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ABSTRACT

A regionalized optimal interpolation algorithm is currently used at the

NASA Goddard Data Assimilation O�ce (DAO) for four dimensional data as-

similation. Instead of using all observations regions are de�ned to approximate

the solution. The sequential code for the regionalized optimal interpolation is

very complex and in its current form unusable for MIMD machines.

This paper describes the e�orts at the DAO to parallelize the existing se-

quential algorithm. We outline three strategies transforming the sequential

algorithm gradually to MIMD machines.

A major requirement for the new parallel algorithm is the portability to

as many MIMD machines as possible. Therefore, the parallel code uses state

of the art programming languages, message passing libraries, and an object

oriented tool library. For concrete results we are targeting the IBM SP2, Cray

T3D, Intel Paragon, and a network of DEC Alpha workstations. We show

preliminary results on a DEC Alpha workstation farm.

1. Introduction

1.1. The NASA Climate Model

The NASA climate model constitutes of independent program modules (shown in
Figure 1). First, data observed by satellites, weather balloons, airplains, and other

sources are prepared for the model. A quality control check is performed on the

data in order to eliminate data of very bad quality. After the quality control the
model calculation is performed.4 Once the model calculation is completed the data
from the model is compared with the observational data in order to detect errors

due to insu�ciencies in the model. Di�erent strategies can be used for this objec-

tive analysis, .e.g: regionalized optimal interpolation (minivolumes)1,5 global optimal

interpolation,3 Kalman smoother,2 and Physical-space Statistical Analysis System

(PSAS).6

This functional decomposition of the NASA climate model makes it possible to run
the di�erent modules on di�erent machines. Naturally one should choose the machine
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Figure 1: The climate model overview

which is best suited for the problem. In order to enable such a functional decom-
position it is necessary to determine the speci�c input/output requirements of each

module as well as the detection of global data, shared between the modules.
This paper concentrates on the e�orts to parallelize the regionalized optimal interpo-
lation algorithm currently used in the operational climate model. We show strategies

for the functional and data decomposition of the regionalized optimal interpolation

algorithm.
First, we introduce the regionalized optimal interpolation algorithm. Than we in-
troduce some constraints for the parallel algorithm. In the main section we explain
the parallel algorithm in detail. In the last section we show some preliminary results
obtained on a network of DEC Alpha workstations.

2. The Regionalized Optimal Interpolation Algorithm

2.1. Optimal Interpolation

The analysis incorporates a variety of observations such as rawinsonde reports, sur-

face ship observations, and satellite retrievals. At present, one analysis incorporates
approximately 100,000 observations; in ten years we expect an increase in that num-
ber by two orders of magnitude. Data is interpolated from random locations to a

regular grid via the optimum interpolation (OI) analysis technique.4 OI has the

advantage of using statistical estimates to determine appropriate relative weighting
between noisy observations and a somewhat inaccurate �rst guess (usually a forecast
model) to minimize the resulting error in the analysis.

The optimum interpolation system is computationally elaborate; one analysis consists

of a global quality control5 and a covariance matrix setup and solution. The algo-

rithm requires signi�cant execution time on a state of the art vector supercomputer.

Because of the increasing number of observation points and resource limitations on



the currently used vector supercomputer, it will be too expensive to solve the OI's
covariance matrix using the global dataset. Instead, we localize the problem by ap-
proximating the global analysis from an ensemble of regional analyses. These regional

interpolations, referred to as "mini-volumes", are overlapped so that the large scale

features of the analyzed quantities are not lost. Each minivolume is associated with

exactly one matrix, while each analysis utilizes approximately 12,000 total minivol-
umes.

The current resolution of the model grid is 2�2:5 degrees. In near future the resolution

is doubled so that a grid of 1�1:25 is assumed. Dense grid spacing is from advantage

because the precision of the calculation and therefor the error estimation will pro�t.

Because of the proposed dramatic increase in the amount of data ingested, the planed

increase in the model grid density, and the availability of MIMD machines with very

high performance, the development of a scalable massively parallel version of the
analysis is essential.

2.2. The Minivolume Concept

As mentioned above, one way of conducting the interpolation is to treat the correla-

tions between the observations as one big matrix and solve the resulting set of linear
equations en gross. We refer to this strategy as global optimal interpolation. The
disadvantage of this method is that it will take a long time to solve this equations
because of it's size. Nevertheless, we expect that the precision for this method is very

accurate.

Table 1: Organization and size of the minivolumes
horiz. Grid Vertical Grid

Zone Volumes Points Points

Polar 4 288 2

High Latitude 286 8 2

Low Latitude 240 6 2
Tropics 1152 4 2

To decrease the computational e�ort we try to derive a new approximation method.5

It is based on the observation that for a correction of guessed values at a location

only the observation points in a particular radius around this location have to be
considered. Points far away from the location have no or nearly zero correlation.

In conventional methods this is done for each grid point. In contrast the algorithm
described in5 uses a cluster of grid points rather than one grid point at a time. Hence,

data selection and the solution of the resulting covariance matrix is only necessary for

each cluster rather than for each grid point. The reduced observation area is referred
to as mini volume.

Table 1 shows a typical de�nition of the number of grid points within each volume
dependent on the latitude. At present four volume zones are de�ned.



2.3. The Sequential Algorithm

The optimal interpolation algorithm uses the following major steps to perform the

objective analysis:

Read the observational data

Set up the minivolumes

FORALL minivolumes DO

Set up the covariance matrix

Solve the linear system constituting of the covariance matrix

and the forcing function

END FORALL

2.4. Covariance Matrix

The covariance matrix is generated in the following way. First, all observational data
in a �xed radius around a minivolume is chosen. From this observational data the
best 75 are selected, due to the quality of the data determined by the instrument

which measures it.
Than the distances between the chosen data points in the minivolume are determined.
Using the minivolume one generates the covariance matrix and solves the following
linear system:

Ax = b (1)

A = covariance matrix = �

F
i �

F
j �ij + �

2

o�ij (2)

b = forcing function = �(d)�F
i �

F
g (3)

Where x represents the weight of the observations.
The main source of slowdown of the current algorithm is based on redundant calcula-

tions for the setup of the correlation matrix. One has to consider that two neighboring

minivolumes have large overlapping areas resulting in repeated calculation of the cor-
relations between points. To minimize this e�ort we suggest to store correlations

between the selected observational data points temporarily in a hash table instead of
recalculating them for each minivolume.

In addition, a simple sort strategy based on the geographical location of the obser-

vation points would allow the decomposition of the data points in regions allowing
multiple processors to work on di�erent minivolumes. Because of the di�erent size of

the covariance matrix (in some regions we expect to have no data points at all) we
will have di�erent load on the di�erent processors. This makes it necessary to intro-

duce a dynamical load balancing strategy since we do not know in advance where the

observational data will be located (see Figure 2).
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Figure 2: Observation points considered for the analysis. From left to right: wind,
surface and moisture data

We clearly determine certain areas where no data values are present. This results

in a di�erent calculation load for di�erent areas. This analysis shows that a simple

distribution based on the same size of grid points will introduce load imbalance.
The current analysis of the existing sequential code shows the following needs:

� The search algorithm to set up the covariance matrix can be improved by

1. Reducing the search on a geographical determined subset of observational

points for each minivolume.

2. Sharing the information of the correlations between neighboring minivol-
umes.

� Statical load balancing can be introduced by predicting the patterns of input
data at a given time.

� Dynamical load balancing is necessary because of the di�erent numbers of cal-
culations performed in a regional area.

3. Parallelization of the Optimal Interpolation Algorithm

3.1. Software Engineering Limitations

While parallelizing the existing code we had the following project limitations in mind:

First, the program should run on as many MIMD machines as possible. Second, the
resulting program should be �nished as soon as possible. Third, the language in which

the mathematical computations are done is Fortran due to its performance.
One major problem we had is embedded in the structure of the existing code. It is

designed for a speci�c vector supercomputers and because of its long development

time and the large number of programmers involved in it's development it is rather
unstructured. Since the original code was written in Fortran 77 with vector arithmetic

additions it was obvious to use Fortran 90 as language for the mathematical base
computations.



3.2. Software Engineering Choices

The parallelization of an existing program is often a very time intense and di�cult

task. In order to minimize the transformation we tried to develop a strategy to

transform the optimal interpolation algorithm gradually into a parallel program.
To make use of the next generation of MIMD supercomputers we have to modify our

program in such a way that it will be portable on these machines. In order to do so

we decided to base our program on the availability of particular software languages

and tools.

To choose a languages and software tools we have to consider their availability (or

planed availability), their ease of usage, their exibility , and their standardization.

Fortran 90 and HPF: For the main program development we chose Fortran 90 over

Fortran 77 because of its better software structure capabilities. Another reason is the

availability of High Performance Fortran(HPF) on many of the MIMD machines. We
are of the opinion it will be possible to transfer certain parts of the Fortran 90 OI
program to HPF.

C++: For some of our load balancing and data redistribution tools we chose C++,

because data abstraction and the development of these routines is easier to formulate
in an object oriented programming language. While following the discussion about the
standardization of C++ we are of the opinion, that the incooperation of mathematical
data structures in the language will enable a much easier combination of Fortran and
C++. Due to the nature of the redistributed data, we do not expect a performance
loss while using C++. Interfaces to Fortran and C are easy to provide.

Message Passing: To incooperate message passing in our programs we use the Mes-

sage Passing Interface (MPI) library. The routines used for message passing are chosen
as simple as as possible so that a replacement of the underlying message passing li-
brary is easy to do. While choosing this library we are able to use also heterogeneous
computing environments.

Portability: With this choices we expect to have a highly portable program which

will run on the current and next generation of supercomputers.

3.3. Parallelization Strategy

To focus on the parallelization we have to �gure out �rst in which way data can be

used e�ciently on di�erent processors. In addition we have to analyze if a functional
decomposition is possible. The data objects essential for the parallelization are

� the model data speci�ed by the grid



� the observations

� and the minivolumes.

Figure 3 shows some simple distributions of the data objects. The globe to the left

is simply divided into stripes of equal latitude width. In future we will experiment
with di�erent width in the latitude bands. To use more processors for the solution of

the problem the earth is divided by its longitudes.

Figure 3: Di�erent data distribution

Now that we have some idea about the distribution we take a closer look in one
of the regions (Figure 4). Each Processor is responsible for the calculation of the

minivolumes embedded in it's particular region. To do so each processor must have
at least the model grid data and the observations embedded in the area labeled by
overlap region.
The minivolumes play a separate roll in the parallel program. They can be viewed

as tasks executed on the processors. Hence, the concept of data distribution for the
minivolumes is not possible. The size of the overlap region is determined by the radius
of the minivolumes. In our case we chose the radius to be 1600 km. Two cases occur:

1. All observation data is embedded in the assigned processor

2. Some observation data is embedded in neighboring processors.

To solve this problem, the missing observational data is fetched from the neighboring
processors, before a minivolume is solved. This enables one to run the calculations on

di�erent processors completely independent from each other with no data exchange.

Overlap regions are well known in �nite element algorithms described in,7 but in �nite

element algorithms the communication is needed.

One limitation of this parallel OI algorithm is that the regions should be not to small
in order to keep the ratio between the overlap region and the assigned processor region
as small as possible while providing a high degree of parallelism. Future experiments

on di�erent data will help us to determine a good parameter setting.
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Figure 4: Overlap region

3.4. The Parallelization in Three Steps

Due to the structure of the existing program we decided to do a step by step paral-

lelization determined by the data objects.
It is clear that the parallel algorithm in all cases for the interpolation will look alike,
but the data inherited in the processors might be di�erent. The following algorithm
speci�es the outline of the parallel code executed in each processor:

SUBROUTINE Solve

FORALL Minivolumes in this processor

Collect the data for this minivolume

FORALL Vertical levels

Calculate covariance matrix

Solve the linear equation

Store the result

END FORALL

END FORALL

END SUBROUTINE Solve

We classify the class of parallel OI (POI) with the help of a tuple space:

(grid storage domain; observation data storage domain) (4)

We are interested in the following cases:

POI(global grid, global observation) here all grid and observation data
are stored in each processor.



POI(global grid, local observation) here all grid data is known to the pro-
cessors but each processor stores only the observational data which
is necessary for the calculation.

POI(local grid, local observation) here all processors store only the data
and observation points which are necessary for the calculation.

3.4.1. Storage Pattern (Global Grid, Global Observation)

A straight forward way for a parallelization is to store in each processor all information

available. This scheme is well known as data replication. It has the advantage that

each processor can work independently on its assigned sub domain. In addition load

balancing is easy to implement because of the data replication.

Disadvantages are clearly the high amount of memory used in each processor. Most

of the data will not be used during the calculation.
This strategy is impractical due to the performance loss embedded in the data repli-
cation and due to limited memory available on the computing nodes. Only small
problem instances can be solved.

3.4.2. Storage Pattern (Global Grid, Local Observation)

To reduce the memory usage in each processor we store only the observational data

necessary for each sub domain assigned to the particular processor. This can be done
with the help of a sorting algorithm prior to the actual optimal interpolation.7 The
following pseudo code enables this:

SUBROUTINE read observations

each processor reads a number of observation data in parallel

redistribute the observation data depended on the data distri-

bution.

END SUBROUTINE read observations

There are di�erent ways to control the distribution of the observation points as shown

earlier with the block distributions. In addition we can embedded a recursive bisec-

tioning algorithm in order to provide each processor with an equal amount of ob-
servation points. This will help to improve the load balance between the di�erent
processors.8

The disadvantage of this scheme is that it will have increasing storage needs while

increasing the model resolution.



3.4.3. Storage Pattern (Local Grid, Local Observation)

The best algorithm in terms of the memory requirements is to to store in each pro-

cessor only the data and observation points which are necessary for the calculation.

The disadvantage of this algorithm is that a most of the original program has to be
rewritten. In addition load balancing will become more di�cult due to data redistri-

bution.

4. Dynamical Load Balancing

In this part we describe the dynamical load balancing scheme used in the OI algo-

rithm. As mentioned before the minivolume concept generates matrices of di�erent

size which are solved by Cholesky factorization. In order to use the resources of an
MIMD machine e�ciently we generate a dynamical load balancer organizing the task

of solving those matrices in parallel.

We use a task queue for the maintenance of the tasks executed on the di�erent
machines. Each minivolume is assigned a particular task number. At the beginning
each processor starts out with the same amount of minivolumes (tasks).

Now the load balancing algorithm works as follows on each processor:

1. Insert minivolumes assigned to this processor in the task queue

2. WHILE (minivolumes there) REPEAT

(a) IF (minivolumes there AND a Processor is without work) THEN

Chose some minivolumes and send them to the idle processor

END IF

(b) IF (a processor is �nished with work) THEN

Notify other processors that it is idle
Receive work from another processor

END IF

Calculate a minivolume from the task queue

END REPEAT

3. Terminate processor

5. Results

5.1. Experimentation Environment

The distributed computing facilities in NPAC include two clusters of high performance
workstations: IBM RS/6000 cluster and DEC Alpha cluster. The IBM heterogeneous



cluster consists of 8 workstations (models 550 and 340). The DEC Alpha cluster
consists of 8 Alpha model 400 compute servers. These workstations represent the
newest and most advanced development in the workstation technology. The cluster

is supported by a high performance networking backbone consisting of the dedicated,

switched FDDI segments. This solution provides full FDDI bandwidth and low la-

tency switching to every workstation in the cluster. In addition to the Workstation
clusters the NPAC facilities include an SP2 with 16 nodes.

5.2. Heterogeneous Supercomputing Environment

While combining the di�erent architectures above and solving one concrete prob-

lem in parallel on them we will be able to conduct experiments in a heterogeneous

supercomputing environment.

For this paper, we present performance numbers obtained with the Dec Alpha work-

station cluster with the simple striped distribution with no load balancing on a 4 by
5 grid. We concentrate on the computational intensive part of solving the matrices.

Performance of the Striped Distribution
on Dec Alpha Workstations, Wind Analysis

Processors Time in s fastest Processor E�ciency

1 1015 100 %

4 548 505 46 %

8 283 81 43 %
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Figure 5: Load imbalance in the simple decomposition

It is very obvious that the load imbalance is responsible for the bad performance
(Figure 5). Future experiments will help solving this problem. In addition we are
currently conduction experiments with di�erent data distribution schemes.

6. Conclusion

We have shown that we can parallelize an optimal interpolation algorithm. Problem-

atic for the parallelization is the \dusty deck approach". Besides data distribution we
need also the concept of tasks to express the parallelism inherented in the algorithm

easily. Load balancing will improve the performance of the parallel algorithm and is
used to distribute the tasks on an MIMD machine. Due to the language choice of

Fortran 90, C++ and the usage of a common message passing library our algorithm

is portable on most of the MIMD supercomputers already available today. The usage

of heterogeneous computing nodes is possible because of the load balancing strategy.
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