
Minimal Requirements for a

Graphical User Interface
for InfoMall Applications

Gregor von Laszewski

Northeast Parallel Architectures Center

at

Syracuse University

Science and Technology Center

111 College Place
Syracuse, NY 13244-410

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

unpublished

3 GRAPHICAL OBJECTS

1 Introduction

Many applications which will be developed at NPAC in the next years do require some kind

of graphical interface to it in order to give a non computer expert the chance to explore

di�erent parameter settings for the application[?, ?]. Many users will have experience using

PC's and Workstations and know how to use their graphical desktop.

It is desirable to develop a program library providing the applications developer with an easy

set of functions in order to make the development of a high quality graphical user interface

as easy as possible. This is especially from importance to decrease the high start up time

while learning sophisticated graphics packages.

To summarize: We have the goals in mind

� to have a high quality user interface which is attractive and easy to use by the user.

� the functionality of the interface is simple and transparent to the program developer.

2 Design Goals

From the authors experience with di�erent graphical users interfaces and packages including

Motif, X11, AVS[2], SUIT[5], Tcl/Tk[4], and XF[3] it takes a long time to write a program.

Di�erent strategies might be useful in order to make the one or the other packages easier to

use.

The argument it is best to learn from example can not be a su�cient answer to am applica-

tions developer dealing with ten thousands of lines. His time is limited and he will not have

the time to spend reading extensive documentations.

While using the above mentioned packages for a limited number of applications a small num-

ber of graphical objects are obvious to implement supporting the graphics development. This

set is the highest level of a hierarchy of libraries. In this way interfaces to di�erent graphics

libraries are possible and the best underlying kernel might be chosen for the application in

case the standard library should not provide enough functionality.

In case the functionality of the library should be to small the applications programmer can

request to extend the library.

To summarize, we request from the library that it is

� simple to use,

� portable,

� and extendable.

3 Graphical Objects

In this section we describe the graphical objects necessary to ful�ll the above mentioned

goals.

gregor@npac.syr.edu Northeast Parallel Architectures Center

111 College Place � Syracuse, NY 13244-4100

1

Technical Report:

unpublished

3 GRAPHICAL OBJECTS

3.1 Interface

We distinguish two classe of applications. The �rst class uses a graphical user interface to

obtain certain parameters used by the application program. Therfore, the two programs can

be developed indipendently. The GUI program calls the apllication program with the help

of a UNIX systems command and provides the appropiate parameters necessary to run the

program.

The controll ow looks like:

GUI �! program �! output

Interaction to the GUI is provided when the applipaction program gives the controll back to

the GUI. The GUI can use the data provided by the application to update the information

on the screen.

GUI �! program �! GUI �! output

Many applications while need the graphical objects as displayed in Figure 1. We distinguish

the objects into two classes, namely the

� input objects

� and the output objects.

3.1 Interface

The interface is very simple. Each object is described by its class, its layout and an associated

procedure which is executes if the object becomes active.

The general outline is

void object_class (OBJECT* object_name,

type1 parameter1,

type2 parameter2,

...,

typen parametern,

(void*) action_proc)

3.2 Window Manager

The window manager controls the size of the graphical user interface. it is speci�ed by

void NPACinitGraphic (int x, int y,

int width, int height,

char *label)

The procedure

void NPACexitGraphic ()

deletes the GUI from the application and gives the control back to the application.

gregor@npac.syr.edu Northeast Parallel Architectures Center

111 College Place � Syracuse, NY 13244-4100

2

Technical Report:

unpublished

3 GRAPHICAL OBJECTS

3.3 Input Objects

Button

Slider

Label

Dialog

File1.c

File3.c

File2.c

File2.c

Input Objects

Output Objects

This is a

sample text

Fileseletor

Figure 1: The essential graphic objects

3.3 Input Objects

3.3.1 Button

void NPACbutton (OBJECT* object_name,

int x, int y,

int width, int height,

char* label,

(void*) action_proc)

An object of class button can be placed in the window at position (x,y) with the speci�ed

width and height. The font is prede�ned so that the applications programmer has not to

worry about it. If the width or the height parameter are negative the width/height will be

automatically adapted so that the button label will �t in the box.

3.3.2 Dialog

void NPACdialog (OBJECT* object_name,

int x, int y,

gregor@npac.syr.edu Northeast Parallel Architectures Center

111 College Place � Syracuse, NY 13244-4100

3

Technical Report:

unpublished

3 GRAPHICAL OBJECTS

3.3 Input Objects

int width, int height,

char* label,

char* input,

(void*) action_proc)

An object of class dialog can be placed in the window at position (x,y) with the speci�ed

width and height. The font is prede�ned so that the applications programmer has not to

worry about it. If the width or the height parameter are negative the width/height will be

automatically adapted so that the button label will �t in the box. The textual input value

is returned in the parameter input.

To make the input of di�erent datatypes easier we include the following routines:

NPACgetInt (..., int* input, ...)

NPACgetFloat (..., float* input, ...)

PACGgetDouble (..., double* input, ...)

NPACgetText (..., char* input, ...)

They distinguish each other only in the type of the input variable. Naturally an input should

be checked upon syntax errors. With label a text can be written in-front of the dialog box.

3.3.3 Slider

void NPACslider... (OBJECT* object_name,

int x, int y,

int width, int height,

type* input,

(void*) action_proc)

An object of class slider is in the same way placed as an object of class dialog. As with the

dialog objects di�erent datatypes are supported:

NPACsliderInt (..., int* input, ...)

NPACsliderFloat (..., float* input, ...)

NPACsliderDouble (..., double* input, ...)

3.3.4 Fileselector

void NPACdialog (OBJECT* object_name,

int x, int y,

int width, int height,

char* label,

char* filename,

char* path,

gregor@npac.syr.edu Northeast Parallel Architectures Center

111 College Place � Syracuse, NY 13244-4100

4

Technical Report:

unpublished

3 GRAPHICAL OBJECTS

3.4 Output Objects

(void*) action_proc)

An object of class �le is in the same way placed as an object of class dialog. After selecting

a �le the variable filename contains the name of the �le and path contains the absolute

path of the �le.

3.4 Output Objects

3.4.1 Label

void NPAClabel (OBJECT* object_name,

int x, int y,

char* label)

The object label places a textual label on the given position on the window:

3.4.2 Text

void NPACtext (OBJECT* object_name,

int x, int y,

int width, int height,

char* label,

char* filename,

char* path,

(void*) action_proc)

The object text places a textual window on the screen at the given (x,y) location with the

speci�ed width and height. The text text is written in the object.

The procedure

void NPACrefreshText} (OBJECT* object_name,

char* text)

overwrites the existing text of a text object with given name.

3.4.3 Canvas

void NPACcanvas (OBJECT* object_name,

int x, int y,

int width, int height,

(void*) action_proc)

gregor@npac.syr.edu Northeast Parallel Architectures Center

111 College Place � Syracuse, NY 13244-4100

5

Technical Report:

unpublished

3 GRAPHICAL OBJECTS

3.4 Output Objects

The object canvas places a graphical window on the screen at the given (x,y) location with

the speci�ed width and height. The action procedure speci�es the output to the canvas.

Normal procedures like moveto, drawline, drawpolygon, drawcircle are allowed. We do not

go into details here because we do expect that other objects are of higher priority.

3.4.4 Graph

void NPACgraph (OBJECT* object_name,

int x, int y,

int width, int height,

char* xlabel,

char* ylabel,

double xmin, xmax,

double ymin, ymax,

double* xvalues,

double* yvalues,

(void*) action_proc)

The object graph opens a two-dimensional graph plot on the screen with the obvious param-

eters. the x and y values are stored in the arrays xvalues and yvalues. The axis dimensions

are speci�ed with a minimal and maximal value.

3.4.5 Barchart

void NPACgraph (OBJECT* object_name,

int x, int y,

int width, int height,

char** xlabel,

char* ylabel,

int xmin, xmax,

double ymin, ymax,

double* yvalues,

(void*) action_proc)

The object barchart opens a two-dimensional graph plot on the screen with the obvious

parameters. the x and y values are stored in the arrays xvalues and yvalues. The axis

dimensions are speci�ed with a minimal and maximal value. The x axis represents integer

coordinates. Instead of Just one label for the x-axis we have for each xvalue a label.

3.4.6 Photo

void NPACphotoRead (OBJECT* object_name,

int x, int y,

gregor@npac.syr.edu Northeast Parallel Architectures Center

111 College Place � Syracuse, NY 13244-4100

6

Technical Report:

unpublished

4 FUTURE

int width, int height,

char* filename,

char* path,

(void*) action_proc)

void NPACphotoPlace (OBJECT* object_name,

int x, int y,

int width, int height,

PHOTO* picture,

(void*) action_proc)

The photo routines place a given photo speci�ed in some format (bitmap) on the screen. We

suggest to use the ppm format because it is supported by many packages and has a high

compression rate. While the read routine reads a photo from a �le the place routine places

a photo stored in the local memory on the screen.

One very important routine will be to display a movie of a number of frames. This is

supported by the movie routine.

void NPACphotoMovie (OBJECT* object_name,

int x, int y,

int width, int height,

char* dirpath,

(void*) action_proc)

Here the parameter dirpath points out a directory in which a number of frames are located.

The frames are read in in alphabetical order and displayed with a given delay on the screen.

Figure 2 shows the outline of a movie object. Two modes are distinguished. The animation

mode supports the continuous play of the frames in the directory while the frame mode

allows to go through the frames interactively. Switching between the modes is possible the

reset button places the pointer to the active movie from to the �rst frame in the directory.

Extensions like repeat might be useful too.

4 Future

This document should show that it is desirable to have a common interface between di�erent

applications. The library could be written with the help of existing graphical users packages.

The once suitable for it would be AVS and TCL/tk. Other GUI builders might be worth

while to consider. The author is in favor of TCL/tk because it is very fast and supports

already most of the graphical objects needed by a simple application. A raytrace package

is also available under the name YART. TCL/Tk is a public domain software and it is easy

to install it on the di�erent machines available at NPAC. The often mentioned complaint

about AVS that it uses almost all the CPU time could not be found with TCL/Tk.

gregor@npac.syr.edu Northeast Parallel Architectures Center

111 College Place � Syracuse, NY 13244-4100

7

Technical Report:

unpublished

A DICTIONARY

REFERENCES

Movie Object

Speed

Single Frame:

Start Stop

NextPrevious

Animation:

Reset

Figure 2: The essential graphic objects

If the one could generate simple example programs in AVS explaining the use of the graphical

objects, than a applications programmer would be in the advantage to reduce the time for

learning AVS. In contrast to using AVS the startup time for using the standard NPAC GUI

library would almost be zero.

References

[1] Computer Science Dictionary. Gopher Service in UK.

[2] AVS Users Manual, 1993.

[3] Delmans, S. Design and Implementation of a Programming Environment for Intercac-

tive Construction of Graphical User Interfaces. Tech. rep., Technical University Berlin,

1993.

[4] Ousterhout, J. K. Tcl and Tk Toolkit. Addison-Wesley, 1994.

[5] University Virginia. SUIT { SImple User Interface Tool, 1992.

A Dictionary

From [1] we �nd GUI pakages and some essential terms:

gregor@npac.syr.edu Northeast Parallel Architectures Center

111 College Place � Syracuse, NY 13244-4100

8

Technical Report:

unpublished

A DICTIONARY

A.0.7 Terms

Graphical user interface (GUI) The use of pictures rather than just words to represent

the input and output of a program. A program with a GUI runs under some windowing

system (eg. X-Windows, Microsoft Windows, Acorn RISC OS). The program displays

certain icons, buttons, dialogue boxes etc. in its window on the screen and the user

controls it by moving a pointer on the screen (typically controlled by a mouse) and

selecting certain objects by pressing buttons on the mouse while the pointer is pointing

at them.

Widget In graphical user interfaces, a combination of a graphic symbol and some program

code to perform a speci�c function. Eg. a scroll-bar or button. Windowing systems

usually provide widget libraries containing commonly used widgets drawn in a certain

style and with consistent behavior.

widget n. 1. A meta-thing. Used to stand for a real object in didactic examples (especially

database tutorials). Legend has it that the original widgets were holders for buggy

whips. "But suppose the parts list for a widget has 52 entries...." 2. [poss. evoking

`window gadget'] A user interface object in X graphical user interfaces.

A.0.8 GUI Packages

DataViews Graphical user interface development software from V.I.Corporation, aimed at

constructing platform-independent interactive views of dynamic data.

Fresco An object-oriented API for graphical user interfaces, under development by the X

consortium as an open, multi-vendor standard.

GUIDE Graphical User Interface Development Environment from Sun.

InterViews An object-oriented toolkit developed at Stanford University for building graph-

ical user interfaces. It is implemented in C++ and provides a library of objects and a

set of protocols for composing them.

Motif The standard Graphical User Interface and window manager from OSF, running on

the X Window System

NewWave A graphical user interface and object-oriented environment fromHewlett-Packard,

based on Windows 3.0 and available on UNIX workstations.

Open Look A graphical user interface and window manager from Sun and AT&.T.

UAN User Action Notation. VPI. A notation for representation of graphical user interfaces,

e.g. mice and icons, H. Hartson et al, ACM Trans on Info Sys, July 1990.

gregor@npac.syr.edu Northeast Parallel Architectures Center

111 College Place � Syracuse, NY 13244-4100

9

