
Accelerating Partitional Algorithms for Flow Cytometry on GPUs

Jeremy Espenshade, Andrew Pangborn,
Gregor von Laszewski, Douglas Roberts

Service Oriented Architectures Laboratory
Rochester Institute of Technology

Email: laszewski@gmail.com

James S. Cavenaugh
Center for Biodefense Immune Modeling

University of Rochester
Email: james cavenaugh@urmc.rochester.edu

Abstract—Like many modern techniques for scientific analy-
sis, flow cytometry produces massive amounts of data that must
be analyzed and clustered intelligently to be useful. Current
manual binning techniques are cumbersome and limited in
both the quality and quantity of analysis produced. To address
the quality of results, a new framework applying two differ-
ent sets of clustering algorithms and inference methods are
implemented. The two methods investigated are fuzzy c-means
with minimum description length inference and k-medoids with
BIC. These approaches lend themselves to large scale parallel
processing. To address the computational demands, the Nvidia
CUDA framework and Tesla architecture are utilized. The
resulting performance demonstrated 1-2 orders of magnitude
improvement over an equivalent sequential version. The quality
of results is promising and motivates further research and
development in this direction.

Keywords-data clustering, flow cytometry, gpgpu, cuda;

I. INTRODUCTION

Flow cytometry is a technique for elucidating the pheno-
types of cells in a suspension. It is a mainstay technology
used in immunology, although other fields also use it. The
process involves allowing fluorescently dyed antibodies to
bind to proteins (antigens) on the surface of the suspended
cells. Then using a technique known as hydrodynamic
focusing, the stained cells pass through a laser beam one
at a time, which excites the fluorophores that are indirectly
attached to the antigens of interest. (Modern instruments
use sequential lasers with a delay time to attach informa-
tion from subsequent laser excitations to information from
the first laser. Presently 18-color instruments are available,
which also have information from light scatter as well.) The
resulting fluorescence and light scattering data are measured
by a set of sensors and recorded as a vector of d-length.
Such a vector is generated for each event, which is typically
a cell passing through the laser beam. Cells pass through the
beam at the rate of thousands each second and a data file
for even a single stained sample may typically involve up to
one million events or more. This large data set is stored in
an FCS file format (for flow cytometry standard). Finding
clusters in these large and high-dimensional data sets is an
application ideally suited for massively parallel computation.

The Center for Biodefense Immune Modeling at the
University of Rochester is engaged in immunology research

that includes the use of flow cytometry for cellular analysis.
The level and value of such analysis is currently limited by
the manual techniques involved, and an opportunity exists
to apply novel methodologies leveraging cyberinfrastructure
and current parallel computing architectures. Specifically,
Nvidia’s CUDA framework for scientific computation on
parallel streaming processors presents a promising oppor-
tunity for low cost, high performance analysis [1].

II. BACKGROUND

Flow cytometry allows researchers to identify and charac-
terize populations of cells of interest by their co-expression
of antigens which serve as markers. Currently, this is done
using manual filtering where the researcher draws bins
(called gates in the flow cytometry literature) around clusters
of data in successive two dimensional histograms. This
approach is essentially unchanged from twenty years ago
and has a number of disadvantages. Variability between
experienced immunologists can be as high as 10-fold for
difficult data sets (unpublished research from the University
of Rochester’s David H. Smith Center for Vaccine Biology
and Immunology). As d increases, the number of histograms
increases combinatorially, making the data analysis process
more difficult and tedious. There are presently no widely
used standards in flow cytometry data analysis, and gates
are not reported. It is therefore impossible to accurately
reproduce other’s work from only the raw data, and a
sensitivity analysis using slight variations in the bin positions
is impractical. The outcome of this time-consuming manual
process is a result that is both imprecise and not very
accepting of modification. Furthermore, manual sequential
bivariate binning does not make full use of the multivariate
nature of the data and is not conducive to making theoreti-
cally sound statistical inferences from these data sets.

Clearly an automated process for identifying cells of in-
terest would be advantageous. Whether a sequential bivariate
approach or a fully multidimensional approach is used, the
problem is essentially one of finding a suitable clustering of
the data. Clustering can either be hard or soft (fuzzy); hard
clustering requires every datum to belong to exactly one
cluster. The current practice of sequential bivariate gating is
a manual version of hard clustering. Fuzzy clustering allows

each datum to belong to different clusters with different
probabilities of membership (or viewed another way, with
different mixture amounts from underlying archetypal dis-
tributions). By representing an event’s cluster membership
as a set of probabilities, one for each possible cluster,
single events can be included in multiple clusters and also
exert influence on the cluster location based on how closely
associated they are with the cluster in question. The benefit
of this is most obviously realized by the marginalization
of outliers. Since cluster centers are essentially a mean of
the member events, outliers have a tendency to shift the
calculated center away from the logical center without fuzzy
clustering. Fuzzy clustering is a much better characterization
of the underlying biology than is hard clustering. By varying
a cutoff for probability of membership in a cluster, it is trivial
to convert fuzzy clustering to hard clustering, which makes
it easy to do a sensitivity analysis. It is also possible to go in
the reverse direction: one can soften a hard clustering by a
function which maps the distance of each datum from each
cluster’s center to a probability of belonging to that cluster.

A remaining difficulty is determining the number of
clusters to use. Center-based clustering algorithms, like the
fuzzy c-means or k-medoids, require some initial number of
clusters. If too many clusters are chosen, the results may be
duplicated or muddled by separating logically singular clus-
ters, and if too few clusters are chosen, meaningful data will
be lost due to combination or elimination of distinct clusters.
To solve this problem, Selb et al [2] integrated c-means
into a Minimum Description Length (MDL) framework. The
MDL Principle states that the more similarity that exists in a
data set, the more the data can be compressed. Learning is
then equated with compression. An MDL-framework then
works to identify the ideal set of reference vectors, or
cluster centers in this context, that describe most of the data
while minimizing the number of such vectors. MDL is less
well suited to a hard clustering method like k-medoids, but
other inference methods like Bayesian Inference Criterion
are potential candidates.

As with any fuzzy clustering algorithm, and extended with
the use of MDL, several meaningful parameters governing
relations between variables can have a large impact on the
final result. Such parameters include the degree of fuzzi-
ness, or how much influence cluster members exert on the
cluster center, fuzzy membership threshold, and the MDL
weighting parameters that govern the relative weight data
point description, reference vector description, and error.
Such parameters are impossible to optimally set a priori and
vary between data sets. Therefore, multiple analysis with
differing parameters are potentially useful as well.

A. FCS Data Analysis

Figure 1 illustrates the statistically formulated cluster
analysis work flow for FCM data. It is a multi-step process
with some optional steps. First the data is read from an FCS

file. Header information and metadata are ignored, leaving
only raw flow data. The extracted data may be filtered in
order to restrict attention to the regions of parameter space
known a priori to be interesting and thereby to shorten
the data upon which clustering will actually be performed.
Ideally this would involve an automated approach as well,
probably based on image analysis of the forward versus side
scatter plot.

Second, a decision as to follow a sequential bivariate
approach or a simultaneous multivariate approach needs
to be made. The former is current practice, but could be
automated using image processing algorithms such as found
in Matlab. It offers the advantages of familiarity and ease
of use for finding populations of cells which are known
in advance to be of interest. The latter approach is more
conducive to exploring the data for unanticipated findings
and is more suited for formal statistical inference. It is also
the approach followed in this paper. Third, the data may
need to be transformed, and compensation may need to be
applied to reduce the effect of fluorescence spillover from
a fluorophore maximally excited in one channel to other
channels. Fourth, the data may need to be transformed, as for
example by log, biexponential, or logicle transformation [3].
Compensation and transformation are especially important
for image based approaches such as sequential bivariate
gating. Fifth, a distance measure needs to be decided upon,
Euclidean being the most common. Sixth, the (possibly
transformed) data may optionally be standardized and nor-
malized. Seventh, the data are then clustered using any of
the many possible clustering algorithms. After clustering the
data a statistical summary should be prepared and the results
should be visualized graphically [4]. Finally, the process
is repeated for other samples in the experiment and then
statistical and biological inferences can be made.

Read FCS File
↓

Extract Data
↓

Perform Clustering
↓

Statistical Summary
↓

Visualize Result

Figure 1. Objective and Automated Cluster Analysis Workflow [4]

III. PARALLEL COMPUTING FOR FLOW CYTOMETRY

Given the large amount of data, the complexity of the
algorithms involved, and the need for many computations
on the same data set, a robust set of computing resources
are needed. Fortunately, the problem is inherently parallel
and its computation easily distributed across a number of
resources. Besides the algorithmic design, the complexity

of data allocation, optimal task sizing, and communication
all remain difficult problems. As such, the biostatistician
is unlikely to have the expertise and uncommitted time
necessary to manage the computations at a computational
resource level. There is therefore a need for an abstraction
of these resources such that the researcher can focus on the
conceptual challenges and receive results that are immedi-
ately useful.

For this reason the problem at hand is a good candidate
for parallel computing infrastructures. The large amount of
data that is produced while scanning individual cells, as they
pass through the laser beam, should be able to be divided
up and distributed across multiple processors or node on a
grid. Once the data has been divided and distributed each
processor can proceed to perform computations on its own
chunk of data. This will reduce the amount of time needed to
process the entire data set as compared against the amount of
time that is needed to process the data on a single processor
machine. Once each of the processors has finished perform-
ing computations their results will be combined and a final
result will be generated. Rather than using a supercomputer
or a cluster of commodity workstations, we chose to use a
CUDA-enabled GPU. The parallel architecture of the GPU
with 192 cores is essentially a small cluster on a single chip
that provides high performance for a very low cost.

IV. CUDA

In recent years, traditionally fixed-function graphics pro-
cessors have transitioned into massively parallel stream
processors capable of general purpose computation. Each
Nvidia Tesla C870 has 128 processing units organized into
16 multiprocessors capable of handling thousands of threads,
or separate streams of execution, concurrently. To manage
thread creation, synchronization, and data allocation, Nvidia
has developed and provided a set of APIs, compilers, and
supporting libraries collectively referred to as the Com-
pute Unified Device Architecture (CUDA). Applying data-
parallel applications to the CUDA framework has been
shown to provide performance on the order of hundreds
of times faster than a single general purpose processor
[5][6][7]. Furthermore, as the cost of a CUDA-enabled
device is less than an individual workstation, the cost-
performance ratio compared to a traditional cluster can be
staggering. Given this potential, combined with the large
computation requirements of the flow cytometry application
detailed above, CUDA promises to be a valuable platform for
investigation. For more details on the Tesla architecture [8]
please consult the CUDA Programming Guide from Nvidia
[9].

V. ALGORITHMS

This section discusses some of the clustering algorithms
applied to the flow cytometry problem. An explanation of

each algorithm is given as well as pseudo code for each
algorithm.

A. K-Medoids

K-medoids is a clustering algorithm that is related to
the k-means algorithm. The k-medoids is a partitioning
algorithm that divides the data set up into separate clusters.
The algorithm attempts to minimize the squared error, which
is the distance between points in the cluster and a point that
is designated as the center (medoid) of a cluster. A medoid is
considered an object of a cluster whose average dissimilarity
to all the objects in a cluster is minimal [10].

The k-medoids algorithm functions by placing data into
k clusters. k is a predetermined number that is chosen
before the algorithm is executed. The algorithm functions
as follows.

1) Randomly select k objects that will serve as the
medoids

2) Associate each data point with its most similar medoid
using a distance measure and calculate the cost

3) Randomly select a non-medoid object O
4) Replace a current medoid with the chosen non-medoid

and calculate the cost again
5) If the new cost is greater than the old cost then stop

the algorithm
6) Repeat 2 through 5 until there is no change in the

medoid
The cost for the current clustering configuration is cal-

culated using Equation 1, Where xi is the ith data point
in the data set, d is the size of the data set, and dist is
the distance between the data point and the closest medoid.
The distance function can be implemented as any desirable
distance measure, however in our implementation we use a
Euclidean distance.

Cost =
d∑

i=1

dist(xi) (1)

In order to fuzzify the clusters, a membership value of
each data point to every cluster (medoid) is calculated using
equation 2.

P (x |m) = 1− |x−m|
k∑

i=1

|x−mj |

(2)

Where x is a data point m is the medoid associated with
the data point and mj is the jth medoid.

B. BIC

The Bayesian information criterion (BIC) [11] was inte-
grated into the algorithm in an attempt to determine the best
number of cluster for a given data set. The equation for the
BIC is shown below.

BIC = n ∗ ln
(
RSS

n

)
+ k ∗ ln(n) (3)

Where n is the number of data points and k is the number
of clusters being considered. RSS is the residual sum of
squared errors, as seen in Equation 4, where n is the number
of data points and xi is the ith data point and mj is one of
the medoids.

RSS =
n∑

i=1

(xi −mj)
2 (4)

C. Fuzzy C-Means

K-means is a well known center-based clustering scheme
[12] that performs hard clustering on the data by assigning
each data point a membership the cluster whose center is
closest to the data point. The cluster centers are then recal-
culated based upon the members of each cluster. Iteration
stops once the change in cluster center is less than some
epsilon value.

The benefit of k-means is in its simplicity and rapid
convergence to a reasonable solution. The limitations are
that, as a hard clustering algorithm, it is strongly affected
by scattered data outside of logical clusters. To address some
of the limitations of K-means, fuzzy C-means was proposed
by Dunn [13] and later refined by Bezdek [14]. Fuzzy
clustering allows each data point to have a membership in
every other cluster, with higher membership values being
assigned to clusters closest to the data point. This approach
has two primary advantages over k-means. It forces outliers
to have less effect on the cluster centers by assigning a
lower membership value to any particular cluster. It also
mitigates the effect of starting with too many clusters for
the data. While k-means may split a logical cluster into
several distinct sections with cluster centers in each section,
fuzzy c-means will converge on the center of logical clusters
resulting in nearly duplicate results that are all close to
correct. The algorithm is based on the minimization of
the following function defining the error associated with a
solution [15].

Em =
N∑

i=1

C∑
j=1

up
ij‖xi − cj‖2, 1 ≤ m <∞ (5)

In Equation 5, p is any real number that is greater than one
and defines the degree of fuzziness, uij is the membership
level of event xi in the cluster j, and cj is the center of
a cluster. The fuzzy clustering is done through an iterative
optimization of Equation 5. Each iteration, the membership
uij is updated using Equation 6 and the cluster centers cj

are updated using Equation 7.

uij =
1

C∑
k=1

(
‖xi − cj‖
‖xi − ck‖

) 2
p−1

(6)

cj =

N∑
i=1

up
ij ∗ xi

N∑
i=1

up
ij

(7)

The following is an outline of a fuzzy c-means algorithm.
1) Given the number of clusters, c, randomly choose c

data points as cluster centers.
2) For each cluster, sum the distance to each data point

weighted by it’s membership in that cluster
3) Recompute each cluster center by dividing by the

associated membership value of each event
4) Stop if there is minimal change in the cluster center,

otherwise return to 2.
5) Report cluster centers
This procedure exhibits several levels of parallelism which

can be exploited via the CUDA framework. Most apparent is
the task parallelism between clusters. Since Equations 3 and
4 are completely independent between clusters, each itera-
tion can be performed in c parallel tasks, one for each cluster.
CUDA supports task level parallelism through the use of
multiple thread blocks which, although lacking global syn-
chronization, are effective at computing independent tasks.
Within the computation on a given cluster, data parallelism
is exhibited by the independent computation of membership
values for each event. Since flow cytometry has a minimum
of tens of thousands of events, a tremendous degree of
parallelism is available. The cluster position calculation
defined in Equation 7 does require global synchronization
and results collection however. Pseudo code for the parallel
implementation is provided in algorithm presented in Figure
2.

D. Minimum Description Length

While the fuzzy c-means algorithm addresses some limi-
tations of k-means, the requirement of choosing the number
of clusters a priori continues to be problematic due to over-
fitting and duplicate clusters. To solve this problem, the
Minimum Description Length principle is applied to the final
result to identify the optimal number of clusters [16].

The Minimum Description Length (MDL) principle is a
formalization of Occam’s Razor. The idea behind MDL is
that there is a best hypothesis for any set of data that will
lead to the largest compression of the data. In other words,
the data can be described by using fewer symbols than
are needed to describe the data literally. In this problem,
this asserts that there is some optimal number of clusters

Input:
Events: array of event vectors
Clusters: array of current cluster centers

Output:
newClusters: array of new cluster centers

numerators = denominators = 0;
syncThreads();

for (j ← 0 to nevents + = nthreads){
if (j + threadIdx.y < nevents){
membershipValueFunc(j + threadIdx.y, blockIdx.x);
calculateNumerator(memV al);
incrementLocalDemoninator(memV al);
}
}

syncThreads();
sumLocalNumerators();
sumLocalDenominators();
computeNewCenters();

Figure 2. Parallel C-means Iteration

than can be used to describe the data while avoiding over-
fitting. Given the general nature of this assertion, many MDL
formulations are possible, however the method proposed by
[17] for determining the optimal number of radial basis
vectors in RBF networks has been show to be effective in a
fuzzy clustering environment in [2].

While some specifics of the formulation will be abstracted
in this description (see[2] for full details), the essential
function is to find which of the clusters produced by c-
means should be included and which should be removed
when determining the final cluster configuration to describe
the data. The intrinsic worth of each cluster is related to
the number of member events and the error introduced by
describing each of those events by the single cluster center.
With that must be balanced the number of member events
that are also members of other clusters. This balance can be
formalized as a symmetric cost/benefit matrix, Q, where the
diagonal terms qii represent the tradeoff for the ith cluster
and off-diagonal terms, qij , represent the crossover between
clusters. The values are determined as follows:

qii = K1ni −K2ξi −K3Ni (8)

qij =
−K1nij +K2ξij

2
, i 6= j (9)

Where K1, K2, and K3 are parameters that affect the costs
of describing data, explaining error, and describing clusters
respectively. The relative values of these parameters effects
the scores in Q, and [17] explains how to set them. ni is
the number of events whose membership in cluster i exceed

the threshold and nij is the number of events meeting this
criteria for both clusters i and j. Ni is the dimensionality of
the data and clusters. ξi and ξij represent the error in one
cluster and the overlap of two clusters respectively and are
calculated by Equations 10 and 11. Let δ denote the distance
function.

ξi =
∑

x∈Ri

δ (x, ci)u
p
xi (10)

ξij = max

 ∑
x∈Ri∩Rj

δ (x, ci)u
p
xi,

∑
x∈Ri∩Rj

δ (x, cj)u
p
xj


(11)

Here Ri is defined as the region of cluster i, or the set
of all events that meet the membership criteria for that
cluster. uxi is the membership value, which is calculated
using Equation 12.

uxi =
1

c∑
j=1

[
δ (x, ci)
δ (x, cj)

] 2
p−1

(12)

The construction of the Q matrix is quite computationally
intensive and therefore another good candidate for GPGPU
acceleration. Each of the elements is completely independent
and can be assigned to different thread blocks. Within a
thread block, similar methods are used to build temporary
results and concatenate them together when computing ξ and
ni as were used for computing the new cluster centers. The
pseudo-code is shown in the algorithm presented in Figure
3.

Once the Q matrix has been constructed, a global Tabu
Search method is then applied to solve for the optimal
configuration of clusters to include. This is done by solving
Equation 13 where h is a binary array with length equal to
the number of clusters. By evaluating varying configurations
defined by turning on and off clusters with h, a maximum
score can be found.

Score = hTQh (13)

VI. TOOL IMPLEMENTATION

A computing portal can help flow cytometry, as it is funda-
mentally about collaboration among scientists and infrastruc-
ture experts and a large part of that is making computational
resources available to scientists in a manner than they can
use without concern for the underlying implementation. In
flow cytometry data analysis, the scientist would like to sim-
ply supply an FCS file, possibly specify some parameters,
and retrieve the results. To accomplish this, a tool chain was
created that allows the scientist to set any of the internal
parameters in the C-means/MDL/Tabu-Search implementa-
tion detailed above, specify some running conditions, and

Input:
Events: array of event vectors
Clusters: array of current cluster centers
Cluster Index (i): cluster to examine

Output:
ξi: error associate with cluster i
ni: membership count in cluster i

localError = 0;
localMemberCount = 0;
for (j=0 to nevents+ = nthreads){

if (j + threadIdx.y < nevents){
membershipValueFunc(i, j + threadIdx.x);
incLocalError(memV al2 ∗ distance2);
incLocalMemberCount();
}
}

syncThreads();
sumLocalErrors();
sumLocalMemCounts();

Figure 3. Parallel ξi and ni Calculation

import either an FCS binary or a previously converted
tabular text file. The user interface was implemented as a
Java GUI and the selected configuration launches a FCS
conversion script through the statistical software package,
R, if required, invokes a bash shell script to populate
a header file with the selected parameters, compiles the
application, and manages execution with varying numbers
of clusters if requested. Figure 4 shows the interface as it is
presented to the user. The design is modular and supports
the inclusion of additional clustering algorithms, distance
measures, and other parameters. Since the research effort
towards automated intelligent clustering of flow cytometry
data is only just beginning, having an extendible framework
for comparison of results is very useful.

Figure 4. FCSCluster User Interface

VII. RESULTS

Two approaches to the problem of clustering moderately
high dimensional data have been presented, one based on a
fuzzified K-medoids and BIC and another based on C-means
and MDL.

A. K-medoids and BIC

Sequential (ms) CUDA (ms) Speed Up
2 147 73.68 2.00
4 339 110.66 3.06
8 1007 295.66 3.41
16 3439 1014.24 3.39
32 12753 2272.78 5.61
64 48983 6311.81 7.76

Table I
K-MEDOIDS PERFORMANCE SUMMARY

This section will compare the performance of a sequential
k-medoids algorithm against the CUDA version of the
algorithm. Each version of the algorithm was tested using a
100000 by 21 FCS file. Each version was run ten times using
2, 4, 8, 16, 32, and 64 clusters and the results were averaged.
This was done to see how well they would perform when
increasing the number of clusters. Table 1 is a summary of
the results.

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

Number of Clusters

Sequential

CUDA

Figure 5. K-Medoids Execution Time

As you can see from Table I the execution times increase
rapidly as the number of clusters increases. The CUDA
version outperforms the sequential version for all numbers
of clusters tested. As the number of clusters increases, more
task parallelism is available and the speedup of the CUDA-
enabled version increases further. Figure 5 is a graph of
the performance of the CUDA and sequential versions of k-
medoids as the number of clusters increases. Figure 6 shows
the speedup of the CUDA version relative to the sequential
CPU-only version.

B. C-means and MDL

The object of this approach is two-fold. First, the results
must show functionality and demonstrate promise for FCS

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70

Sp
ee
du

p

Number of Clusters

Figure 6. K-Medoids Speedup

clustering. To investigate this, several test data sets were
generated with known clusters using the mvtnorm library for
R. Functionality was shown by selecting the known cluster
centers even when originally looking for more clusters than
logically exist. After C-means converges on a set of cluster
centers and the MDL Q matrix is generated, the Tabu Search
takes over and identifies which cluster to include and which
to ignore. The correct number of clusters and cluster centers
could always be identified, however the MDL parameters
turned out to be quite sensitive and needed to be tuned
depending on the number of starting clusters selected.

The second objective is to achieve performance improve-
ments that realize the potential of the CUDA framework
and Tesla Architecture. As detailed in the preceding section,
multiple levels of parallelism exist in the application and
were exploited in the implementation. To gather performance
data, a single data set size of 100,000 elements was used.
With this held constant, the number of clusters and the
number of dimensions were varied. The essential trends have
been condensed into the following Figures, and some tabular
results are included at the close of this section.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

Sp
ee
du

p
ov
er
 C
PU

Number of Clusters

C‐means

MDL

Figure 7. C-Means Speedup vs. Clusters

As is readily apparent from Figures 7, 8, and 9, the CUDA
enabled GPU version far outperformed the sequential CPU
version. As the amount of work increases with the number of

!

"!!!

#!!!

$!!!

%!!!

&!!!!

&"!!!

&#!!!

&$!!!

! &! "! '! #! (! $!

!
"#
$%
&'
(
)
*+
',

#
*-
./

0%,1#2*(3*45%..

)*+,-./

0*+,-./

)*+,)123456

0*+,)123456

Figure 8. C-Means Execution Time

clusters, the CPU experiences a swift increase in execution
time while the GPU retains a low rate of increase. This
results because any increase in work can be executed in
parallel with other work on the GPU, but the CPU requires
directly increased execution time to complete the work. The
C-means problem is O(NC2) where N is the number of
events and C is the number of clusters. The GPU escapes this
quadratic increase by exploiting the increased parallelism
that results from increased clusters and only increasing
the amount of work done in a thread block linearly with
increasing numbers of clusters. MDL is even more dramatic,
as it is O(NC3). The faster sloping increase in the MDL
execution time demonstrates this and since the GPU again
only increases the work in a thread block linearly, much of
the remaining quadratic increase can be absorbed through
parallel computation.

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25

Sp
ee
du

p
ov
er
 C
PU

Number of Dimensions

C‐means

MDL

Figure 9. C-Means Speedup vs. Dimensions

Figure 9 shows the speedup change as the number of
dimensions change while holding the number of clusters
constant at forty-eight. This shows an interesting result for
both C-means and MDL. C-means peaks at 16 dimensions
and then falls slightly (although maintaining a significant
speedup). This occurs primarily because the number of
concurrent threads had to be decreased to accommodate

the larger memory requirements that come with additional
dimensions. MDL continues to slightly increase as the
memory demands are less and the same type of execution
time reduction through parallelism that drove speedups in
Figure 7 continue to be beneficial. The following Tables
show the raw execution time data and speedup results. The
highest observed speedup are 84.34 times for each C-means
iteration and 43.4 time for MDL Q Matrix Generation.

Table II
EXECUTION TIME AND PERFORMANCE DATA FOR 16 DIMENSIONAL

DATA

Single CPU (ms) GPU (ms) Speedup
n cmeans MDL Cmeans MDL Cmeans MDL
4 90 0.51 11.88 0.02 7.57 19.69
8 318 3.80 15.35 0.10 20.71 37.38

12 676 12.79 21.61 0.35 31.28 36.50
16 1168 30.56 26.36 0.75 44.30 40.26
24 2512 99.37 51.40 2.51 48.87 39.44
32 4418 235.14 60.69 5.83 72.79 40.28
48 9792 785.57 116.09 19.80 84.34 39.67
60 15222 1519.10 204.36 38.67 74.48 39.27

Table III
EXECUTION TIME AND PERFORMANCE DATA FOR 21 DIMENSIONAL

DATA

Single CPU (ms) GPU (ms) Speedup
n cmeans MDL Cmeans MDL Cmeans MDL
4 95 0.64 16.94 0.03 5.60 16.44
8 330 4.76 21.57 0.15 15.29 29.98

12 672 16.25 29.44 0.45 22.82 35.99
16 1138 38.13 36.86 0.92 30.86 41.19
24 2464 123.71 72.70 2.94 33.88 42.08
32 4302 293.19 86.66 6.75 49.64 43.40
48 9428 987.33 168.95 23.02 55.80 42.88
60 14774 1930.56 267.26 44.89 55.27 43.00

VIII. CONCLUSIONS

The performance results demonstrated from the two ap-
proaches explained in this paper show excellent speedup
and make effective use of the massively parallel Tesla
architecture using the CUDA framework. Further work is
required to investigate data quality and intelligently move
forward with improvements. The availability of efficient
implementations of data clustering algorithms will revolu-
tionize how flow cytometry data is analyzed. We will further
optimize our algorithms to achieve even better performance
and investigate other clustering techniques.

ACKNOWLEDGMENT

Work conducted by Gregor von Laszewski is supported (in
part) by NSF CMMI 0540076 and NSF SDCI NMI 0721656.

REFERENCES

[1] Cuda zone. NVIDIA Corp. [Online]. Available:
www.nvidia.com/cuda

[2] A. Selb, H. Bischof, and A. Leonardis, “Fuzzy c-means in an
mdl-framework,” in 15th International Conference on Pattern
Recognition (ICPR’00), vol. 2, 2000, p. 2740.

[3] D. R. Parks, M. Roederer, and W. A. Moore, “A new logicle
display method avoids deceptive effects of logarithmic scaling
for low signals and compensated data,” International Society
for Analytical Cytology, vol. Cytometry Part A 69A:, pp. 541–
551, 2006.

[4] K. M. Abbas, Y. Lee, H. Wu, and G. von Laszewski, “e-
science environment for objective analysis of flow cytometry
data,” gregors Flow Cytometry Paper.

[5] K. Gulati and S. P. Khatri, “Accelerating statistical static tim-
ing analysis using graphics processing units,” in 3rd Annual
Austin Conference on Integrated Systems & Circuits 2008,
2008.

[6] H.-Y. Schivea, C.-H. Chiena, S.-K. Wonga, Y.-C. Tsaia, and
T. Chiueha, “Graphic-card cluster for astrophysics (gracca),”
in AstroGPU, 2007.

[7] M. K. J. Tolke, “Towards three-dimensional teraflop cfd com-
puting on a desktop pc using graphics hardware,” Feb 2008,
institute for Computational Modeling in Civil Engineering,
TU Braunschweig.

[8] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,
“Nvidia tesla: A unified graphics and computing architecture,”
Micro, IEEE, vol. 28, no. 2, pp. 39–55, March-April 2008.

[9] Nvidia cuda programming guide 2.0. Nvidia Corp.

[10] A. P. Reynolds, G. Richards, and V. J. Rayward-Smith, “The
application of k-medoids and pam to the clustering of rules,”
in Intelligent Data Engineering and Automated Learning, ser.
Lecture Notes in Computer Science. Springer Berlin, 2004,
pp. 173–178.

[11] G. Schwarz, “Estimating the dimension of a model,” The
Annals of Statistics, vol. 6, pp. 461–464, 1978, bayesian
Information Criterion (BIC).

[12] J. B. MacQueen, “Some methods for classification and anal-
ysis of multivariate observations,” in Proceedings of 5-th
Berkeley Symposium on Mathematical Statistics and Proba-
bility, vol. 1. Berkeley, University of California Press, 1967,
pp. 281–297.

[13] J. C. Dunn, “A fuzzy relative of the isodata process and its
use in detecting compact well-separated clusters,” Journal of
Cybernetics, vol. 3, pp. 32–57, 1973.

[14] J. C. Bezdek, Pattern Recognition with Fuzzy Objective
Function Algoritms. Plenum Press, New York, 1981.

[15] G. Gan, C. Ma, and J. Wu, Data Clustering Theory, Al-
gorithms, and Applications, M. T. Wells, Ed. Society for
Industrial and Applied Mathematics, 2007.

[16] P. D. Grunwald, The Minimum Description Length Principle.
The MIT Press, 2007.

[17] A. Leonardis and H. Bischof, “An efficient mdl-based con-
struction of rbf networks,” Neural Networks, vol. 11, issue 5,
pp. 963–973, 1998.

