
JavaScript Grid Abstractions

Gregor von Laszewski1, Fugang Wang1, Andrew Younge1

Zhenhua Guo2, Marlon Pierce2

1Rochester Institute Of Technology, 102 Lomb Memorial Drive Rochester, NY 14623
2Community Grid Lab, Indiana University, Bloomington, IN 47404

E-mail: laszewski@gmail.com

Abstract

In this paper, we describe a Grid abstraction frame-
work that allows access to the Grid infrastructure using
JavaScript while leveraging the power of current Grid mid-
dleware and upperware toolkits such as the Globus Toolkit
and the Java Commodity Grid (CoG) Kit . The system is
heavily based on Web 2.0 technologies and allows access-
ing the Grid through a Service-Oriented Architecture. An
application interface in JavaScript is provided to enable
developers to access Grid services from JavaScript. More-
over, our framework includes additional services to enable
the creation of advanced Grid services. The availability of
our framework simplifies not only the development of new
services but also the development of advanced client side
Grid applications. We demonstrate this ability while pro-
viding a mechanism to develop Grid workflows through ad-
vanced services and a graphical user interface defined in
JavaScript. Overall, Grid developers will have another tool
at their disposal that projects a simpler way to distribute
and maintain software while at the same time being able to
deliver quickly advanced interfaces and social services for
the scientific community.

Keywords: JavaScript, Grid Computing, CoG Kit, Grid
Abstractions.

1 Introduction

Scientific users has been leveraging the power of Grid
Computing for years, as it provides computing power un-
like anything else. The heart of Grid computing consists
of middleware which unites many administratively and spa-
tially separate resources under one Grid system. One such
example of this middleware is the Globus Toolkit [1], which
introduces a number of complexities to accomplish its task.
Often these complexities are passed directly to the user
community.

For many scientific users, the challenges introduced by

using Grid computing often are too great to justify using
Grids at all. Thus, there is a need to provide a simplified
user environment without compromising the power of the
Grid system. The Java CoG Kit [2] aims to do the same
by providing a simple interface where scientific users can
effectively utilize Grid technologies without all of the chal-
lenges that typically come with it.

In this paper we propose to provide a JavaScript Grid ab-
straction framework. It lies on top of the existing Grid mid-
dleware such as the Java CoG Kit and provides a Graphi-
cal User Interface (GUI) in JavaScript. Various Grid ser-
vices are exposed through the Web Client side JavaScript
API, while the Mediator interacts with the underlying grid
services and deploys them as Web services. Using the
JavaScript API, Grid users receive a more convenient way to
access Grid services. The Grid developers can also benefit
from this framework as they can develop new Grid services
and applications more efficiently.

2 Architecture

The framework can be divided into three logical com-
ponents, illustrated in Figure 1. The first component is
the Web Client where we provide GUI portal to Grid user.
This encompasses functionality such as workflow brows-
ing, editing, job submittion and execution status querying.
The interaction with the server side is carried on through a
JavaScript API. The second part is Mediator, which com-
municates with Grid services through underlying Grid mid-
dleware such as the Globus Toolkit using the Java CoG Kit.
Meanwhile the mediator exposes the services through Web
Services to the Web Client. It also introduces a CoGQueue
management mechanism, through which Grid users can
share their workflows and collaborate together. The third
part consists of Support Services. It contains constructs
like user account management, and job execution status
querying. These support services extend beyond the nor-
mal Globus functionality to provide additional features that
are otherwise not possible.

1

Figure 1. The System Architecture

3 Overview

This section introduces the purpose of each component
of the system.

3.1 Web Client

The Web client provides a dynamic Graphical User Inter-
face (GUI) in the form of a Grid Portal. Within the portal,
high-level Grid functionality is exposed. This is accom-
plished through the use of Javascript, HTML, XML and
CSS to provide a seemless environment for users.

On the web client, the user can perform basic tasks
common on most Grid systems. This includes creating
and editing new tasks and workflows, submitting the tasks
and workflows to the grid system automatically, queueing
tasks to a collaborative queue, and monitoring tasks as they
progress through the Grid environment.

3.2 Mediator

The Mediator acts as a translator that exists between the
web client and the underlying Grid services. Requests from
the Web client come into the Mediator and are interpreted
into commands that initialize the desired Grid functionality.
The Mediator service is a crucial part of the system as it is
the point at which abstract actions from the user are turned
into complicated interactions with the underlying Grid in-
frastructure.

The Mediator uses web services to provide functionality
calls that communicate with the Web client. The connection
should be secured through HTTP over SSL/TLS (HTTPS).
Message level security based on the WS-Security specifica-
tion [3] could also be integrated to enforce the endpoint-to-
endpoint security. The web services can be developed and

deployed by using JAX-WS [4] from Java SE 6 or Axis2 [5]
from Apache. The mediator functionality utilizes the Java
CoG Kit which in turn interacts with the underlying Grid
infrastructure.

The Mediator service can support proxy credential dele-
gation so users won’t have to authenticate more than once,
effectively implementing a single-sign-on mechanism. It
can be divided into two physical parts to deploy to gain an
improved security. In such case, the two parts can com-
municate with each other using Web services or a Remote
Method Invocation(RMI) approach. The first part wroks as
a web service agent, and the call to web services will be for-
warded to the othe part, which could be behind a firewall.

3.3 Support Services

The support services component provides valuable tools
and services to aid the mediator and Web client when work-
ing in both a single user and collaborative environment.
These services includes include account creation and man-
agement, collaborative queueing and resource sharing, per-
sistent storage of task execution states, and integrated Web
2.0 mashup technologies. These services offer the user a
rich experience that extend the usefulness of current Grid
infrastructure in a way that is easy and convenient for the
user.

4 Design Issues

The system design is based heavily on Object-oriented
programming model and Service-Oriented Architecture
(SOA) [6,7]. The entities in the system are all objects, while
Service-oriented architecture is used for the interaction be-
tween the distributed objects. The benefit of this approach is
that it makes the distributed objects loosely coupled, so we
are concerned only with the contract between them, not the
implementation. As long as we keep the contract between
entities, changes on implementation of one part would not
affect other parts of the system.

4.1 JavaScript CoG Client Functionality

In order to interact with Grid, we need to deal with
job/workflow submission. We also need to deal with work-
flow queue, authentication, and status query. This section
summaries the design of JavaScript library to facilitate that.

4.1.1 Job Management

To deal with job management, we need a JavaScript object
which is basically an abstraction for all executable entities,
jobs or workflows.

2

It contains two important fields, Attributes and Provider.
Provider could be system, Karajan or another workflow en-
gine’s name. Attributes would be commands or the content
of the workflow description while using workflow stated in
Provider.

Currently we are interested with the Karajan engine
since it is the default workflow description language used
in Java CoG Kit. We could have class KarajanWorkFlow to
provide the workflow browsing and editing functionality in
the web client side.

4.1.2 Workflow Management

Workflow is a set of jobs with dependencies between each
other. As stated previously, we are currently have special
interests with Karajan workflow. Therefore we need an ob-
ject to depict the Karajan workflow.

A Karajan workflow can contain one or more jobs. It
supports hierarchical workflow, which means a workflow
can be a job in another workflow.

It provides the following functionality:

• addJob (jobname, job) – A new job is appended to a
workflow.

• deleteJob (jobname) – The job with the name speci-
fied by parameter jobname is deleted. As a result, all
related dependency is deleted as well.

• listJobs() – List all jobs in a workflow.

• searchByName(jobname) – Search job by name in a
workflow

• addDependency (jobparent, jobchild) – Add depen-
dency which says that job jobparent should be exe-
cuted before job jobchild.

• removeDependency(jobparent, jobchild) – Remove
dependency between job jobparent and job jobchild.

• toggleDependency(jobparent, jobchild) – If there is a
dependency, remove it. If there is not, create a new
one.

Support for other workflow formats will need some other
similar class depending on the workflow engine used.

4.1.3 Queue Management

To deal with job/workflow queue, we need a JavaScript ob-
ject to represent a queue of Executable objects that have no
dependency on each other. In other words, they can be exe-
cuted in arbitrary order. Notice that in the following context,
we use the name workflow to indicate all the kinds of Exe-
cutable objects, whether theyre instance of some workflows
like Karajan or an executable scripts.

Queue management includes functionality to enable
client-sde workflow queue management:

• addWorkflow(name, workflow)– Append the work-
flow specified by parameter to a workflow queue.

• removeWorkflowByIndex(index) – Remove a work-
flow according to parameter index.

• removeWorkflowByName(name) – Remove a work-
flow with name specified by parameter name.

• clearAll() – Remove all workflows in the queue.

• searchByName(name) – Return the index of the work-
flow with the name specified by parameter. If no cor-
responding workflow exists, return -1.

4.1.4 Authentication

The Authenticator is an abstraction method that is used to
handle authentication. It the same two fields of Attributes,
and Provider, and an authenticate() function. We use the
default HTTPS connection as provider, and add support for
other authentication methods. The Attributes contain the
necessary information to authenticate the user while use the
method provided by the Provider. For the case of HTTPS,
it would contain the user’s username and password.

4.1.5 Workflow Status

To monitor the execution status, we provide a Query ser-
vice that is used to query state of workflows that the user
submitted to execute.

It provides the following functionality:

• query() – Get state of all workflows submitted by the
user.

• query(workflowIDs) – Get state of specified workflows
submitted by the user.

4.1.6 JavaScript CoG Abstractions

Now we have the above JavaScript objects defined, which
function as classes in a Object Oriented (OO) design. By
using these classes, we define utility class CoGClass to do
the workflow submission and result query.

The functionality provided is listed below:

• authenticate(Authenticator) – The Authenticators au-
thenticate() function will be called. For example, if
we use HTTPS as provider, then a username/password
authentication will be carried out.

3

• execute(Executable, resources) – Submit a workflow to
server side to execute. The resources specify necessary
resources associated with the jobs. transfer(from, to);
transfer data from from to to.

• query() – Get state of all workflows that were submit-
ted to execute by the user.

• query(workflowids) – Get state of specified workflows
that were submitted to execute by the user.

CoGClass will perform the interactions with the Grid
through server side web services. Additionally, an ele-
mentary collaborative environment is provided, in a form
of shared workflow queue. Class CoGQueue deals with
the interactions between the client and the server sides
CoGQueue zone.

It provides the following functionality:

• listQueues() – List all the queues that the user are par-
ticipating.

• grantAccess(queueID, userlist) – The owner of a queue
can give some other users access to the queue.

• add(queuename, Executable) – Submit a workflow into
the server sides CoGQueue zone to store for future
use or share with other users. If the queuename ex-
ists and the user has privilege to access that queue(he
is a participants of that queue), the server side program
will extract info from the Executable object and con-
struct objects to insert into the queue; otherwise the
server side program will construct a new queue with
that name, and set the user as the owner of the queue.

• remove(queueID, sharedWorkFlowID) – The owner of
a workflow can remove it.

• list(queueID); list all workflows metadata shared in the
queue.

• listParticipants(queueID) – List all the participants of
the queue.

• listByName(queueID, username) – List the workflow’s
metadata owned by a user from one queue.

• listByType(queueID, provider) – List all the work-
flow’s metadata with the specified type, say, Karajan
workflow, from the specified queue.

• getStatus(queueID, sharedWorkFlowID) – Query the
specified workflow’s status. It could be edited by an-
other user.

• browseWorkflow(queueID, sharedWorkFlowID) –
Download the workflow to client side to browse.

• obtainWriteToken(queueID, sharedWorkFlowID) –
The user try to obtain the write token.

• editWorkflow(queueID, sharedWorkFlowID) – The
user will try to obtain the write token and then to edit
the workflow.

• updateWorkflow(queueID, sharedWorkFlowID) – Up-
date the workflow when complete editing.

Through the CoGQueue, a user could fulfill workflow
persistent before submission, and share workflows among a
certain group. This enables collaboration among Grid users.

4.1.7 Security concerns

Since the HTTP protocol is stateless, we may need to main-
tain user’s status in client side during one session. The
status is kept in a cookie file, which may include user re-
lated information and/or session specified information. The
paradigm here is that we need to keep as few sensitive data
in client side as we can, since the client side is always the
weakest one in the security chain. It may be controlled and
abused by malicious users. Also it’s vulnerable to some
JavaScript related attacks.

The JavaScript security issue has two kinds of mean-
ings. From the client side’s point of view, the script from
the server side should not harm the client side; while from
the server’s side, we cannot assume the data from client side
are sent by a trusted, secured client.

Two policies are enforced by most browsers to deal with
this issue. The first is sandbox, which means the script files
from the server can only be executed in a limited manner in
a restricted environment which has no impact in the client
system; the second is same-origin policy, which assures that
script from a certain server can only access resources from
the same origin. Cross-site Scripting(XSS) [8] is a typi-
cal attack which violates the same-origin policy. By de-
liberately coding, a malicious attacker may forge a legal
request which the browser assumes it originates from the
same place as one of the running scripts, thus expose the
user’s sensitive information associated with the web site
where the running script is from. Or the malicious code
may forge the user’s request to the website, which is called
Cross-site Request Forge(XSRF) [9], thus performing oper-
ations that the user doesn’t intent to do. There is no single
method to deal with these attacks, while set of rules need
to be considered during the development of the JavaScript
code [9, 10].

4.2 Mediator Service

4.2.1 Web Services

We use Java to develop and deploy the web services. We can
implement the web Service Endpoint Implementation(SEI)

4

class by using annotation mechanism provided by Java SE
6. JAX-WS provides a convenient tool wsgen [11] that can
generate all the artifacts required for web service deploy-
ment from a Java SEI class. An alternative method to ac-
complish this is using axis2 related tools. To deploy the
web service in some web container like Apache/Tomcat, or
Java SE 6s built-in Httpserver will expose the web service
to the client side.

Security is obtained through a HTTPS connection and
message level security based on the WS-Security policy.
Users need to authenticate to the server using a username
and password. Furthermore, all the messages come from
the client side need to be semantically checked in case of
the request is coming from altered malicious script code and
being used to attack the Grid system.

4.2.2 Application Logic layer

The application logic layer deals with Grid service intera-
tions. It utilizes Java CoG Kit API to interact with the un-
derlying Grid infrastructure. The call to the Java CoG Kit
API will be transformed into a Web service and be exposed
to the JavaScript CoG API.

The proxy credential delegation happens here. The
JGlobus module from Java CoG Kit provides functionali-
ties to handle the interaction with MyProxy. The MyProxy
provides MyProxyLogon API [12] which can also fulfill
this task. As long as a user stored his/her credential on a
MyProxy server, the user can retrieve the credential by pro-
vide the username and passphrase used when generating the
proxy credential. Thus the user delegates the application
server to communicate with the underlying Grid infrastruc-
ture during the user session, without the need to authenticate
himself/herself each time when submitting a job or query
status of a submitted job.

4.2.3 CoGQueue Management

This is the space where users share their workflows and do
collaborative tasks. The space contains queues of shared-
WorkFlow. We could also implement this as a generic ob-
ject queue.

A queue is defined as:
queue ::= (queueID, label, owner,

participants, objects)

• QueueUID : Unique ID in this CoGQueue zone;

• owner: Who created this queue. Only the owner can
grant other users access to the queue.

• participantsList: Who are participating in this queue.
Could be regarded as a Access Control List of this
queue.

• objects: Those shared workflows.

Objects in the queue, or called SharedWorkFlow, are de-
fined as:

workflow ::= (SWFUID, label, owner,
status, writeToken,
type, WFObj),

• SWFUID: The unique id for the shared workflow

• owner: The workflow’s owner. It’s the person who
uploaded the workflow.

• status: Indicate whether or not this workflow is being
edited by a user.

• writeToken: Works as a lock, to guarantee atomic write
operation of the workflow object, thus ensuring the
content is consistent. The server needs to check the
client’s liveness periodically to make sure it’s there
editing the workflow. Otherwise the writeToken will
be recovered thus make the workflow available for
other users to edit.

• type: The object’s type. Could be system executable
script or Karajan workflow for example.

We could also maintain a user/SharedWorkFlow map to
speed up some operations called from client side.

4.3 Implementation

We have developed a prototype of the system, which
can handle job submission and status query from web client
side; provides a GUI based environment in the Web client
side to mange and edit the jobs/workflows. The prototype
utilizes Java CoG Kit as intermediary services with Axis2
and Tomcat to develop and deploy web services. The Kara-
jan workflow engine is supported on the client side and is
used to composite workflows.

4.3.1 Job construction and workflow composition

The prototype now supports system commands and Karajan
workflow engine based job/workflow. This is determined
by whether or not the provider is System or Karajan. The
GUI widget provides easy way to define a job through the
Karajan workflow language.

A user only need to select elements from panel, then the
workflow description will be generated automatically.

Grid users can also construct a more complicated work-
flow, by adding dependency between jobs. In this logical
level, a workflow is a Directed Acyclic Graph (DAG) where
arrows between jobs indicate job dependency.

5

Figure 2. Job definition

Figure 3. Workflow construction

4.3.2 Job execution

When finished job construction, it is then ready to submit
for execution. The web client will invoke server side web
service, and the server side will submit the job by utilizing

the related API from Java CoG Kit. Then a jobId will be
returned to the client side as a handler. The user can query
job execution status by using this id. The response from the
server will be displayed in the panel.

Figure 4. Job submission

4.3.3 Status query

Users can check state of the submitted workflows by spec-
ifying the workflow id, or get states of all the submitted
workflows. The response from server will be displayed in
the panel.

Figure 5. Job status query

5 Conlcusion

In this paper we present a JavaScript Grid abstrac-
tion framework. It provides a client side web application
through which Grid users can deal with job and workflow
management in client side, share workflows with other Grid
users during collaboration, submit jobs to Grid services to
execute, and query status of the jobs. The web services
based application takes advantages of easy deployment and

6

great interoperability. This introduces a more convenient
and user-friendly Grid computing environment. We have
developed a prototype which can carry on the basic Grid
operations. The next step is implementing and integrating
CoGQueue, the user collaboration part. We also plan to in-
vestigate and support other workflows and other kinds of
authentication methods.

Acknowledgment

Work conducted by Gregor von Laszewski is supported
(in part) by NSF CMMI 0540076 and NSF SDCI NMI
0721656.

Status

This paper has been enhanced from its originial form
from 2007. An updated implementation of this paper has
since been published [13].

References

[1] I. Foster and C. Kesselman, “Globus: A
Metacomputing Infrastructure Toolkit,” In-
ternational Journal of Supercomputer Appli-
cations, vol. 11, no. 2, pp. 115–128, 1997,
ftp://ftp.globus.org/pub/globus/papers/globus.pdf.

[2] G. von Laszewski, “A Loosely Coupled Metacom-
puter: Cooperating Job Submissions Across Multiple
Supercomputing Sites,” Concurrency, Experience,
and Practice, vol. 11, no. 5, pp. 933–948, Dec.
1999, the initial version of this paper was available in
1996. [Online]. Available: http://www.mcs.anl.gov/
∼gregor/papers/vonLaszewski--CooperatingJobs.pdf

[3] OASIS, “Web Services Security v1.0 (WS-
Security 2004),” 2004. [Online]. Avail-
able: http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0.pdf

[4] S. Microsystems, “Java API for XML Web Services
(JAX-WS).” [Online]. Available: https://jax-ws.dev.
java.net/

[5] Apache, “Apache Axis2.” [Online]. Available: http:
//ws.apache.org/axis2/index.html

[6] A. Uyar, W. Wu, H. Bulut, and G. Fox, “Service-
oriented architecture for a scalable videoconferenc-
ing system,” in Pervasive Services, 2005. ICPS ’05.
Proceedings. International Conference on, 11-14 July
2005, pp. 445–448.

[7] X. Lu, “An investigation on service-oriented architec-
ture for constructing distributed web gis application,”
in Services Computing, 2005 IEEE International Con-
ference on, vol. 1, 11-15 July 2005, pp. 191–197vol.1.

[8] G. Di Lucca, A. Fasolino, M. Mastoianni, and P. Tra-
montana, “Identifying cross site scripting vulnerabil-
ities in Web applications,” in Web Site Evolution,
2004. WSE 2004. Proceedings. Sixth IEEE Interna-
tional Workshop on, 11 Sept. 2004, pp. 71–80.

[9] N. Jovanovic, E. Kirda, and C. Kruegel, “Preventing
Cross Site Request Forgery Attacks,” in Securecomm
and Workshops, 2006, Aug. 28 2006-Sept. 1 2006, pp.
1–10.

[10] J. Shanmugam and M. Ponnavaikko, “A solution to
block Cross Site Scripting Vulnerabilities based on
Service Oriented Architecture,” in Computer and In-
formation Science, 2007. ICIS 2007. 6th IEEE/ACIS
International Conference on, 11-13 July 2007, pp.
861–866.

[11] “JAX-WS wsgen Document.” [Online]. Avail-
able: http://java.sun.com/javase/6/docs/technotes/
tools/share/wsgen.html

[12] NCSA, “MyProxyLogon.” [Online]. Available: http:
//grid.ncsa.uiuc.edu/myproxy/MyProxyLogon/

[13] G. von Laszewski, F. Wang, A. Younge, X. He,
Z. Guo, and M. Pierce, “Cyberaide javascript: A
javascript commodity grid kit,” in GCE08 at SC08.
Austin, TX: IEEE, Nov. 16 2008. [Online]. Avail-
able: http://cyberaide.googlecode.com/svn/trunk/
papers/08-javascript/vonLaszewski-08-javascript.pdf

7

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--CooperatingJobs.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--CooperatingJobs.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
https://jax-ws.dev.java.net/
https://jax-ws.dev.java.net/
http://ws.apache.org/axis2/index.html
http://ws.apache.org/axis2/index.html
http://java.sun.com/javase/6/docs/technotes/tools/share/wsgen.html
http://java.sun.com/javase/6/docs/technotes/tools/share/wsgen.html
http://grid.ncsa.uiuc.edu/myproxy/MyProxyLogon/
http://grid.ncsa.uiuc.edu/myproxy/MyProxyLogon/
http://cyberaide.googlecode.com/svn/trunk/papers/08-javascript/vonLaszewski-08-javascript.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/08-javascript/vonLaszewski-08-javascript.pdf

	Introduction
	Architecture
	Overview
	Web Client
	Mediator
	Support Services

	Design Issues
	JavaScript CoG Client Functionality
	Job Management
	Workflow Management
	Queue Management
	Authentication
	Workflow Status
	JavaScript CoG Abstractions
	Security concerns

	Mediator Service
	Web Services
	Application Logic layer
	CoGQueue Management

	Implementation
	Job construction and workflow composition
	Job execution
	Status query

	Conlcusion

