now in step 2, each processor uses the value of L(j) it received from the current processor to update

its portion of U
(j)
2 . In step 3, the values of L(j) and U

(j)
2 are used to update C(j), that is the sub-

diagonal sub-matrix. The activities of each of the processors during the iterations of the pipelined

algorithm for a four processor system are shown in the form of a spacetime diagram in Figure 10.

A more detailed description of the algorithms can be found in [48].

Results

DM-MIMD Architecture The two upper diagrams in Figure 11 show the results of the three

algorithms on the iPSC/860 of dimension 4. The GAXPY algorithms delivers the best performance

for small matrices. Close to performance of the GAXPY algorithm is the perfomance of the SAXPY

algorithm The SDOT algorithm produces very little improvement over the noblock algorithm due to

the overhead of reshaping and the data dependencies. Optimal block sizes for the parallel GAXPY

and SAXPY were found to be in the 8�4 range with decreasing performance for very small block

sizes due to increased communication, and for very large block sizes due to poor load balancing.

However, in the case of the parallel SDOT there exists a slight increase in the performance with

increasing block sizes due to the decrease in the number of reshapes required. The two bottom

diagrams of Figure 11 show the scalability of the SAXPY and SDOT algorithms with matrix sizes.

SIMD Architecture Experimentation with the three algorithms on the CM2 and DECmpp

12000 has shown that the blocked algorithms are not suited to SIMD architectures. On the DECmpp

12000, the three algorithms performed poorly compared to the noblock algorithm with unit block

size (Figures 12 and 13). The main reason for this is the mapping of the blocks onto the processor

grid. The static mapping provided by the DECmpp leads to a an ine�cient utilization of the

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 18

machine. Similar results were also observed on the CM2. Blocking on the CM2 leads to poor VP

(Virtual Processing) ratios which in turn leads to poor performance. Thus, the blocked algorithms

perform poorly on a SIMD machine since they do not make use of the available processors. The

main reason why pivoting and updating in MIMD machines is split into blocks is that there are

limited processors available. On a SIMD machine like the connection machine or the DECmpp

the pivoting and updating can be done in parallel on the whole matrix instead of a single matrix

block. Another motivation for blocked algorithms on MIMD machines is the hierarchical memory

structure. This does not apply to SIMD machines. The matrix is stored directly into the main

memory of the processors. The hardware is responsible for a high bandwidth between external

memory and the memory of the processors. Therefore, it is not necessary to use blocked algorithm

to achieve good performance on a SIMD machine.

Conclusion

This application describes the Fortran-oriented methods for block LU factorization. These methods

are also applicable on shared memory parallel vector computers [35]. The numerical results and

performance comparisons show the following:

GAXPY � The parallel GAXPY algorithm is very fast for small matrices.

� Because of the need to store the matrix in each node, the memory capacity of the

node limits the maximal problem size for this algorithm.

SDOT � With the help of reshaping, the paneled version of the parallel SDOT algorithm

is able to factorize large matrices.

� Since the reshaping is time insensitive, this algorithm has the worst performance

of the three studied.

SAXPY � The data dependencies inherent in the parallel SAXPY algorithm are most suited

for distributed memory MIMD architectures.

� No reshaping of the matrix is necessary since only a small portion of the factorized

matrix has to be stored in each processor.

� Parallel SAXPY provides an e�cient algorithm which scales e�ectively with the

matrix size and can be used with a wide of number of processor.

Furthermore, the best performance is achieved at block sizes where the computation at each node

outweighs the tradeo� between high load balancing (small block sizes) and low communication

overhead (large block sizes). This optimal block size is dependent on the algorithm used, the size

of the matrix and the number of processors available.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 19

The three algorithms performed very poorly on SIMD architectures due the mapping of the blocks

onto the machine. On the CM2, blocking minimizes the VP (virtual processing) ratio, leading

to degraded performance. On the DECmpp 12000, the layout of the blocks is static and the

software does not support dynamic mapping. This leads to an ine�cient utilization of the available

processors.

We make the following recommendations:

� The parallel GAXPY algorithm should be used in case of small matrices and few available

processors.

� The parallel SAXPY algorithm should be used for larger matrices or if the matrix size varies

over a wide range and the number of processors is variable.

� The block size should be chosen depending on the algorithm used, the size of the matrix, and

the number of processors used, so as to maximize performance.

� The algorithms are not suited for SIMD machines since blocked algorithms for matrices

smaller than the available number of processors lead to a non e�cient utilization of the

available processors.

The Language Aspect As expected writing the algorithms in Fortran90-D and Fortran77-D

was a mayor help for developing the code. Not only that the programs became much shorter but

also more readable. The expectations concerning the time spend for developing or rewriting the

Fortran90 and 77-D code has been drastically smaller than for the Fortran77+MP code.

It might be useful to specify a pipeline language construct to support the speci�c needs for the

MIMD machines in matrix algebra computations. Also there is a need for providing BLAS routines

in Fortran90 and Fortran90-D. There are two ways to do so: a) with a library, b) with an automatic

translation tool [47]. Reshaping of arrays should be avoided since they are very cost-intensive.

Since the blocked algorithms are not suitable for MIMD machines it gives a hint that there exists

algorithms which are very di�cult to parallelize on di�erent target machines with the same success

in the performance.

5.2 QR Factorization

QR method is one of LAPACK factorization algorithms. QR method is more stable than LU

factorization and more general than the Cholesky decomposition, introduced later. QR is best

suited for ill conditioned matrices if they are not truly singular. The sequential QR method uses a

columnwise annihilation process to achieve a triangularization of the input matrix A. A series of

Householder reductions applied to the matrix A, leads to a matrix of the form A = QR. In this

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 20

matrix Q is an upper and R is a lower triangular matrix. The complexity of the QR factorization

is O(4
3
n3)[18]. Thus the algorithm is approximately two times slower than LU factorization.

This algorithm uses only matrix-vector multiplications and outer product updates. These are

BLAS level 2 operations. Figure 14 shows the noblock QR Factorization algorithm used as basis

for the blocked algorithm. The blocked QR algorithm (Figure 15), is obtained by reformulating

the algorithm with the help of matrix blocks and matrix-matrix operations (level 3 BLAS).

Like in the LU factorization algorithm the blocked algorithm, as shown in Figure 16, makes e�-

ciently use of the hierarchical memory and limited number of processors. Thus the ratio between

computation and communication is increased. The communication scheme between the processors

in a DM-MIMD architecture is a ring structure and the data is distributed in block cyclic way over

the processors as in the parallel LU algorithms.

First, the non-block QR algorithm factories in its �rst processor the �rst block to obtain a house-

holder submatrix. The resulting Householder submatrix is submitted to the neighbor processors

and the next processor will update and factorize its matrix block. In the meanwhile all other proces-

sors update their matrix blocks. This process is repeated till the �nal QR factorization is obtained

in one of the processors. If in each iteration the communication time is close to the computation

time for updating and factorizing, then we get the best performance because the idle times in the

pipeline are reduced.

Results of the QR method

Like with the LU factorization algorithms the e�ort spend in writing the Fortran90 code was very

short. The time for writing the Fortran77+MP was considerably longer.

Figure 18 displays for a Hypercube with 32 processors the performance obtained with di�erent

block sizes. Figure 17 shows the optimal performance (based on optimal block size) for di�erent

matrix size and number of processors. For larger matrices the optimal block size is 12. Figure 19

and 20 show similar results obtained for the DECmpp. The optimal block size for this machine is

64 for larger and 1 for smaller matrices.

The Figure 21 shows the poor performance obtained for the CM2 using the parallel blocked algo-

rithms. The reasons for that are the same as for the parallel LU factorization algorithms. Figure 22

compares the performance among iPSC/860, DECmpp-12000 and the CMSSL library function call

(written in assembly language) for the QR method on the CM2.

The higher performance on the iPSC/860 in comparison to the DECmpp-12000 and CM2 shows

that the distributed MIMD computer systems can be very e�cient in solving matrix algebra prob-

lems. Thus it is desirable to parallelize block based algorithms on distributed memory MIMD

architectures.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 21

5.3 Cholesky Factorization

An important special case of linear systems Ax = b occurs when A is both symmetric and positive

de�nite. One e�cient method to solve this special systems is to apply Cholesky factorization to yield

A = LLT , where L is a lower triangular matrix with positive diagonal elements. Since a symmetric

positive de�nite matrix has a "weighty"diagonal, pivoting is not necessary for the numerical stability

of the factorization process. Because of the symmetry of A only half of arithmetic operations of the

LU factorization are necessary. Readers may consult [17, 18] for more information about symmetric

positive de�nite matrices and the Cholesky factorization.

Algorithms and Implementations

In literature, the forms of Cholesky decomposition are often categorized into three classes as shown

in Figure 23: Row-, Column- and Submatrix-Cholesky factorization[18, 16]. Since Fortran is

column-oriented only the two latter forms are considered here:

Column-Cholesky (GAXPY-Cholesky) Each column of the Cholesky factor L is computed

one by one using the previously factorized columns. The matrix-vector multiplication is the basic

operation in this version, hence it is also called GAXPY-Cholesky.

Submatrix-Cholesky (SAXPY-Cholesky) Outer product (rank-1) updating are repeated on

the remaining submatrix with the \currently" factorized column. The size of the submatrix is

decreasing from iteration to iteration. The idea is similar to the parallel SAXPY-LU factorization,

so we call it SAXPY-Cholesky.

The e�ort spent in rewriting the code in Fortran90 is modest as for the LU and Cholesky factoriza-

tion algorithms. The Fortran77 BLAS routines have to be substituted by the appropriate Fortran90

vector operations and/or standard functions. Table 4 shows the translation of BLAS routines to

correspond Fortran90 routines.

For DM-MIMD machines, the implementation is not straightforward and pipelining is introduced

to get a better performance. Like the SAXPY-LU factorization, the SAXPY-Cholesky method has

fewer data dependencies, resulting in shorter messages and better utilization. The Reader may

consult [10] and [16] for details.

Results and Conclusion for the Cholesky Factorization

For the CM-2 and DECmmp-12000 the noblock SAXPY-Cholesky is superior to or approximately

equal to the noblock GAXPY-Cholesky at problem sizes smaller than 256 using di�erent numbers

of processors. Hence, the noblock SAXPY is used as basis of the blocked Cholesky algorithms.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 22

(j)A

(j)
C

Step 2

Step 1
(j)

L

L
(j)

(j)
C

L
(j) Step 3

(j)
U
2

(j)
U

(j)
U
2

1

Figure 3: jki-GAXPY

Step 1

Step 2

PP P
0 1 2 PP P

0 1 2
PP P

0 1 2

L

PP P
0 1 2 PP P

0 1 2
PP P

0 1 2

(j)

U (j)

A(j)

C (j)

U (j)

Send Message

Data Dependency

Send Message
Data Dependency

Figure 4: Parallel LU GAXPY a) update Uk ,

b) update Ck

Table 4: Translation of Fortran77 BLAS routines to Fortran90 BLAS routines

Algorithms BLAS Fortran90 facilities

Vector Operations Intrinsic Functions

Noblock SAXPY SSCAL X =

SSYRK X spread

Noblock GAXPY SDOT dot-product

SGEMV X matmul

SSCAL X =

Blocked SAXPY STRSM X spread

SSYRK X matmul, transpose

Blocked GAXPY SSYRK X matmul, transpose

SGEMM X matmul, transpose

STRSM X spread

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 23

(j)A

Step 1

(j)
C

(j)
B

Step 2

(j)
C

L
(j)

(j)
A

(j)
EU

(j) Step 3(a)

2
1

1

U
(j)

L
(j)

Step 3(b)
2

U
(j)

Figure 5: jik-SDOT

PP P
0 1 2 PP P

0 1 2
PP P

0 1 2

L(k)

U (k)

PP P
0 1 2 PP P

0 1 2
PP P

0 1 2

L(k) U (k)
Step 3a

Step 3b

Step 1

PP P
0 1 2 PP P

0 1 2
PP P

0 1 2

A(k)

C (k)

U (k)

Send Message

Data Dependency

Send Message
Data Dependency

Figure 6: Parallel LU SDOT

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 24

Step 2
L
(j)

U
(j)

L
(j)

(j)
C

Step 3

Step 1

(j)
C

L
(j) U

(j)

1

U
(j)

2

2

Pivoting

U
(j)

2A
(j)

1

Figure 7: kji-SAXPY

Step 2

PP P
0 1 2 PP P

0 1 2
PP P

0 1 2

C

U

PP P
0 1 2 PP P

0 1 2
PP P

0 1 2

Step 3

U
2

(j)
L

(j)

(j)

2

L
(j)

(j)

. . .

Send Message

Data Dependency

Send Message
Data Dependency

Figure 8: Parallel LU SAXPY

The SAXPY-Cholesky has a better performance than the GAXPY-Cholesky on the CM-2. In

contrast, the GAXPY-Cholesky is superior to SAXPY-Cholesky on DECmmp-12000 (Figures 25

and 26). The best block size is 32 for 1k, 64 for 4k, and 128 for 8k processors on DECmmp-12000

and 128 for both 8k and 16k processor on CM-2. Note that the best block sizes are very sensitive

to the physical hardware architectures.

On the iPSC/860 24 is the suitable block size for larger matrix sizes (Figure 29). At this block size

the tradeo� between communication overhead and load balance is minimal. Further observation

from the experimentation with Cholesky factorization shows:

� Blocked based algorithms are better than their noblock counterparts on both SIMD and

DM-MIMD architectures.

� DM-MIMD architectures could give more promising performance than the SIMD architec-

tures.

� Automatic translation of BLAS routines from Fortran77 to Fortran90 and Fortran90-D is

expected.

The matrix algorithms are inherently sequential with high data dependency. A pipelined approach

is an e�cient way to parallelize these algorithms. It addresses the need for a pipeline directive for

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Figure 10: Spacetime diagram for the pipelined kji-SAXPY algorithm (LU)

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 26

0

20

40

60

80

100

0 8 16 24 32 40

Block Size

M
F

LO
P

S

Matrix Size=512, Processors=16

GAXPY
SAXPY panel
SDOT panel
SDOT noblock

0

50

100

150

200

250

300

350

400

0 8 16

Block Size

M
F

LO
P

S

Matrix Size=1792, Processors=16

SAXPY panel
SDOT panel

0

50

100

150

200

250

300

350

0 512 1024 1536 2048

n

M
F

LO
P

S

Processors=16
SAXPY panel
SDOT panel

0

5

10

15

20

25

30

0 512 1024 1536 2048

n

M
F

LO
P

S
/P

ro
ce

ss
or

Processors=16

Figure 11: Performance of the di�erent LU algorithms on the iPSC/860.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 27

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250

M
FL

O
P’

s

Block Size

LU Factorization on the DECmpp 12000 (8k processors)

SAXPY (lda = 1000)
SDOT (lda = 1000)

GAXPY (lda = 1000)

Figure 12: Performance of the di�erent LU

algorithms on the DECmpp 12000.

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8

M
ax

im
um

 M
FL

O
P’

s

Machine Size

LU Factorization on the DECmpp 12000

SAXPY (lda = 1000)
SDOT (lda = 1000)

Noblock (lda = 1000)
GAXPY (lda = 1000)

Figure 13: Performance of the di�erent LU

algorithms on the DECmpp 12000.

a
jj

Vj
C

1 j n

Matrix A

j

D

d
j

Loop j = 1 , n

b = -sign(ajj

ajj

ajj

ajj

) |Vj

Vj

|

dj

= (b-)/b

Vj

Vj= /(-b)

= b

C C

dj

Vj C= - * * *T

Figure 14: Non-block QR Factorization Diagram

e�cient performance on DM-MIMD platforms. All algorithms perform poorly on SIMD platforms,

even with no blocking and the use of vendors supplied matrix multiplycation. This addresses the

need for more e�cient Fortran90 compilers (even assembly coded, vendor supplied routines are very

poor) and more constructs to be added.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 28

C

1 n

Matrix A

V

V
R

1

2

1C

2

iVV1:i-1

j j: +nb-1

T W

Ti

iit

j

D

di

T1:i-1

Loop j = 1 , n ,nb

Loop i = 1 , nb

Ti = - di

iit = di

V1:i-1 VT
* *

Ti = T1:i-1 Ti*

W = W * T
C2 C2 V2 WT= - *

WTC1 C1 V1= - *

*W = C2 V2C1 V1
*+

Use non_blk_qr to factorize
the blocks (col j:j+nb-1)

Figure 15: Block QR Factorization Diagram

1
P

2
P

3
P

4
P

5
P

6
P

1
P

2
P

3
P

4
P

5
P

6
P

1
P

2
P

3
P

4
P

5
P

6
P

1
P

2
P

3
P

4
P

5
P

6
P

Step 1

Step 2
Step 4

Step 3

Figure 16: The �rst four steps of the Parallel Blocked QR Factorization

0

100

200

300

400

500

600

700

800

64 256 512 1024 1536 2048 2560 3072 3584 4096

M
F
l
o
p
s

n (Matrix size = n x n)

iPSC QR with 32 nodes

blocksize 12
blocksize 64
blocksize 10
blocksize 32
blocksize 4
blocksize 16
blocksize 1

Figure 17: Optimal MFLOPS of QR for dif-

ferent matrix sizes on iPSC/860

0

100

200

300

400

500

600

700

800

64 256 512 1024 1536 2048 2560 3072 3584 4096

M
F
l
o
p
s

n (Matrix size = n x n)

iPSC QR Parallel Version with Optimal Block Size and Seqential Version

32 processors
16 processors
8 processors
4 processors
sequential QR

Figure 18: Performance of QR for di�erent

block and matrix sizes on a 32 node iPSC/860

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 29

0

10

20

30

40

50

60

70

80

90

100

32 128 256 512 1024 1536 2048

M
F
l
o
p
s

n (Matrix size = n x n)

DECmpp QR with 1k,2k,4k,and 8kPEs

8k PEs
4k PEs
2k PEs
1k PEs

Figure 19: Performances of QR on DECmpp-

12000 for the optimal block size

0

10

20

30

40

50

60

70

80

90

100

32 128 256 512 1024 1536 2048

M
F
l
o
p
s

n (Matrix size = n x n)

DECmpp QR 8K PEs in Different Block Size

 blocksize 64
blocksize 128
blocksize 256
blocksize 32

blocksize 1024
blocksize 512

blocksize 1
blocksize 8

Figure 20: Performances of QR on DECmpp-

12000 for 8K processors and di�erent block

sizes

0

1

2

3

4

5

6

3264 128 256 512 1024

M
F
l
o
p
s

n (Matrix size = n x n)

CM QR 16k and 8k PEs

16k PEs
8k PEs

Figure 21: Performances of QR on the CM2

0

100

200

300

400

500

600

700

800

64 256 512 1024 1536 2048 2560 3072 3584 4096

M
F
l
o
p
s
:

n (Matrix size = n x n)

Comparison of 16KPEx8KMem CM2, 8KPEx16KMem DECmpp and 32 nodes IPSC-860

iPSC 32 Nodes
CM2-CMSSL

DECmpp 8k PEs

Figure 22: Comparison of QR among

iPSC/860, DECmpp and CM2

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 30

Row-Chsolesky Column-Cholesky Submatrix-Cholesky

never used never used never used

not yet accessed

not yet accessedbeing modified being modified

used for modification
used for modification

used for modification

Figure 23: Three forms of Cholesky decomposition

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300

M
F
L
O
P
S

Block Size

Host: DECmmp-12000, PEs: 1k (32X32)

GAXPY(lda=1024)
GAXPY(lda=512)
SAXPY(lda=512)
GAXPY(lda=256)
SAXPY(lda=256)

Figure 24: Performance of SIMD Cholesky factorization on DECmmp-12000

10

20

30

40

50

60

70

0 50 100 150 200 250 300

M
F
L
O
P
S

Block Size

Host: DECmmp-12000, PEs: 4k (64X64)

GAXPY(lda=2048)
GAXPY(lda=1500)
SAXPY(lda=1500)
GAXPY(lda=1024)
SAXPY(lda=1024)
GAXPY(lda=512)
SAXPY(lda=512)

Figure 25: Performance of SIMD Cholesky

factorization on DECmmp-12000

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300

M
F
L
O
P
S

Block Size

Host: DECmmp-12000, PEs: 8k (128X64)

GAXPY(lda=3000)
GAXPY(lda=2500)
SAXPY(lda=2500)
GAXPY(lda=2048)
SAXPY(lda=2048)
GAXPY(lda=1500)
SAXPY(lda=1500)
GAXPY(lda=1024)
SAXPY(lda=1024)

Figure 26: Performance of SIMD Cholesky

factorization on DECmmp-12000

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 31

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 50 100 150 200 250 300

M
F
L
O
P
S

Block Size

Host: CM-2, PES: 8k

GAXPY(lda=512)
SAXPY(lda=512)
GAXPY(lda=256)
SAXPY(lda=256)

Figure 27: Performance of SIMD Cholesky

factorization on CM-2

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300

M
F
L
O
P
S

Block Size

Host: CM-2, PES: 16k

GAXPY(lda=1024)
SAXPY(lda=1024)
GAXPY(lda=512)
SAXPY(lda=512)
GAXPY(lda=256)
SAXPY(lda=256)

Figure 28: Performance of SIMD Cholesky

factorization on CM-2

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 32

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35

M
F
L
O
P
S

Block Size

Processors=32

"ps=4096"
"ps=3584"
"ps=3072"
"ps=2560"
"ps=2048"
"ps=1536"
"ps=1024"
"ps=512"
"ps=256"

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35

M
F
L
O
P
S

Block Size

Processors=16

"ps=3072"
"ps=2560"
"ps=2048"
"ps=1536"
"ps=1024"
"ps=512"
"ps=256"

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35

M
F
L
O
P
S

Block Size

Processors=8

"ps=2048"
"ps=1536"
"ps=1024"
"ps=512"
"ps=256"

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

M
F
L
O
P
S

Block Size

Processors=4

"ps=1536"
"ps=1024"
"ps=512"
"ps=256"

Figure 29: Performance of MIMD Cholesky factorization on iPSC/860, where ps denotes the prob-

lem size

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 33

6 ELECTROMAGNETIC SCATTERING FROM CONDUCT-

ING BODY

This application studies the problem of electromagnetic scattering from a plane conductor contain-

ing multiple apertures. The apertures are terminated or interconnected by a microwave network,

internal to the plane, through two waveguides. Electromagnetic �eld (EM) imitation is a widely

encountered problem in many practical engineering applications. Airplane Signature, Lightning

protection for aircrafts, EMP (Electromagnetic Pulse) coupling, EMC (Electromagnetic Compati-

bility), ESD (Electrostatic Discharge), integrated circuit design, electromagnetic biology, and many

other applications are of considerable interest [4, 26, 37]. To get a numerical solution with accept-

able error on traditional computers is usually a very time consuming task. A typical EM application

code runs on a workstation for days. This is mostly because of inherent bottlenecks, typically in

memory access. Massively parallel machines o�er a very attractive approach for such implementa-

tions.

In the study, a matrix method of solution is outlined using the method of moments that was �rst

developed to simulate EM �elds by R.F. Harrington [21]. A general procedure for formulating

problems involving electromagnetic coupling through apertures in conducting bodies is surveyed in

[21, 22, 23, 32]. The loaded aperture cases can be formulated in a similar way.

Figure 30 shows the structure, in which a plane wave is incident on a conducting plane containing

two slots terminated by a microwave network. In region A, a plane wave is incident on a conducting

plane containing two slots. The width of the two slots are a and b respectively. The distance between

apertures is 2d. In region B, two parallel plate waveguides are connected by a microwave network

[Y]. The lengths of waveguides are l1 and l2, respectively.

EM-wave aperture I

aperture II

’A’ region ’B’ region

waveguide I

waveguide II

X

conduvtor

[Y]

microwave
network

Y

(TE)

a

b

d2Z

Figure 30: EM �eld scattering from two slots

By using the equivalence principle, the boundary condition, and the image method [20, 25, 44], we

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 34

have [27]

�
X
j

Hai

t
(M j)�

X
j

Hbi

t
(Mj) = Hsc

ti
(6)

over Ai (i = 1; 2)

For region A, we can use the image method and so, we have

Hz(�) =
�

4j

X
i

Z
Ai

2M i(�
0)H(2)

0 (K j �� �0 j) dx (7)

where, � = u
x
x+ u

y
y is the �eld point, �0 = u

x
x0 is the source point, and Ai is the area of the i

th

aperture.

By using the method of moments [21, 22, 31], the formulations can be interpreted into a generalized

network formulation. We choose N expansion functions in each aperture and assume that the linear

combination

M j

z =

NjX
n=1

V j

nM
j

n (j = 1; 2) (8)

Using Galerkin's method with pulse basis functions, we have,

f
h
Y a

i
+
h
Y b

i
g~V = ~I (9)

and
h
Y a

i
can be written as

h
Y a

i
=

24
h
Y a

11

i
I�I

h
Y a

12

i
I�Jh

Y a

21

i
J�I

h
Y a

22

i
J�J

35 (10)

where, I , J are the number of mode functions we use for the mode function expansion on apertures

1 and 2 respectively.

The elements of
h
Y a

11

i
I�I

are

Y a11
mn =

K1X
ki=1

K1X
kj=1

A1
ki;m

A1
kj ;n

Z
d+ki�1

d+(ki�1)�1

dx

Z
d+kj�1

d+(kj�1)�1

K

2�
H

(2)
0 (Kjx� x0j) dx0 (11)

where m and n are numbers of pulse functions on apertures 1 and 2 respectively.

The elements of
h
Y a

12

i
I�J

are

Y a12
mn

=

K1X
ki=1

K2X
kj=1

A1
ki;m

A2
kj ;n

Z
d+ki�1

d+(ki�1)�1

dx

Z �d�b+kj�2

�d�b+(kj�1)�2

K

2�
H

(2)
0 (Kjx� x0j) dx0 (12)

The elements of
h
Y a

21

i
J�I

are

Y a21
mn =

K2X
ki=1

K1X
kj=1

A2
ki;m

A1
kj ;n

Z �d�b+ki�2

�d�b+(ki�1)�2

dx

Z
d+kj�1

d+(kj�1)�1

K

2�
H

(2)
0 (Kjx� x0j) dx0 (13)

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 35

The elements of
h
Y a

22

i
J�J

are

Y a22
mn

=

K2X
ki=1

K2X
kj=1

A2
ki;m

A2
kj;n

Z �d�b+ki�2

�d�b+(ki�1)�2

dx

Z �d�b+kj�2

�d�b+(kj�1)�2

K

2�
H

(2)
0 (Kjx� x0j) dx0 (14)

h
Y b

i
is the region B admittance, which can be proved to be equal to the equivalent microwave

admittance [27]. In
h
Y b

i
, all elements are zero except for Y b

1;I+1,Y
b

I+1;1, and the elements on the

diagonal. The elements on the diagonal are

Yii =
1

Zci
Yij = 0 (i 6= j) (i; j � 2) (15)

where Zci is the characteristic impedance of the waveguide.

The four special elements are Y b

1;1 = A1; Y
b

I+1;1 =
B1

�2
; Y b

I+1;1 = A2; and Y
b

22 =
B2

�2
:

�1 = �2 =

������ coshK1l1 + Zc1Y
L

11 sinhK1l1 Y L

12Zc2 sinhK2l2

Zc1Y
L

21 sinhK1l1 coshK2l2 + Zc2Y
L

22 sinhK2l2

������ (16)

A1 =

������
1
Zc1

sinhK1l1 + Y L

11 coshK1l1 Zc2Y
L

12 sinhK2l2

Y L

21 coshK1l1 coshK2l2 + Zc2Y
L

22 sinhK2l2

������ (17)

A2 =

������ coshK1l1 + Zc2Y
L

11 sinhK1l1
1
Zc1

sinhK1l1 + Y L

11 coshK1l1

Zc1Y
L

21 sinhK1l1 Y L

21 coshK1l1

������ (18)

B1 =

������ Y L

12 coshK2l2 Zc2Y
L

12 sinhK2l2
1
Zc2

sinhK2l2 + Y L

22 coshK2l2 coshK2l2 + Zc2Y
L

22 sinhK2l2

������ (19)

B2 =

������ coshK1l1 + Zc1Y
L

11 sinhK1l1 Y L

12 coshK2l2

Zc1Y
L

21 sinhK1l1
1
Zc2

sinhK2l2 + Y L

22 coshK2l2

������ (20)

~I =

24 ~I1

~I2

35
and

I1
ki
=

KmX
km=1

2A1
ki;m

sin (K�1 cos�in)

K�1 cos�in
e�jKx̂ cos�in (21)

I2kj =

KmX
km=1

2A2
kj;m

sin (K�2 cos�in)

K�2 cos�in
e�jKx̂ cos�in (22)

Figure 31 presents a ow chart of the algorithm.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 36

read in data
open files

I,J,M,N,a,b,d

Imitation of
loaded
apertures

rearrange [Y]

Y to Y12 1,n+1

21 n+1,1

22 n+1,n+1Y to Y
Y to Y

calculate
’A’ region
admittance

calculate
current
vector [I]

get Vm

coefficient

imitation Hmag
the scattering

field

rearrange [I]

coefficient
calculate

start

a

STOP

calculate
micronetwork
parameters

calculate
source field
strength

solving
linear
equation

get the
expansion
coefficient

calculate
Hankel FUN

calculate
Green FUN

 complex
integration

 get the
admittance

 field
function

 real
integration

 sum and
rearrange

Figure 31: Flow chart for the EM scattering application program

Implementation and Results for the Electromagnetic Scattering

From the analysis of the sequential code, we know that the core calculations in the main program

are the evaluations of the elements of the region A admittance matrix. This matrix comes from the

Moment Method solution in which we use pulse base mode function expansion. In the expansion,

the mode functions are an independent function set and the symmetric product is linear. For

this reason, the Moment Method has a lot of parallel opportunities and maps naturally to SIMD

machine (like CM-2 and DECmpp12000).

The basic premise of these calculations is that they can be performed in parallel since they are

completely independent. For example, to calculate the elements of the region A admittance matrix

for a 10x10 mode function expansion, we must use a 512x512 pulse base on the two apertures

and for every pulse base we have to call the Hankel function subroutine four times. Hence, for

all the elements, the Hankel function needs to be evaluated 1:048576� 108 times. So, if we can

make a rank four array, 10x10x512x512, we can have the processors calculate them simultaneously

and independently. By using this on a CM-2 with 16384 processors, the Hankel function will

be evaluated by each processor only 6400 times. For the other parts of the code, we used every

opportunities to use the e�cient assembly coded scienti�c subroutine library and the array syntax

that maps naturally on the CM-2 [45] and DECmpp 12000 [30].

We have developed two parallel versions from the Fortran 77 sequential EM scattering application

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 37

code. One is built around the e�cient use of the Connect Machine Scienti�c Subroutine Library

(CMSSL). The second version is written in standard Fortran 90 which is machine independent and

runs on both the CM-2 and the DECmpp 12000. The scattering magnetic �eld pattern can be

found in reference [27].

For small array sizes, for example 10x10x20x20, the Fortran 90 version runs about 160 times faster

on CM-2 and DECmpp-12000 than on a SPARC station. But, for larger array sizes, for example

10x10x512x512, a sequential computer like the SPARC station, requires 39 hours to calculate one

pattern. The CM-2 with 16k processors however, needed only 35 seconds for the same problem

while the DECmpp 12000 with 8k processors needed 58 seconds. [28, 36]. The scattering �eld is

shown in Figure P:lu:imit.

The Imitation Graph of the Scattering Field

-5.00

0.00

5.00 0.00

5.00

10.00

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

x[M]

y[M]

H[AMP/M]

’bpl100.dat’

Figure 32: Imitation of the scattering magnetic �eld in space

Figure P:lu:perf shows the performance of the Fortran 90 code on DECmpp 12000. It shows the

scalability of performance with machine size for di�erent admittance matrix sizes. It is clear from

the �gure that the most e�ective machine size is dependent on the problem size. As seen from the

�gure the most e�ective machine size for an array size of 512 is 8K, for an array size of 256 is 4K,

and for an array sizes of 128 and 64 is 2K. This due to the fact that the elapsed time decreases

substantially by increasing the machine size upto the above mentioned sizes and does not show any

substantial change for any further increase in the machine sizes. This is because the array size is

no longer large enough to amortize the start-up overhead time for the large machine size.

7 STOCK OPTION PRICING

This application is part of NPAC's program to apply high performance computing to problems in

industry, and is based on a collaboration between NPAC and the School of Management at Syracuse

University. In this project, we implemented a set of stock option pricing models in Fortran90 on the

Connection Machine-2 and the DECmpp-12000. In this paper, we describe a single pricing model,

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 38

20

40

60

80

100

1 2 3 4 5 6 7 8
T
i
m
e
(
s
e
c
)

Machine Size

Performance of EM Scattering from Apertures on DECmpp 12000

Matrix size=64
Matrix size=128
Matrix size=256
Matrix size=512

Figure 33: The performance of EM Scattering code on DECmpp 12000

the binomial approximation model with American call and stochastic volatility (early exercise).

Following the natural structure of the problem, our initial approach was to express the model

in two-dimensional arrays. This approach requires dynamic distribution of data on the target

machines. Performance of the code using dynamic arrays on the DECmpp-12000 is quite sensitive

to the distribution of data on the physical processor grid. In contrast, performance of the same

code on the CM-2 is not sensitive to the data distribution. In a second modeling approach, we

implemented one-dimensional arrays with a static data distribution. Performance on both the

CM-2 and DECmpp-12000 was similar and approached 50 times faster than a sequential Fortran77

version of the code running on a SUN4 workstation (25 MHZ). We use the pricing model as an

application benchmark code to illustrate the issue of data distribution and performance on the

CM-2 and DECmpp-12000.

Option pricing

Stock options are contracts giving the holder of the contract the right to buy or sell the underlying

stock at some time in the future. Option contracts are traded just as stocks are traded, and

option pricing models are used by traders and �nancial managers to guide speculative and hedging

strategies in the market.

Since the opening of the �rst organized options exchange, and the introduction of the Black-Scholes

option pricing model [3], �nance researchers have sought improved methods to price options with

stochastic volatility on American contracts. Key model parameters include volatility (or variance)

of the underlying asset �, variance of the volatility �, and correlation between asset price and

volatility �. Following [8, 24, 11], we briey summarize the equations describing continuous time

movement of stock price and volatility (variance of stock price) over the life of an option contract.

Modeling these processes is based on an assumption that stock price and volatility follow a constant

drift except at times when new information enters the market and the stock jumps to a new value.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 39

Volatility, �, and stock price, S, follow stochastic processes represented as

d�2

�2
= ��dt+ �dfW (23)

dS

S
= �sdt+ �d eZ (24)

where fW and eZ are standard Weiner processes with correlation �, �� is the drift of the variance

process and �s is the drift of stock price (both constants) and � is the volatility of the variance (not

directly observed, but estimated from data). Weiner processes generate continuous paths that are

in constant motion no matter how small the time step.

Binomial approximation models represent the continuous time processes described above as a lattice

of discrete up/down movements or jumps in stock price and volatility. For example, the magnitude

of the increase (u) or decrease (d) in variance for any given time period is based on new information

from the market and is expressed as

u = e(����
2
=2)�t+�

p
�t (25)

d = e(����
2
=2)�t+�

p
�t (26)

The probability of an increase or decrease is equally likely, and both paths are represented in the

binomial lattice.

With the introduction of correlation, �, the variance of stock price after i periods with j upward

movements and i� j downward movements is now de�ned as

�2 =
�
�20;0

�
u(�)id(�)i�j (27)

In the limit, as �t approaches zero, the binomial process approaches the continuous time process

d�2 = ���
2dt+ ��2dfW (28)

The magnitude of increases (U) and decreases (D) within the stock price are then de�ned as

Ui;j = erf��
(2i;j=2)�t+�i;j�t (29)

Di;j = erf��
(2i;j=2)�t��i;j�t (30)

American options incorporate early exercise, which means that the option can be exercised at any

time during the life of the contract. Pricing American option contracts with the binomial model

requires tracking price movements within the lattice from the time of dividend payout to contract

maturity. We use American pricing, but do not describe implementation of this model in this paper.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 40

Application of Model to Market Data

We applied a binomial option pricing model incorporating stochastic volatility and American call

to a set of Chicago Board of Options Exchange (CBOE) market data, for a number of stocks, for

the time period January, 1988.

The binomial pricing model uses a binary tree or lattice to represent discrete up/down moves in

volatility and price over time. After T time periods, 2T stock prices are represented in the terminal

period of the lattice, and a single model price is derived from this distribution. A fuller discussion

of our comparison of pricing models and market data is presented in [33].

Implementation of the Pricing Model

First, we describe the structure of the binomial pricing model. The model is then implemented

in two forms{ two-dimensional arrays with dynamic data distribution, and one-dimensional arrays

with static data distribution.

A binomial lattice is illustrated in Figure 34 showing asset price or volatility of price in the vertical

axis and time in the horizontal axis. Based on a previous comparison of model sizes [33], we divide

the life of an option contract into T = 17 periods.

Important elements of the model include initial price (S0) and volatility (�0) or (V0), time of

dividend payout (tdiv), the 2
tdiv nodes at time of the dividend where tdiv ranges over values 1 to

T � 1, and the 2T nodes at terminal time T . A single option price C0, is estimated from a weighted

average of the 2T prices at time T and discounting to the present time T0.

Time

A
ss

et
 P

ri
ce

 o
r

V
ol

at
ili

ty

T
0

t
div

T

nodes at dividend
time t div

final nodes at
terminl time T

node of initial price
S or V at present
time T 0

0 0

Figure 34: Two-dimensional structure of lattice

We designate the time steps in our model from 1 to tdiv as stage 1 of the model, and timesteps

from tdiv to maturity T as stage 2 of the model. Although we do not describe details here, this

breakdown of the American pricing model allows us to track price movements after dividend payout

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 41

and determine percentages of early exercise.

Figure 35 illustrates the 2tdiv nodes in the binomial lattice at time of dividend. The value of tdiv

ranges from 1 to T � 1 and de�nes the shape of the two-dimensional Fortran array (1 : 2tdiv ; 1 :

2T�tdiv). The value tdiv comes from market information (each option record has its own value tdiv)

and is not accessible to the model until run-time, requiring dynamically allocated arrays.

final nodes at terminal time T
nodes at divident time

div
t

A
ss

et
 P

ri
ce

 o
r

V
ol

at
ili

ty

Time
div

t T

binominal_lattice_(2
T-t div)3, 1:

binominal_lattice_(2
T-t div)3, 1:

binominal_lattice_(2
T-t div)2, 1:

binominal_lattice_(2
T-t div)1, 1:

Figure 35: Binomial Lattice Expressed as Two-Dimensional Array

At the close of stage 1 in our model, there are 2tdiv nodes in the lattice. After dividend payout, and

the onset of stage 2 of the model, up/down movements of price (and volatility) for each node are

represented by a subtree of the lattice and expressed in the second dimension of the array of size

2T�tdiv . As illustrated in Figure 35, when tdiv = 2, there are 2tdiv or 4 rows in the two-dimensional

array. After dividend payout, stage 2 of the model, further up/down moves of price and volatility

are expressed in the 2T�2 columns of the two-dimensional array.

Model Implementation 1: Two-Dimensional Dynamic Arrays

Following the illustration of Figure 35, we expressed the two-dimensional structure of the binomial

lattice in two-dimensional Fortran arrays. This approach requires dynamic two-dimensional arrays

which vary in shape according to the value of tdiv, a value which becomes known only at run time.

We observed large di�erences in performance between the CM-2 and DECmpp-12000 implemen-

tations of the two-dimensional array model. CM-2 performance is not sensitive to the shape of

dynamically sized two-dimensional arrays. Model run time remains relatively constant for an range

of tdiv values and associated array shapes. In contrast, DECmpp-12000 performance is highly

sensitive to the shape of dynamically sized two-dimensional arrays. When values of tdiv result in

asymmetric arrays, performance falls below the performance of a sequential workstation implemen-

tation of the pricing model.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 42

Poor performance of the DECmpp with two-dimensional asymmetric arrays is due to ine�cient

mapping of data to the processor grid and resultant load imbalance. An examination of the data

mapping patterns with tdiv values of 1, or 16 illustrates this problem Figure 36 A, B. For asymmetric

arrays, the cut and stack method of data distribution used by the DECmpp operating system [29]

maps only a portion of data to the processor grid, with most of the data \wrapped" into memory. A

more e�cient mapping of data is shown in Figure 36 C. In this example, the value of tdiv results in

a symmetric two-dimensional array and the operating system e�ciently maps data to the physical

processor grid.

PMEM

PEx

PEy

 . The
T = 17, tdiv = 1 , T - tdiv = , binomial lattice (1 : 2 , 1 : 2)

A worst case default mapping
16 1 16

 . The
T = 17, tdiv = 1 , T - tdiv = , binomial lattice (1 : 2 , 1 : 2)

B worst case default mapping
6 1

16 1

7 10C. The best case default mapping
 T= 17, tdiv = 7, T - tdiv = 10, binomial lattice (1 : 2 , 1 : 2)

128

128

128

64 6464

2

2

2
10

29

24

A B C

Figure 36: Data Distribution

In comparison, the CM-2 operating system arranges array elements \horizontally" (arrays of mul-

tidimensional rank are mapped as a one-dimensional array) across processors, one element per

processor. This approach �lls up the processor grid so as to maximize the number of physical

processors in use and minimize virtual processor looping [46].

In summary, in this �rst model implementation, we express the movement of stock price change

over time in two-dimensional Fortran arrays. The value of tdiv, which is known only at run time,

determines the shape of the two-dimensional arrays. We dynamically size arrays by passing the

value of tdiv to a subroutine. When asymmetric arrays result in this scheme of dynamic data

distribution, performance is degraded on the DECmpp-12000 but remains constant on the CM-2.

Model Implementation 2: One-Dimensional Static Arrays

This application code happens to require nearest neighbor communication along only one axis. This

feature allowed us to express the same binomial model described above in one-dimensional Fortran

arrays with a static data distribution.

In this implementation, we represent the the 2T nodes of the binomial lattice in a Fortran array

of size (1 : 2T). Figure 37 illustrates this one-dimensional array model for tdiv = 2. At the end of

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 43

stage 1 of the model, just prior to dividend payout, there are 2tdiv nodes in the lattice. In stage 2 of

the model, we map each node to a section of the array of size 2T�tdiv and evolve the volatility and

price lattice forward in time. We use the Fortran90 intrinsic function eoshift inside a loop �rst to

calculate, then to communicate values representing possible up/down moves in price and volatility

through the array section.

final nodes at terminal time T
nodes at divident time

div
t

A
ss

et
 P

ri
ce

 o
r

V
ol

at
ili

ty

Timediv
t T

3*2
T-t div +1:4* 2)T-t div(

2* 2
T-t div +1: 3* 2

T-t div)(

binomial lattice

2
T-t div)1 :(

2
T-t div +1: 2

T-t div)2*(

Figure 37: One-Dimensional Static Arrays

The DECmpp operating system maps one-dimensional arrays to the processor grid in raster-scan

fashion. For a model of T = 17 periods, the 217 one-dimensional array completely �lls the 128� 64

physical processors of the 8k DECmpp, then is layered into memory. By using a one-dimensional

array to represent the binomial lattice, we �x the number of required layers to 24 for any value of

tdiv, and program performance remains constant.

Performance of the one-dimensional model implementation using static data distribution on the

CM-2 is similar both to the two-dimensional implementation described above, and the one-dimensional

implementation on the DECmpp-12000.

In summary, this application code has a substantial communication requirement but happens to

regular and along only one axis. This feature allowed us to express the pricing model in one-

dimensional arrays with a static data distribution. A re�nement of this approach, expressed through

compiler directives, combines static distribution of a parallel array dimension to �ll the 8K processor

grid, with serial in-processor arrays to reduce communication [34].

Results

We implemented the binomial pricing model using static and dynamic data distribution and com-

pared performance between the CM-2 and DECmpp-12000. Our �rst model implementation ex-

presses the natural two-dimensional structure of a binary tree in two-dimensional Fortran arrays.

This approach was based on dynamically sized arrays de�ned by the value of (tdiv), which is known

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 44

at run time. The DECmpp operating system ine�ciently maps dynamically distributed, asymmet-

ric two-dimensional arrays to the �xed processor grid. Performance is slower in some cases than

a sequential version of the model running on a workstation. CM-2 performance is not sensitive to

dynamically distributed, asymmetric, two-dimensional arrays.

Remarks on the Stock Option Pricing Application

We used option pricing as a benchmark application code to examine the issue of dynamic vs. static

data distribution on the CM-2 and DECmpp-12000. This issue became apparent while performing a

large scale comparison of option pricing models and historical market data, which requires parallel

models and porting these codes developed on the CM-2 to the DECmpp-12000. Performance

di�erences between the two machines pointed out the data distribution issue.

We were able to achieve similar levels of performance between the CM-2 and the DECmpp-12000

by expressing the model in one-dimensional arrays with static data distribution. This approach

does not follow naturally from the application structure and requires more programming e�ort to

implement. Our experience here points out the bene�t of using real application codes to evaluate

parallel language and system software design.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 45

8 CONCLUSION

We have developed an applications test suite to test and evaluate the Fortran-D language design.

Eventually this application suite may evolve into a test suite to certify a HPF compiler. We contrast

this with our existing Fortran-77/90D test suite where we have coded the applications in at least

six Fortran dialects. Currently, the test suite consists of 45 applications. The 23 elementary

applications are being used for initial test of the Fortran-D compiler as well as a teaching aid

that have been made available for researchers nationwide for programming in all existing Fortran

dialects. The 22 real life applications coming from independent research on parallel algorithms

in di�erent scienti�c areas are also made available. Our experience here points out the bene�t of

using real application codes to evaluate parallel language and system software design as mentioned

above for the selected applications. It has been shown that Fortran-D is highly e�cient for the

implementation of some real applications although more directives might be needed for some other

applications.

From our experiments we can strongly say that DM-MIMD architectures are better suited for many

real applications than SIMD. This adresses the need for a Fortran-D like compiler to handle the

burdensome messgae passing.

Availability

To obtain a copy of the software used in this study, send a one-line e-mail message \send index"

to npaclib@minerva.npac.syr.edu or anonymous ftp form minerva.npac.syr.edu. Minerva is a free

software distribution electronic service. The index lists information on how to access all the pro-

grams used in this study. Users who have problems accessing these programs should send e-mail

to the authors at haupt@nova.npac.syr.edu.

Acknoledgement

The presented research is sponsored by DARPA under contract #DABT63-91-k-0005. The content

of the information does not necessary reect the position or the policy of the Government and no

o�cial endorsement should be inferred.

Use of the Intel iPSC/860 was provided by the Center for Research on Parallel Computation under

NSF Cooperative Agreement Nos. CCR-9120008 and CDA-8619893 with support from the Keck

Foundation.

We would like to thank Jack Dongarra for making a preliminary version of LAPACK available to

us and to Susan Ostrouchov for her help with LU factorization on the iPSC/860.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 46

References

[1] Bailey, D., Barton, J., Lasinski, T., and Simon, H. The NAS Parallel Benchmarks.

Tech. Rep. RNR-91-002, NAS systems Division, NASA AMes Research Center, Mo�ett Field,

CA 94035, August 1991.

[2] Benker, S., Chapman, B., and Zima, H. Vienna Fortran 90. In Proceedings of Scalable

High Performance Computing Conference (Williamsburg, VA, USA, 1992), p. p. 51.

[3] Black, F., and Scholes, M. The Pricing of Options and Corporate Liabilities. Journal of

Political Economy 81 (May-June 1973), pp. 637{59.

[4] Bladel, J. V., and Butler, C. M. Aperture Problems. Sytho� and Noordho� International

Publishers, 1979. Ed. J Skwirsynski.

[5] Blank, T. The MasPar MP-1 Architecture. Proceedings of the IEEE Compcon Spring 1990

(February 1990), pp. 20{24.

[6] Choudhary, A., Fox, G. C., and Mohamed, A. G. Fortran D Compiler for MIMD

Machines. Tech. Rep. SCCS 275, Northeast Parallel Architectures Center, Syracuse University,

111 College Place, Room 3-201, Syracuse, NY 13244-4100, 1992.

[7] Choudhary, A., Fox, G. C., Ranka, S., Hiranandani, S., Koelbel, C., and Tseng,

C.-W. Compiling Fortran 77D and 90D for MIMD Distributed-Memory Machines. Tech. Rep.

SCCS 25, Northeast Parallel Architectures Center, Syracuse University, 111 College Place,

Room 3-201, Syracuse, NY 13244-4100, 1992.

[8] Cox, J., Ross, S., and Rubinstein, M. Option Pricing: A Simpli�ed Approach. Journal

of Financial Economics 7 (1979), pp. 229{63.

[9] Dayde, M. J., and Duff, I. S. Level 3 BLAS in LU Factorization on the CRAY-2, ETA-

10P, and IBM 3090-200/VF. The International Journal of Supercomputer Applications, Mas-

sachusetts Institute of Technology Vol. 3, No. 2 (1989), pp. 40{70.

[10] Dongarra, J., and Ostrouchov, S. LAPACK Block Factorization Algorithms on the Intel

iPSC/860. Tech. Rep. LAPACKWorking Note 24, Department of Computer Science Technical

Report, University of Tennessee, 1990.

[11] Finucane, T. Binomial Approximations of American Call Prices with Stochastic Volatilities.

to be published in Journal of Finance (1992).

[12] Fox, G. C., Haupt, T., and Mohammed, A. G. Purdue Set - Problems to Test Parallel

Languages. Tech. rep., in preparation, 1990.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 47

[13] Fox, G. C., Hiranandani, S., Kennedy, K., Koelbel, C., Kremer, U., Tseng, C.-

W., and Wu, M.-Y. Fortran D Language Speci�cations. Tech. Rep. SCCS 42C, Northeast

Parallel Architectures Center, Syracuse University, 111 College Place, Room 3-201, Syracuse,

NY 13244-4100, 1990.

[14] Geist, G. A., Heath, M. T., Peyton, B. W., and Worley, P. H. PICL, A Portable

Intrumented Communication Library, C Reference Manual. Tech. Rep. Tech. Rep. ORNL/TM-

11130, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, July 1990.

[15] Geist, G. A., Heath, M. T., Peyton, B. W., and Worley, P. H. A User's Guide to

PICL, A Portable Intrumented Communication Library. Tech. Rep. Tech. Rep. ORNL/TM-

11616, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Oct 1991.

[16] George, A., Heath, M. T., and Liu, J. W.-H. Parallel Cholesky Factorization on a

Shared-Memory Multiprocessor. Linear Algebra and Applications 77 (1986), pp. 165{187.

[17] George, A., and Liu, J. W.-H. Computer Solution of Large Sparse Positive De�nite

Systems. Prentice-Hall, Inc., Englewood Cli�s, New Jersey, 1981.

[18] Golub, G. H., and Loan, C. F. V. Matrix Computations. John Hopkins University Press,

1989.

[19] Group, M. P. S. High Performance Fortran, report ml01-5/u46 ed. Digital Equipment

Corporation, 1992.

[20] Harrington, R. F. Time-Harmonic Electromagnetic Fields. McGraw-Hill Book Company,

New York, 1961.

[21] Harrington, R. F. Matrix Methods For Field Problems. Proc. IEEE vol. 55, No. 2 (Feb.

1967), pp. 136{149.

[22] Harrington, R. F. Field Computation by Moment Methods. Krieger Publishing Co., Mal-

abar, FL, 1982, c1968.

[23] Harrington, R. F., and Mautz, J. R. A Generalized Network Formulation for Aperture

Problems. IEEE Transactions on Antennas and Propagation 24, 6 (Nov. 1976), pp. 870{873.

[24] Hull, J., and White, A. The Pricing of Options on Assets with Stochastic Volatilities.

Journal of Finance 42 (1987), pp. 281{300.

[25] Jordon, E. C., and Balmain, K. G. Electromagnetic Waves and Radiating Systems.

Prentice-Hall, Inc., Englewood Cli�s, New Jersey, 1969.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 48

[26] Kurokawa, K. An Introduction to the Theory of Microwave Circuits. Academic Press, New

York, 1969.

[27] Lu, Y., and Harrington, R. F. Electromagnetic Scattering from a Plane Conducting Two

Slots Terminated by Microwave Network(TE Case). Tech. rep., Report TR-91-2, 1991.

[28] Lu, Y., Mohamed, A. G., and Harrington, R. Implementation of Electromagnetic

Scattering From Conductors Containing Loaded Slots on the Connection Machine CM-2. Tech.

rep., CRPC-TR92209, March 1992.

[29] MasPar Computer Corporation. Maspar Fortran User Guide, version 1.1, revision a2,

pp. 2{9 ed., August 1991.

[30] MasPar Computer Corporation. MasPar System Overview, pn 9300-9001-00, revision

a5 ed., Aug. 1991.

[31] Mautz, J. R., and Harrington, R. F. Modal Analysis of Loaded N-Port Scatterers. IEEE

Transactions on Antennas and Propagation 21, 2 (March 1973).

[32] Mautz, J. R., and Harrington, R. F. Transmission from a Rectangular Waveguide into

Half Space Through a Rectangular Aperture. Tech. rep., Report TR-76-5, 1976.

[33] Mills, K., Vinson, and M., Cheng, G. A Large Scale Comparison of Option Pricing

Models with Historical Market Data. Tech. rep., SCCS 260, Syracuse Center for Computational

Science, May 1992.

[34] Mills, K., Vinson, M., and Cheng, G. Load Balancing, Communication, and Performance

of a Stock Option Pricing Model on the Connection Machine-2 and DECmpp-12000. Tech.

rep., SCCS 273, Syracuse Center for Computational Science, May 1992.

[35] Mohamed, A. G., Fox, G. C., and von Laszewski, G. Blocked LU Factorization on

a Multiprocessor Computer. Tech. Rep. SCCS 94b, Northeast Parallel Architectures Center,

Syracuse University, CRPC-TR92212, Center for Research on Parallel Computation, Rice

University, Houston, TX, April 1992.

[36] Mohamed, A. G., Lu, Y., and Harrington, R. Implementation of Electromagnetic

Scattering From Conductors Containing Loaded Slots on DECmpp-12000 Computer. Tech.

rep., SCCS 287, April 1992.

[37] N. N. Wang, J. H. Richmond, M. C. G. Sinusoidal Reaction Formulation for Radiation

and Scattering from Conducting Surfaces. IEEE Trans. on Antennas and Propagation vol.

AP-23, 3 (May 1975), pp. 376{382.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Submission to:

Concurrency

Applications Benchmark Set

for Fortran-D

and High Performance Fortran 49

[38] Nugent, S. F. The iPSC/2 Direct-Connect Technology. Third Conference on Hypecube

Concurrent Computers and Applications 1 (1988), pp. 51{60.

[39] Parasoft Corporation. Express Reference Manual, 1988.

[40] Pase, D., MacDonald, T., and Meltzen, A. MPP Fortran Programming Model. Cri

report, Cray Research Incorporation, March 1992.

[41] Rice, J. R., and Jing, J. Problems to Test Parallel and Vector Languages. Tech. rep.,

CSD-TR-1016, 1990.

[42] Rosing, M., Schnabel, R. B., and Weaver, R. P. Scienti�c Programming Languages for

Distributed Memory Multiproicessors: Paradigms on Research Issues. In Languages Compilers

and Run-Time Environments for Distributed Memory MAchines, J. Saltz and P. Mehrotna,

Eds. North Holland, Amsterdam, London, New York, Tokyo, 1992.

[43] Steele, G. Talk presented ath the HPFF in Dallas, TX. available via ftp on ti-

tan.rice.edu:/public/HPFF, Jan. 1992.

[44] Stratton, J. Electromagnetic Theory. McGraw-Hill Book, Co., New York, 1941.

[45] Thinking Machine Corporation. Connection Machine Model CM-2 User's Guide, version

6.1 ed., October 1991.

[46] Thinking Machines Corporation. CM Fortran Reference Manual, version 5.2-0.6, pp.

368 ed., 1989.

[47] von Lasewski, G. Proposal to extend FORTRAN-D with BLAS derectives. Tech. Rep.

unbulished internal report, Northeast Parallel Architectures Center, Syracuse University, June

1992.

[48] von Laszewski, G., Parashar, M., Mohamed, A. G., and Fox, G. C. High Performance

Scalable Matrix Algebra Algorithms for Distributed Memory Architectures. Tech. Rep. SCCS-

271b, Northeast Parallel Architectures Center, Syracuse University, CRPC-TR92210, Center

for Reseach on Parallel Computation, Rice University, Houston, TX, April 1992.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

