
Cyberaide JavaScript: A JavaScript Commodity Grid Kit
Gregor von Laszewski1, Fugang Wang1, Andrew Younge1, Xi He1, Zhenhua Guo2, Marlon

Pierce2

1Rochester Institute Of Technology, 102 Lomb Memorial Drive Rochester, NY 14623
2Community Grid Lab, Indiana University, Bloomington, IN 47404

E-mail: laszewski@gmail.com

Contents

1 Introduction 2

2 Background and Related Research 2

3 Design 3
3.1 Security Considerations 4
3.2 Web Client 5
3.3 Server 5

3.3.1 Agent service 5
3.3.2 Mediator Service 5

3.4 Other Client Interfaces 6

4 Implementation 6
4.1 Web Client 6
4.2 Application Programming Interface . . 6

4.2.1 Job and Workflow Abstraction 8
4.2.2 Security 8

4.3 Agent Service 8
4.4 Mediator service 9
4.5 Collaborative Queue 9

4.5.1 Client side Workflow Manage-
ment 10

4.5.2 Shared Workflow Queue Man-
agement 10

4.6 Graphical User Interface 10

5 Deployment 12

6 Conclusion 12

1

Cyberaide JavaScript: A JavaScript Commodity Grid Kit

Gregor von Laszewski1, Fugang Wang1, Andrew Younge1, Xi He1, Zhenhua Guo2, Marlon Pierce2

1Rochester Institute Of Technology, 102 Lomb Memorial Drive Rochester, NY 14623

2Community Grid Lab, Indiana University, Bloomington, IN 47404

E-mail: laszewski@gmail.com

Abstract

In this paper, we describe a service oriented archi-
tecture and Grid abstraction framework that allows
us to access Grids through JavaScript. Obviously,
such a framework integrates well with other Web 2.0
technologies. The framework consists of two parts.
A client Application Programming Interface (API)
to access the Grid via JavaScript and a mediator
service and API through which the Grid access is
channeled. The framework uses commodity Web
service standards and provides extended function-
ality such as asynchronous task management, file
transfer, and workflow management based on our
previous work. The availability of our framework
simplifies not only the development of new services,
but also the development of advanced client side
Grid applications that can be accessed through Web
browsers. We demonstrate this ability by providing
an example that integrates a variety of useful services
to be accessed through a JavaScript enabled client
desktop via a Web browser. Overall, Grid developers
will have another tool at their disposal that projects
a simpler way to distribute and maintain cyberin-
frastructure related software, while simultaneously
delivering advanced interfaces and integrating social
services for the scientific community.

Keywords: JavaScript, Grid Computing, Work-
flow, CoG Kit, Grid Abstractions.

1 Introduction

In this paper, we describe a Service Oriented Archi-
tecture (SOA) [1] and Grid abstraction framework
that allows us to access Grids through JavaScript. It
is based upon abstractions that have proven to be
useful in the Grid community and are the result of
research activities from the Java CoG Kit [2]. Nev-

ertheless, we are enhancing the previous approach
with a number of advanced services as well as tar-
geting JavaScript as the language of choice for the
client to support Web 2.0 style portals. Through the
framework we can integrate with a variety of Grid
middleware and obtain access to the Grid fabric. In
this paper we focus primarily on the integration with
Globus [3] and access to the TeraGrid [4]. The frame-
work contains a useful set of JavaScript functions to
simplify this access.

One of the advantages of the JavaScript API is
we can integrate a large number of commodity li-
braries available in JavaScript to go beyond the tradi-
tional use of Grid technologies. Hence, we are able to
leverage from data-structure libraries, social network-
ing and communication libraries to enable Web 2.0
programming features and allow access to additional
commodity cyberinfrastructure that would otherwise
be difficult to be achieved. As a result the framework
will be more than just a Grid client library. In order
to emphasize this difference and its ability to func-
tion as an aide for integrating cyberinfrastructure in
general, we use the term Cyberaide Javascript.

2 Background and Related Re-
search

Grid portal development has been going on for quite
some time. The first usable library to support the
development of Gridportals was the Java CoG Kit
[5]. Based on the premise of the Java write-once-run-
everywhere concept the Java CoG Kit was designed
explicitly to be a 100% Java-based library. Originally,
Applets were developed that were soon enhanced by
JSR168 [6] compatible portlets. These portlets were
then integrated and enhanced as part of the Open
Grid Computing Environments (OGCE) Project [7]
and by Gridsphere [8]. Together these three projects

2

(CoG Kit, OGCE, and Gridsphere1) build a major
foundation for the TeraGrid portal [9], which is one
of the premier NSF sponsored resource in the U.S. to
obtain access to Grid resources. TeraGrid uses the
Globus Toolkit [3] to manage its Grid resources.

However, the current generation of Web based tech-
nologies have integrated JavaScript as one of the ma-
jor offerings. Unfortunately, to date no JavaScript
framework exists that lets us access the Grid easily.

While other Portal and Web technologies exist, we
do not list them as they are beyond the scope of this
paper.

3 Design

In order to design a JavaScript library for the Grid we
identified the following requirements as an essential
feature:

• Ease of use is important to make the JavaScript
based API and interfaces useful for Grid and
Web developers.

• Low installation footprint is necessary to support
fast downloads as well as an easy maintenance
through a small manageable code base.

• Security is needed to gain access to Grid re-
sources in order to avoid compromising the sys-
tem. This is especially important due to known
limitations of JavaScript.

• Basic Grid functionality must be provided in or-
der for developers to create Grid-based client ap-
plications.

• Advanced functionality is needed as many de-
velopers do not want to replicate functionality
provided by other Grid middleware and upper-
ware. This includes more sophisticated job man-
agement functionality, workflow queues, and the
availability of elementary graphical user inter-
faces (GUI)s.

To fulfill these requirements, we have designed our
framework methodologically as a layered architec-
ture. The architecture is comprised of several com-
ponents. We depict the most important components
of our architecture in Figure 1 and explain them in
more detail next. The architecture contains a Web
client providing access to basic and advanced Grid

1Most recently the decision was made to replace Gridsphere
with Websphere

functionality, as well as the necessary components to
deploy them in a secure Web server. To keep the
footprint of the library small most of the functional-
ities in regards to the Grid are executed on a secure
server. As this server mediates the tasks to the Grid,
we refer to it as the mediator service.

Figure 1: System Architecture

First, our Web client provides a high-level appli-
cation programming interfaces (API) to the Grid,
a Grid workflow system, and components to access
simple Grid functionality through graphical user in-
terfaces. While using the API the developers can
build portals specifically targeted for Grids and in-
tegrate customized JavaScript-based GUIs. Further-
more, the framework provides important functionali-
ties such as authentication, file transfer, job manage-
ment, and workflow management.

Second, we are conducting all interactions to the
backend Grid or cyberinfrastructure through the me-
diator service. The mediator service is responsible
for communicating with Grid services through un-
derlying Grid middleware such as the Java CoG Kit,
Globus toolkit, or even SSH. Meanwhile it exposes
the Grid services via standard Web services. It al-
lows the use of a personal queue management mech-
anism that keeps track of all jobs and workflows sub-
mitted to the Grid in a more convenient form than
the current generation of Grid middleware, such as
the Globus Toolkit. The mediator service contains
several essential functional modules such as user ac-
count management, authentication, job management,
collaboration queues, and a persistence module allow-
ing users to keep track of their jobs and tasks on the
Grid.

3

An intermediate component exists called the agent
service that handles all communications between the
web client and the mediator service. This means the
agent service acts both as a service provider to the
web client and as a service consumer of the medi-
ator service. The agent service forwards the action
requests to the mediator service, which ultimately
sends requests to the Grid services. The results
come back from the Grid through the mediator to
the agent, which in turn forwards the information
back to the client. We have to host the JavaScript
files, CSS files and other resources in some web con-
tainer, and according to the same-origin policy for
JavaScript [10], we need to put the web service that
the JavaScript calls in the same web container. By
separating the real application logic and putting it
into the mediator service, it is possible to host the
services on different machines, which would increase
security and scalability.

3.1 Security Considerations

Naturally, security is of utmost importance in the de-
velopment of any portal framework to the Grid. It
is important to identify possible security issues that
may arise in a JavaScript-based solution.

Since HTTP is stateless, we need to maintain some
method to record users’ states. Typically this is done
by using HTTP cookies [11] which may include user
and/or session related information. However, due to
the well-known Cross-site Scripting(XSS) [12,13] and
Cross-site Request Forge (CSRF/XSRF) [14] vulner-
abilities, we avoid the use of cookies to minimize the
potential risk of these attacks. Instead we use a secu-
rity token that is assigned to an authenticated user
in order to prove users’ identity during the session.

Security tokens maintain session information in
similar way to cookies. Since we maintain the token
only inside a JavaScript object during a session, it
is immune to cookie related attacks, which typically
access the cookie using document.cookie [15, 16].

The security architecture is supported by the fol-
lowing features.

• HTTP over SSL/TLS (HTTPS) [17] is used be-
tween the web client and web server to gain
transport layer security.

• WS-Security standard [18] is used to secure the
Web service traffic between the web server and
the underlying mediator service.

• Grid Security Infrastructure (GSI) [19] is used
between the mediator service and the Grid.

Figure 2: Security view of a typical use scenario

To better understand some of the security as-
pects we walk through the following scenario where
a user authenticates using MyProxy and performs
tasks such as job submission, status query and re-
sult retrieval. In Figure 2 flows are corresponding
to (A) user authentication request, (B) authentica-
tion response, (C) Grid related actions request and
(D) Grid responses. A flow consists of multiple steps
that are indicated by the inclusion of a number for
the step.

1. An authentication request is shown by flow (A).
A user tries to login to the system by providing
the username/password (U/P) in the web client
as in step (A1). HTTPS guarantees that the traf-
fic is secured between the browser and the agent
service. The agent service then forwards the user
credential to the user authentication module in
the application logic layer (A2). The authentica-
tion module could be used together with a user
account management module or an external fed-
erated identity system such as MyProxy as in
step (A3).

2. An authentication Response of the authentica-
tion request from server is conducted as part of
Flow (B). If the user provided a valid creden-
tial, then a security token (T) is returned to the
agent service from the mediator service, as in
step (B2). The security token finally returns to
the web client, which is depicted by step (B3).

4

The token is generated randomly each time. The
authenticated username and corresponding secu-
rity token are maintained in a map so the token
could be used later to prove the user’s identity
and also function as a session ID. This mecha-
nism is similar with what is used in HTTP cook-
ies. Implementing a cookie solution is avoided to
eliminate the cookie related security vulnerabil-
ities.

3. Grid related actions such as the submission of
jobs, status queries, or retrieval of results are
represented by flow (C). The client JavaScript
API will append the security token to the user’s
request to the agent service as shown in step (C1)
to prove the user’s identity during the current
session. Next the agent service could forward the
task appended with the token to the mediator
service, as shown in step (C2). Then the token
is checked for validity in the mediator service. If
it is valid, the mediator service will invoke Grid
services as desired as shown in step (C3). When
the user logs out of the system or the session
duration is expired, the security token will be
invalided and recycled by the Mediator service
and no further actions will be carried on to the
underlying Grid services.

4. Grid responses that occure during task submis-
sion are shown in flow (D). The responses of
the Grid related action requests are forwarded
all the way back up to the client, which is shown
in steps (D1)through(D3).

3.2 Web Client

The Web client provides the elementary functional-
ity to access the Grid through a portal user interface.
The portal fulfills the tasks by using the JavaScript
API allowing access to a number of essential Grid
services. These services provide the following func-
tionality to the user:

1. Creation of jobs and workflows on the client side;

2. Submission of jobs for execution or for inclusion
in shared queues that are managed by multiple
users.

3. Information queries and monitoring of the status
of jobs and workflows.

It is important to note that at this time Globus
GRAM does not support managing jobs by multiple

users. We are able to provide this functionality be-
cause all user jobs are managed through the mediator
service that allows jobs to be executed through a ser-
vice in behalf of a coordinating user.

3.3 Server

As described before, the server functionality contains
two logical parts, the Web services interface also re-
ferred to as user agent service and the Mediator ser-
vice that builds the bridge between the Grid and our
client library.

3.3.1 Agent service

The agent service functions as an intermediate service
between the Web client and the mediator service. It
hides much of the complexity of the Grid and allows
for the deployment and integration of resources where
the installation of Grid middleware is not possible.
Hence, it works as a proxy for users to interact with
the mediator service, and through it to Grid services.
It can perform proxy credential delegation for users
to authenticate to the Grid and to provide single sign
on. The agent uses web services to provide function-
ality calls and communication with web client. Thus,
the agent service itself is a service consumer of the
mediator service.

3.3.2 Mediator Service

The mediator service is where the application logic
code resides. It contains several modules to deal with
different functionalities and offers a persistent view of
interactions with regular Web services, Grid services,
or authentication. While the agent service just for-
wards all requests from the user to the mediator ser-
vice, the mediator service supports multi-user concur-
rency by maintaining session and state for each user.
A persistent database is used to maintain state about
workflows and collaboratively managed queues. It is
important to recognize that our notion of compute
tasks exceeds that of the basic Globus functionality.
It also allows one to integrate services into the tasks
managed by a user that are not typically executed
by Globus. Thus a query to Web services offered by
another organization like Google can be readily ab-
stracted a task with its own status. Hence, our task
model includes not just tasks that are executed on
Globus enabled Web services.

5

3.4 Other Client Interfaces

Due to the separation between the service and the
client, it was also possible to develop a Cyberaide
shell [20] that allows access to the service function-
ality from a command line console. Of special in-
terest for the user is the ability to have semantically
enhanced commands as part of this shell. Thus, a
command such as

submit /home/gregor/myprg -notify Gregor

would look up an object called Gregor that specifies
where to send the notification to. This may not just
be an e-mail. The user may decide to have notifica-
tions forwarded to his cell phone via SMS messaging.
The behavior is determined during runtime.

4 Implementation

The system design is based on object-oriented model
and Service-Oriented Architecture (SOA) [21–23].
Entities in the system are all objects, while a SOA is
used for the interaction between the distributed ob-
jects. The benefit of this approach is that it enables a
loose coupling between distributed objects. Thus, our
concern is how to manage contracts between services
and not the actual implementation details of the ob-
jects that may be implemented in different languages
and frameworks. As long as we keep the contract
between entities, changes on implementation of one
part would not affect other parts of the system.

Although JavaScript is not a strong typed lan-
guage and does not provide a general mechanism for
defining a class or object-type definition [24], it is a
well-established practice to define custom objects in
JavaScript that behave, in many ways like classes in
Java. Hence we will use the term JavaScript classes
throughout the text.

4.1 Web Client

One of the most important feature for many users
will be the definition of APIs in JavaScript deal-
ing with job files, and security management. Based
on the lessons learned from the Java CoG Kit, we
designed APIs in JavaScript that address the well-
established functionality needed by many users [25].
This includes tasks that manifest themselves as au-
thentication, file transfers, jobs, status queries, work-
flows [26], and experiments [27].

4.2 Application Programming Inter-
face

Table 1 lists a small subset of the functionality
that we are currently implementing. Built upon the
JavaScript CoG APIs, the portal provides generic
purpose functionalities for access Grid service while
communicating with the mediator. While we use
SOAP as message format between web client and
agent service, the output of the JavaScript APIs is
transformed into JSON [28, 29] format. The return
values are handled as part of callback functions that
can be customized by the developers using our API.
However, we provide a significant number of use-
ful callback handlers as part of or documentation to
demonstrate to serve as template for customization.2

This also includes a comprehensive set of documented
JSON objects that will make the development of cus-
tomized callback functions easier. Thus, it allows us
to easily integrate data into the JavaScript client pro-
gram. External JavaScript libraries such as DOJO
toolkit [30] can be used to ease the development of a
user friendly graphical interface with desktop appli-
cation comparable performance so we don’t need to
reinvent wheels. An example interface of the services
are listed in Section 4.6.

We have divided the application interface into mul-
tiple categories. These include JavaScript objects
dealing with jobs, workflows, and authentication. In
addition we provide many functions that are used as
part of workflow management, job management, and
queue management. For methods with callback func-
tion in their definition we can also call them without
a callback function. In this case, the function will
be executed synchronously, waiting for its completion
and returning a JSON object.

In asynchronous mode a user can pass a pre-
definedcallback function as parameter to a method
call. The callback function uses a single JSON object
as parameter and will be automatically called when a
response is available. Alternatively a user could use
a function to call a method simply by omitting the
callback parameter. In this mode the method will
return a JSON object that the user can operate on
synchronously and wait till the response is available.

To demonstrate the use of callbacks please review
Figures 3-6. Figure 3 shows an example which de-
fines a CoGExecutable object. Figure 4 and Figure
5 show the two different modes to call and use an

2To assist other developers, we are exploring the creation
of a community repository in which users can share their tem-
plates for handling cyberinfrastructure related patterns.

6

Table 1: Application interface
Class CoGExecutable – functions related to Job and Workflow Abstraction

Object with a number of attributes that abstracts
the concept of execution of jobs.

Class CoGAuthenticator – functions related to Security
◦ authenticate (callback) Authenticate through the attributes by using the

provider defined in the CoGAuthenticator object.

Class CoGBase – functions related to User Job Management
◦ authenticate(CoGAuthenticator, callback) The CoGAuthenticator’s authenticate() function

will be called. For example, if we use in the at-
tribute provider as part of the CoGAuthentica-
tor class attributes the value MYPROXY, then a
myproxy authentication will be carried out.

◦ submit(CoGExecutable, callback) Submit an Executable to server for asynchronous
execution.

◦ transfer(source, destination, callback) transfer data from source to the destination each
of which are defined as URI. A transfer itself is
packaged as a submit function and is treated the
same way as other executables are.

◦ list(callback) List all the CoGExecutables submitted to the
server.

◦ queryStatus(executablesids, callback) Get state of the set of executables specified by their
ids.

◦ queryOutput(executableids, callback) Get list of all the output files the set of executables
specified by their ids.

◦ getOutput(executableids, resultFile, callback) Get back the content of one output file of the spec-
ified executable ids.

Class CoGWorkflow – functions related to Client Side Workflow Management
◦ addJob (name, CoGExecutable) A new job with a given name is added to this work-

flow.
◦ deleteJob (name) The job with the name specified by parameter job

name is deleted. As a result, all related depen-
dency is deleted as well.

◦ listJobs() List all jobs in a workflow.
◦ searchByName(job) Search a job by name.
◦ addDependency (parent, child) Add dependency between a job patent and the

child.
◦ removeDependency(parent, child) Remove dependency between a job parent and

child.

Class CoGQueue – Server Side Shared Queue Management
◦ listQueues(callback) List all the queues that the user are participating.
◦ grantAccess(queueID, userlist, callback) The owner of a queue can give some other users

access privilege to the queue.
◦ add(queuename, CoGWorkflow, callback) adds a workflow to the queue to be executed.
◦ remove(queueID, workflowID, callback) The owner of a workflow can remove it.
◦ list(queueID, callback) list all workflows’ metadata shared in the queue.
◦ listParticipants(queueID, callback) List all the participants of the queue.
◦ listByName(queueID, username, callback) List the workflows’ metadata owned by a user from

one queue.
◦ listByType(queueID, provider, callback) List all the workflows’ metadata with the speci-

fied type, say, Karajan workflow, from the speci-
fied queue.

◦ getStatus(queueID, workflowID, callback) Query the specified workflow’s status. It could be
locked since being edited by a user.

◦ browseWorkflow(queueID, workflowID, callback) Download the workflow to client side to browse.
◦ obtainWriteToken(queueID, workflowID, callback) The user try to obtain the write token.
◦ editWorkflow(queueID, workflowID, callback) The user will try to obtain the write token and

then to download the workflow to edit.
◦ updateWorkflow(queueID, workflowID, WFObj, callback) Update the modified workflow when complete edit-

ing.

7

API functionality either through an asynchronous or
through a synchronous call. Figure 6 shows the re-
turned JSON object format for the synchronous and
asynchronous examples depicted in Figures 3 and 4

4.2.1 Job and Workflow Abstraction

The CoGBase class uses the above classes to per-
form the interactions with the Grid services, through
the agent service and Mediator service. The callback
functions has a single parameter jsonRet, which con-
tains a JSON [28,29] object containing the response.
To avoid security issues this response is wrapped into
a single object as discussed in [31–33].

Based on the discussion in the previous section it is
clear that the CoGExecutable class is used to define
an object that will be executed in the Grid, which
could be a single job or a number of jobs part of a
larger workflow. In summary, the class has two im-
portant fields: a provider and attributes. A provider
could have the values system, cog-karajan or any other
value referring to a workflow engine assuming that
support for the workflow type exists within the grid-
shell. Attributes describe properties of a task to be
executed.

4.2.2 Security

The CoGAuthenticator class is used to define objects
that handle the authentication in the JavaScript. It
has a provider and attributes fields and uses an au-
thenticate() function. The provider represents the
authentication method to be used. Currently we sup-
port username-token and MyProxy authentication.
The attributes contain the necessary information to
authenticate the user while using the method pro-
vided in the Provider field. For username-token au-
thentication, it would contain the username and pass-
word/token. For MyProxy authentication, the at-
tributes should contain the MyProxy server’s host-
name, port, username and corresponding passphrase
to retrieve the proxy credential. For the current pro-
totype system, MyProxy provider is used as the de-
fault authentication mechanism. The authenticate
function deals with initiating the authentication with
the server.

4.3 Agent Service

We have implemented the agent service with the help
of standard Web service technologies. Hence, SOAP
[34] messages are used for communicating between

// Example to define a single remote

// job and submit it:

var jobA = new CoGExecutable();

jobA.provider = "system";

var attribs = {};

// specify a command and arguments

attributes.command = "/bin/ls";

attributes.arguments = "-l";

//redirect standard output into stdout

attributes.stdout = "stdout" ;

//specify the remote machine and service

//.e.g. GT4

attributes.host = "fast.rit.edu";

attributes.globusProviderVer= "GT4" ;

...

Figure 3: Example of defining a CoGExecutable ob-
ject.

// Now you can submit the job

// through a CoGBase object in an

// asynchronous way. You need to

// define a callback function for the

// asynchronous call, which will be called

// automatically when a JSON

// object containing the jobId is returned

var cog = new CoGBase(url)

// url specifies the web service endpoint

cog.submit(jobA, callback1);

...

// pre-defined callback funtion by the user

function callback1(jsonRet){

...

// do customized operations here, e.g., display

// the returned JobId in a textbox in the HTML page

}

Figure 4: Use asynchronous mode to invoke a
method.

// you also call use synchronous call and

// wait until the json object returns.

var myJobId = cog.submit(jobA);

Figure 5: Use asynchronous mode to invoke a
method.

{"wfid" : id}

Figure 6: Format of the returned JSON object for
the above examples.

8

the agent service and web client. The connection is
secured through HTTP over SSL/TLS.

Presently, we use Java to develop and deploy the
Web services. We used JAX-WS [35] annotations
from Java SE 6 to specify the service.

The service archive [36] is deployed under Axis2
[37] service with Apache Tomcat [38] web server.

To interact with the mediator service, the client
stubs of the mediator service are generated by tools
such as wsimport. The build process is controlled by
maven [39] to allow for easy deployment and upgrad-
ability. All Web page resources including static web
pages, CSS files, the JavaScript CoG library, Portal
JavaScript files, and necessary external JavaScript li-
braries and images are hosted within the same Tom-
cat server under the same HTTPS host name and
port.

Secure traffic between agent service and web client
is obtained through HTTPS connection, while WS-
Security is used to secure the mediator service.

4.4 Mediator service

In the implementation of the mediator that interacts
with the Grid, we use the Java CoG Kit API and
command line tools. Thus, through the Java CoG
Kit we can enable proxy credential retrieval and del-
egation. In more detail, the Java CoG Kit JGlobus
module provides functionalities to handle the inter-
action with MyProxy [40]. As long as a user stored
his/her credential on a MyProxy server, the user can
retrieve the credential by providing the username and
user phrase at time when the proxy credential is gen-
erated. Thus the user delegates the application server
to communicate with the underlying Grid infrastruc-
ture during the user session without the need to au-
thenticate each time a job is submitted or a status
query is issued.

To expose this service to the client, it is imple-
mented and deployed as web service. WS-Security is
used to secure the service traffic, either by Username-
Token mechanism or PKI mechanism. Apache CXF
framework [41] is used to develop and secure the me-
diator service due to its simplicity. WS-Security is
supportted in the CXF framework, and is used to
secure the service traffic, either by UsernameToken
mechanism or PKI mechanism.

User account info is maintained in a persistent
database. However it would be possible to re-
place this mechanism with a federated authentication
based on Shiboleth [42] to integrate external identity
management systems. Tools and APIs from the Java

CoG Kit and the Globus toolkit are used to establish
the interaction with Grid services. Furthermore, the
Java CoG Kit Karajan workflow framework is used
to support workflow composition.

4.5 Collaborative Queue

Besides the typical Grid functionalities discussed in
the previous section, our design includes features that
enable users to share and manage workflows among a
group of users collaboratively. As such we have defied
a shared workflow and a shared queue that can contain
multiple workflows to be executed. Through the con-
cept of sharing we provide user-based access control
supported by ownership and group based access con-
trol supported by membership in a participant list.

Figure 7: A scenario for a shared Queue.

To implement this functionality, we have defined
the objects representing a shared queue and a shared
workflow:

queue ::= (queueID, label, owner,
participants, objects)

workflow ::= (workflowID, label, owner,
lastmodbyuser, lastmoddate,
writeToken, type, WFObj),

The attributes to these objects are as follows:

• label is a field to store a meaningful label to iden-
tify the object easily.

• QueueID is a unique ID for the queue.

• owner for the queue is the one who created the
queue. Only the owner can grant other users

9

access to the queue. Ownership can be transi-
tioned.

• participants contains a list of participants that
are allowed to modify the queue.

• objects represent workflows managed by this
queue.

• workflowID is a unique id for the shared work-
flow.

• lastmodbyuser is the last user who modified this
queue.

• lastmoddate is the last time when it is modified
by a user.

• writeToken is a lock to guarantee atomic write
operation of the workflow object.

• type is the object’s type. It could be system ex-
ecutable script or Karajan workflow, a Globus
job, a file transfer, to name only a view.

• WFObj is the workflow description wrapped in
this workflow object.

It is obvious from the definition of the attributes
to that it will be possible to provide a shared work-
flow. As pointed out before, it is important for the
activities typically conducted within an ad-hoc vir-
tual organization to coordinate computational exper-
iments as part of group activities. To support the
notation of Workflows we have introduced a number
of supporting APIs that makes the development of
workflow related tasks easy for clients and services.

4.5.1 Client side Workflow Management

The Workflow class (see Table 1) represents a CoG
Karajan workflow. A CoG Karajan workflow can con-
tain multiple jobs, and it supports hierarchical work-
flow, which means a workflow could be a job in an-
other workflow. A user can manage jobs with depen-
dencies between them as part of a single workflow.

4.5.2 Shared Workflow Queue Management

The CoGQueue class (see Table 1) is used to de-
fine objects that deal with the interactions between
the web client and the server side’s collaborative
queue management functionality. Users are able to
store workflows composed on client side to the server
side shared queue zone through a CoGQueue object.

These workflows can also be managed and shared be-
tween users. Callback functions and the returned
JSON objects share the same arguments as that in
the CoGBase.

4.6 Graphical User Interface

We have developed a prototype of the system that
handles tasks such as job and workflow specification,
file transfers, status and information queries. This
includes the development of a simple GUI support-
ing these tasks (see Figures 8-13). The prototype
utilizes the Java CoG Kit as intermediary services;
uses Axis2 [37] and Tomcat to develop and deploy the
agent service; and uses Apache CXF framework [41]
to develop and secure the mediator service.

User authentication is typically the first task.
An external MyProxy authentication is used for
user authentication. By providing appropriate
MyProxy server settings and the right username and
passphrase, users will be able to authenticate as
shown in Figure 8.

The Histrory of jobs allows us to check the history
of submitted jobs/workflows as shown in Figure 9.

Job construction and workflow composition is sup-
ported by GUI for single job submission (see Figure
10) and for workflows (see Figure 11). For simple job
specification users can fill out a form. For workflows
we provide at this time a simple text window that
accepts Java CoG Kit Karajan workflows.

Job execution is conducted once the job or work-
flow is specified. While explicitly pressing the submit
button, the web client will invoke a number of web
services through our mediator. Then a jobId will be
returned to the client side as a handler. The execu-
tion of jobs can be monitored through a simple GUI
as depicted in Figure 12.

Status query and results retrieval allows users can
to check the status of the submitted jobs and work-
flows by clicking on the job/workflow id. Once all
tasks specified within a workflow have been com-
pleted that status of the workflow is changed to fin-
ished. The result is recorded and can be viewed in
the GUI (see Figure 13).

We also developed another version of the portal as
in Figure 14, which also used the JavaScript APIs,
to show the reusability of the API and diversity of
the portal. Naturally these are just some elementary
GUIs and we hope that more sophisticated one will
be developed in near future. We encourage for exam-
ple the community to contribute their components

10

Figure 8: User login page

Figure 9: History of jobs

Figure 10: Remote job definition

Figure 11: Workflow construction

Figure 12: Job status query

Figure 13: Result retrieval

11

Figure 14: An alternative Portal

through a component repository that we are going to
be establishing.

5 Deployment

We have tested our framework on the TeraGrid as it
is one of our main target platforms. Because each
TeraGrid user has access to a login node, we can host
the mediator on one of these nodes, as by default each
TeraGrid user will have access to such a node as it
is part of the user account management of TeraGrid.
The result is that the client has a zero install base
and the web application will provide all the essential
functionalities to access Grid.

Additional JavaScript GUI components that are
specifically targeting the teragrid are under develop-
ment.

6 Conclusion

In this paper we presented a JavaScript-based Grid
abstraction framework. It provides a client side
JavaScript API, through which users can perform
job and workflow management tasks on the Grid.
This includes submission and monitoring of tradi-
tional jobs. However we are also working towards
the development of shared workflows that are con-
trolled not only by a single user, but by a group of
users. The web services-based application backend
allows that the client deployment is easy and ubiq-
uitous due to the interoperability through WS tech-
nologies and standards. Thus, we have introduced a
new and convenient tool for accessing Grids through
JavaScript. Next steps include the implementation

and integration of more features in regards to collab-
orative queue management. We also plan to investi-
gate and support other workflows and other authen-
tication methods.

References

[1] “Oasis soa reference model.” [Online]. Avail-
able: http://www.oasis-open.org/committees/
tc home.php?wg abbrev=soa-rm

[2] “The Commodity Grid (CoG) Project.” [On-
line]. Available: http://www.cogkit.org

[3] “The Globus Toolkit.” [Online]. Available:
http://www.globus.org

[4] “TeraGrid,” 2001. [Online]. Available: http:
//www.teragrid.org/

[5] G. von Laszewski, I. Foster, J. Gawor,
and P. Lane, “A Java Commodity Grid
Kit,” Concurrency and Computation: Prac-
tice and Experience, vol. 13, no. 8-
9, pp. 643–662, 2001. [Online]. Avail-
able: http://www.mcs.anl.gov/∼gregor/papers/
vonLaszewski--cog-cpe-final.pdf

[6] S. Microsystems, “Introduction to JSR
168 - The Java Portlet Specifi-
cation,” Web page. [Online]. Avail-
able: http://developers.sun.com/portalserver/
reference/techart/jsr168/pb whitepaper.pdf

[7] “Open Grid Computing Environments.” [On-
line]. Available: http://www.ogce.org

[8] J. Novotny, M. Russell, and O. Wehrens, “Grid-
sphere: an advanced portal framework,” in Eu-
romicro Conference, 2004. Proceedings. 30th,
2004, pp. 412–419.

[9] “TeraGrid Portal.” [Online]. Available: http:
//www.teragrid.org/userinfo/portal.php

[10] “Same Origin Policy for JavaScript.” [On-
line]. Available: http://developer.mozilla.org/
En/Same origin policy for JavaScript

[11] IETF, “HTTP State Management Mechanism,”
Feb 1997. [Online]. Available: http://www.w3.
org/Protocols/rfc2109/rfc2109

12

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://www.cogkit.org
http://www.globus.org
http://www.teragrid.org/
http://www.teragrid.org/
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-cpe-final.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-cpe-final.pdf
http://developers.sun.com/portalserver/reference/techart/jsr168/pb_whitepaper.pdf
http://developers.sun.com/portalserver/reference/techart/jsr168/pb_whitepaper.pdf
http://www.ogce.org
http://www.teragrid.org/userinfo/portal.php
http://www.teragrid.org/userinfo/portal.php
http://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
http://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
http://www.w3.org/Protocols/rfc2109/rfc2109
http://www.w3.org/Protocols/rfc2109/rfc2109

[12] G. Di Lucca, A. Fasolino, M. Mastoianni, and
P. Tramontana, “Identifying cross site scripting
vulnerabilities in Web applications,” in Web Site
Evolution, 2004. WSE 2004. Proceedings. Sixth
IEEE International Workshop on, 11 Sept. 2004,
pp. 71–80.

[13] J. Shanmugam and M. Ponnavaikko, “A solu-
tion to block Cross Site Scripting Vulnerabili-
ties based on Service Oriented Architecture,” in
Computer and Information Science, 2007. ICIS
2007. 6th IEEE/ACIS International Conference
on, 11-13 July 2007, pp. 861–866.

[14] N. Jovanovic, E. Kirda, and C. Kruegel, “Pre-
venting Cross Site Request Forgery Attacks,”
in Securecomm and Workshops, 2006, Aug. 28
2006-Sept. 1 2006, pp. 1–10.

[15] O. Ismail, M. Etoh, Y. Kadobayashi, and
S. Yamaguchi, “A Proposal and Implementation
of Automatic Detection/Collection System for
Cross-site Scripting Vulnerability,” in Proc. 18th
International Conference on Advanced Informa-
tion Networking and Applications AINA 2004,
vol. 1, 2004, pp. 145–151 Vol.1.

[16] E. Kirda, C. Kruegel, G. Vigna, and N. Jo-
vanovic, “Noxes: a Client-side Solution for Miti-
gating Cross-site Scripting Attacks,” in SAC ’06:
Proceedings of the 2006 ACM symposium on Ap-
plied computing. New York, NY, USA: ACM,
2006, pp. 330–337.

[17] “The TLS Protocol Ver 1.0.” [Online]. Available:
http://tools.ietf.org/html/rfc2246

[18] OASIS, “Web Services Security v1.0 (WS-
Security 2004),” 2004. [Online]. Avail-
able: http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0.pdf

[19] “Grid Security Infrastructure.” [Online]. Avail-
able: http://www.globus.org/security/

[20] G. von Laszewski, A. J. Younge, X. He, and
F. Wang, “Gridshell: Interactive task manage-
ment for grid and cluster computing,” (submit-
ted for review), Sep. 2008.

[21] Y.-C. Lee, C.-M. Ma, and S.-C. Chou, “A
service-oriented architecture for design and de-
velopment of middleware,” in Software Engi-
neering Conference, 2005. APSEC ’05. 12th
Asia-Pacific, 15-17 Dec. 2005, p. 5pp.

[22] A. Uyar, W. Wu, H. Bulut, and G. Fox, “Service-
oriented architecture for a scalable videocon-
ferencing system,” in Pervasive Services, 2005.
ICPS ’05. Proceedings. International Conference
on, 11-14 July 2005, pp. 445–448.

[23] X. Lu, “An investigation on service-oriented ar-
chitecture for constructing distributed web gis
application,” in Services Computing, 2005 IEEE
International Conference on, vol. 1, 11-15 July
2005, pp. 191–197vol.1.

[24] ECMA, “Standard ecma-262 EC-
MAscript language specification, 3rd
edition,” Dec 1999. [Online]. Avail-
able: http://www.ecma-international.org/
publications/standards/Ecma-262.htm

[25] K. Amin, M. Hategan, G. von Laszewski,
and N. J. Zaluzec, “Abstracting the Grid,” in
Proceedings of the 12th Euromicro Conference
on Parallel, Distributed and Network-Based
Processing (PDP 2004), La Coruña, Spain,
11-13 Feb. 2004, pp. 250–257. [Online]. Avail-
able: http://www.mcs.anl.gov/∼gregor/papers/
vonLaszewski--abstracting.pdf

[26] G. von Laszewski, “Java CoG Kit Workflow
Concepts,” Journal of Grid Computing, Jan.
2006, http://dx.doi.org/10.1007/s10723-
005-9013-5. [Online]. Available:
http://www.mcs.anl.gov/∼gregor/papers/
vonLaszewski-workflow-taylor-anl.pdf

[27] G. von Laszewski, T. Trieu, P. Zimny, and
D. Angulo, “The Java CoG Kit Experi-
ment Manager,” Argonne National Labora-
tory, Tech. Rep., Jun. 2005. [Online]. Avail-
able: http://www.mcs.anl.gov/∼gregor/papers/
vonLaszewski-exp.pdf

[28] IETF, “The application/json Media Type for
JavaScript Object Notation (JSON),” Jul 2006.
[Online]. Available: http://www.ietf.org/rfc/
rfc4627.txt

[29] JSON, “Introducing JSON.” [Online]. Available:
http://json.org/

[30] “The Dojo Toolkit.” [Online]. Available: http:
//dojotoolkit.org/

[31] J. Walker, “JSON is not as safe as people think
it is,” March 2007. [Online]. Available: http:
//directwebremoting.org/blog/joe/2007/03/05/
json is not as safe as people think it is.html

13

http://tools.ietf.org/html/rfc2246
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.globus.org/security/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--abstracting.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--abstracting.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-workflow-taylor-anl.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-workflow-taylor-anl.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-exp.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-exp.pdf
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt
http://json.org/
http://dojotoolkit.org/
http://dojotoolkit.org/
http://directwebremoting.org/blog/joe/2007/03/05/json_is_not_as_safe_as_people_think_it_is.html
http://directwebremoting.org/blog/joe/2007/03/05/json_is_not_as_safe_as_people_think_it_is.html
http://directwebremoting.org/blog/joe/2007/03/05/json_is_not_as_safe_as_people_think_it_is.html

[32] J. Grossman, “Advanced Web At-
tack Techniques using GMail,”
Jan 2006. [Online]. Available:
http://jeremiahgrossman.blogspot.com/2006/
01/advanced-web-attack-techniques-using.html

[33] R. Yates, “Safe JSON,” March 2007. [Online].
Available: http://robubu.com/?p=24

[34] W3C, “Simple Object Access Protocol (SOAP)
version 1.1,” May 2000. [Online]. Available:
http://www.w3.org/TR/soap/

[35] S. Microsystems, “Java API for XML Web
Services (JAX-WS).” [Online]. Available: https:
//jax-ws.dev.java.net/

[36] D. Jayasinghe, “Axis2 Deployment Model.”
[Online]. Available: http://jaxmag.com/itr/
online artikel/psecom,id,757,nodeid,147.html

[37] Apache, “Apache Axis2.” [Online]. Available:
http://ws.apache.org/axis2/index.html

[38] ——, “Apache Tmocat.” [Online]. Available:
http://tomcat.apache.org/

[39] “Maven.” [Online]. Available: http://maven.
apache.org/

[40] NCSA, “MyProxyLogon.” [Online]. Avail-
able: http://grid.ncsa.uiuc.edu/myproxy/
MyProxyLogon/

[41] Apache, “Apache CXF Framework.” [Online].
Available: http://cxf.apache.org/

[42] “Shiboleth.” [Online]. Available: http:
//shibboleth.internet2.edu/

14

http://jeremiahgrossman.blogspot.com/2006/01/advanced-web-attack-techniques-using.html
http://jeremiahgrossman.blogspot.com/2006/01/advanced-web-attack-techniques-using.html
http://robubu.com/?p=24
http://www.w3.org/TR/soap/
https://jax-ws.dev.java.net/
https://jax-ws.dev.java.net/
http://jaxmag.com/itr/online_artikel/psecom,id,757,nodeid,147.html
http://jaxmag.com/itr/online_artikel/psecom,id,757,nodeid,147.html
http://ws.apache.org/axis2/index.html
http://tomcat.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://grid.ncsa.uiuc.edu/myproxy/MyProxyLogon/
http://grid.ncsa.uiuc.edu/myproxy/MyProxyLogon/
http://cxf.apache.org/
http://shibboleth.internet2.edu/
http://shibboleth.internet2.edu/

	Introduction
	Background and Related Research
	Design
	Security Considerations
	Web Client
	Server
	Agent service
	Mediator Service

	Other Client Interfaces

	Implementation
	Web Client
	Application Programming Interface
	Job and Workflow Abstraction
	Security

	Agent Service
	Mediator service
	Collaborative Queue
	Client side Workflow Management
	Shared Workflow Queue Management

	Graphical User Interface

	Deployment
	Conclusion

