Threat Detection in an Urban Water Distribution
Systems with Simulations Conducted in Grids and
Clouds

Gregor von Laszewski!, Lizhe Wang', Fugang Wang!,
Geoffrey C. Fox!, G. Kumar Mahinthakumar?

! Pervasive Technology Institute
Indiana University, Bloomington, IN 47808, U.S.A.
2 Department of Civil, Construction and Environmental Engeneering,
North Carolina State University, Raleigh, NC 27695, U.S.A.

Corresponding e-mail: laszewski @gmail.com

Accepted at The Second International Conference on Parallel, Distributed, Grid and Cloud Computing for
Engineering, Ajaccio, Corsica, France, 12-15 April 2011

The computation of Contaminant Source Characterization (CSC) is a critical research issue
in Water Distribution System (WDS) management. We use a simulation framework to identify
optimized locations of sensors that lead to fast detection of contamination sources [1, 2]. The
optimization engine is based on a Genetic Algorithm (GA) that interprets trial solutions as indi-
viduals. During the optimization process many thousands of these solutions are generated. For a
large WDS, the calculation of these solutions are non-trivial and time consuming. Hence, it is a
compute intensive application that requires significant compute resources. Furthermore, we strive
to generate solutions quickly in order to respond to the urgency of a response.

Grids and Clouds [3] can help in several ways. First, they can provide infrastructure that is of
sufficient computational power. Second, they allows the introduction of fault tolerant mechanisms,
as ample resources could be made available. Third, due to the power of the available systems
fast performance can be achieved. However, the approaches to utilize Grids and Cloud requires
the availability of “software stacks” that enable the application developer to more easily use the
Infrastructure provided by Grids and Clouds. We provide two distinct platforms.

The cyberaide platform: To carry out the calculations we require user-level middleware that
can be supporting the workflow [4, 5] of the application and manages the resource assignment in
an efficient and fault tolerant fashion. To do so we have prototyped the cyberaide framework that
provides a convenient command line and portal layer of steering applications on Grids. Internally,
we utilize a sophisticated workflow engine that provides the ability to access elementary fault
tolerant mechanisms for job scheduling. This includes the management of job replicas and the

reaction on late return of results.

The Hadoop platform: We report the test results of CSC problem solving on a real Grid test
bed — the TeraGrid test bed. In addition, we contrast this system architecture with a Hadoop-based
implementation that automatically includes fault tolerance. The later activity has been conducted
on FutureGrid [6].

We find that the cyberaide platform provided better performance and also allows us to more
easily introduce custom designed services. Thus, in case the user has access to Grids and is inter-
ested in performance, cyberaide is a good choice.

We find Hadoop provides an easy to use programming framework, that abstracts the application
user from the infrastructure. FutureGrid and TeraGrid were essential resources for this work.
TeraGrid allowed us to explore the Grid infrastructure for this problem, while FutureGrid allowed
us to consider the Hadoop platform.

Abstract

We present a workflow-based algorithm for identifying threads to an urban water management
system. Through Grid computing we provide the necessary high-performance computing resources
to deliver quickly solutions to the problem. We prototyped a new middleware called cyberaide, that
enables easy access to Grid resources through portals or the command line. A workflow system is
used to manage resources in fault tolerant fashion. In addition, we contrast the architecture with a
Hadoop implementation. Resources from TeraGrid and FutureGrid are used to test the feasibility
of using the toolkit for a scientific application.

Keywords: Grid computing, Cyberaide workflow, Water Distribution System

1 Introduction

Urban Water Distribution Systems (WDSs) are vulnerable to accidental and intentional contami-
nation incidents that could result in adverse human health and safety impacts [2]. When a con-
tamination event is detected via sensor networks, municipal authorities are faced with obtaining
information about the contamination. This includes critical information, such as (a) the location
of the contaminant, (b) the time when the contamination started, (c) type of the contamination,
(d) concentrations of the contamination and its distribution throughout the WDS. The real-time
solution for identifying this information is critical to improve the safety of the overall system and
its users. The process to identify this information is referred to as the Contaminant Source Charac-
terization (CSC). CSC presents significant computational challenges: it requires high-performance
computing resources, a modern cyberinfrastructure middleware that includes reliable simulation
and optimization software, and spatial-temporal data management methods to deal with the size of
the input network that for a million person city is considerably large.

Hence, we present a solution that utilizes Grid and Cloud concepts. The Grid portion of this
work was enabled through the development of the pioneering Java CoG Kit. The Cog Kit has
reached wide acceptance in the Grid community and is distributed today also partially with the
Globus toolkit. However, we have enhanced the CoG Kit in regards to workflow management and
fault tolerance, and a new toolkit that we call cyberaide. This toolkit strives to provide a number
of significant enhancements such as a portal interface, an easier workflow model, and a command
shell that enables a more convenient interface to use Grid and Clouds. We use the cyberaide-based
middleware for solving the CSC, enabling the transparent use of workflow models and parallel
calculations in order to achieve fast turnaround. These two concepts are used within the CSC as
follows:

e the optimization activities are controlled and implemented with the help of the cyberaide and
Java CoG Kit workflow framework, and

o the simulation of the WDS is controlled through the coordinated use of parallelized simula-
tions that are executed via multiple PEPANET [1] servers staged on the Grid resources.

Our contributions in this paper are: (a) we solve the CSC problem by parallelizing the GA with
the Grid workflow paradigm, (b) we prototyped a cyberinfrastructure middleware called cyberaide
to implement the CSC on a production Grid such as the TeraGrid, (c) We developed a HAdoop
based implementation to contrast the algorithm design with a more traditional HPC approach.

The rest of this paper is organized as follows. Section 2 provides a brief overview of related
work. Section 3 defines a more formal definition of the Contamination Source Characterization
problem. Section 4 describes briefly the EPANET software that serves the main computational
simulation engine for the water distribution system.

Section 5 presents the optimization model that is based on a GA and Section 6 investigates
the parallel implementation of the GA while utilizing the cyberaide workflow framework. Section
7 evaluates our implementations on the TeraGrid. IN Section 8 we describe our Hadoop-based
solution and in Section 9 we summarize our conclusion.

2 Relationship to Grids, Clouds, and Previous Work

In this section, we introduce briefly the concept of a production Grid and our light-weight cyberaide
toolkit for accessing production Grid resources.

2.1 Grids

A production Grid [3] is a shared computing infrastructure of hardware, software, and knowledge
resources that allows the coordinated resource sharing and problem solving in dynamic, multi-
institutional virtual organizations to enable sophisticated international scientific and business ori-
ented collaborations. Most often Grids contain resources and services that allow the user to conduct
high-performance and/or high-end computation. Recently Grids have been expanded to data Grids
serving data intensive scientific applications. Hence, elementary characteristics of Grids integrate
a large-scale distributed computing infrastructure across multiple administrative domains. A pro-
duction Grid can be accessed though a shared security infrastructure defined by policies and rules
between the institutions.

Production Grids use Grid middleware to coordinate its resources and services. The Globus
Toolkit [7] that includes a subset of the Java CoG Kit [5, 4], and gLite[8] are examples for popular
Grid Middleware. TeraGrid [9, 10] includes the Globus Toolkit as one of its software and service
offerings. For data transfer it uses the Globus Toolkit GridFTP [11] services.

Due to the nature of the applications that motivated Grid computing, Grid toolkits employ ser-
vices that allow uniform job submissions to take place among the diverse set of computational
resources, hiding the intrinsic differences between various site-specific batch queues. Hence, Grid
users can focus on staging scientific applications while only porting it once to a job execution
model rather than implementing a variety of non-uniform scripts to address intrinsic differences
between the various batch queues deployed at different sites and worrying about getting and man-
aging accounts amongst them.

However, although such services are in place, they often do require a significant investment of
time and resources to leverage from site-specific shortcomings to the original goals of Grid comput-

ing. Hence, it is important to provide lightweight user-level tools and middleware that is attractive
even for the non-Grid middleware developer to use and to expand its use to less experienced users.

2.2 Clouds

Cloud computing is based on infrastructure as a service (IaaS), platform as a service (PaaS) and
software as a service (SaaS) and often allows access to Web 2.0 frameworks. IaaS allows us to
abstract the computer infrastructure as part of virtualized resources. Thus, in contrast to classical
Grids, the virtualization aspect of the resources is an elementary distinction. PaaS enables users of
clouds to use solution stacks that simplify the development and deployment of applications to be
run in the cloud. It enables us to utilize specific paradigms such as map-reduce within a platform.
One such platform is Hadoop that we utilize in our development of a cloud-based solution of our
target application. We are using FutureGrid [6] as testbed for conducting our cloud experiments
with Hadoop. Clouds are a natural evolution from the classical Grid concept. In Fact, Grids with
its goal to deliver services to its users has many overlapping features.

2.3 Cyberaide: A Lightweight toolkit for Grid job management

Cyberaide is a lightweight middleware toolkit designed to simplify the interaction with resources
that may be hosted in multiple Grids, or clusters. This allows users to formulate their own view
of a virtual user-centric cyberinfrastructure. Hence the user is not limited to using resources in a
single Grid. We have seen that such environments are needed in case users have access to their own
clusters, or multiple Grids that are not integrated into the same security infrastructure. Furthermore,
it should be possible to integrate new resources the user has access to without having additional
special permissions other than having a user account. The Java CoG Kit provides a subset of the
underlying service functionality to enable such a user-centric cyberinfrastructure. Although the
Java CoG Kit is now also distributed in part with the Globus Toolkit it does not include the many
enhancements that we rely on in cyberaide. These are provided as part of the main Java CoG Kit
distribution. Additionally, we have significantly enhanced the logic and services and incorporated
them into a toolkit named cyberaide. Cyberaide is available as prototype. The latest enhancements
include the following features:

Ease of use. Cyberaide strives to be easier to use for a variety of users while providing a number
of access methodologies. This includes not only a Java, but also a Javascript API, a portal
interface, and a sophisticated command line and language interface that we are used to from
tools such as matlab and mathematica.

Low installation footprint. In order for the toolkit to be useful, it must be easy to install the client
and server services. Complex setup of enhancements to the client side must be avoided.
Thus, cyberaide uses a mediator service to which clients communicate via SSL instead of
using GSI. The mediator delegates service requests accordingly.

Security. Cyberaide gains access to Grid resources through common security protocols Integra-
tion of SSL based and GSI based compute resources and services is possible. Special at-

,,,

portal

Workflow composite & management
JavaScript CoG API

JUSIIO GO

| !
| !
| |
| |
| |
| !
| !
| !
| |
| |
| |
L |
‘ !
|
} ‘
. . . |
l ® Web services interface / Agent service !
—~ I
- > > |5 g |
|
7 |E FIE E|2 m|E°T v |g § |
E 8|5 5|IE X222 |« Q|2 » = \

! s g = slEg2 |8 2|2 P& 5
w 5 2.8 g 3l o |8 Z|g s S !
! o 2lg 2|2 EleB |Z =2 Bl T \
o = | = =3 . [~ a |
| = SIE 8|2 EEZ |REIE |E |
215 2|12 58 |2 & o' |0 & = !
! =S) < o o < [
! - < P = =N =} o |

!
g 5|
LS Application logic / mediator service S
| w} W) :
| S
. . |
l SSH / Globus Toolkit / Java CoG / Karajan !
|
} ‘
- - - l-—.— I
Cyberinfrastructure My proxy server

Figure 1: System Architecture of the Cyberaide toolkit

tention has been put forward in the design of a mediator framework to allow access to Grid
resources right from Javascript.

Basic Grid functionality. Cyberaide provides developers access to Grid-based services via ab-
stractions. It may not provide all functionality exposed to by a Grid toolkit but allows the
utilization of elementary actions such as filet transfer and job submission. One advantage of
this abstraction is that workflow in cyberaide could be viewed as a PaaS in which we use the
abstraction, but it is realized and implemented with different backends, such as the powerful
Java CoG kit workflow engine or a simple workflow system provided by a queuing system
such as Moab.

Advanced functionality. Cyberaide offers advanced user-centric functionality that is not provided
by regular toolkits such as Globus. An example would be a command line interface that
allows users to specifically manage their jobs on the Grid.

Cyberaide is based on a layered architectural design in order to allow its evolution over time
and to separate concerns (see Figure 1). The most important component of cyberaide is the media-
tor service that allows easy adaptation and integration of Grid, Cloud, and network of workstation

based infrastructure. Access to a mediator service is secured and must be enabled through config-
uration.

2.4 Cyberaide Workflow Concepts

The Cyberaide workflow concepts include three distinct abilities. First, through the Java CoG
Kit Karajan workflow [5] engine we provide the ability to orchestrate workflow-like tasks with
language constructs such as parallel blocks, loops, direct acyclic graphs, futures, task abstractions,
and fault tolerant behavior of tasks. Additionally, we can leverage from the unique feature that
the workflow can be manipulated at runtime and can be integrated with the Java COG Kit coaster
framework allowing the utilization of a reserved resource to receive multiple tasks at a time without
re-authentication and staging of input data. This can save an incredible amount of time, especially
if the cost for providing an ab initio data set is high.

The Java CoG Kit Karajan workflow specification language is a common purpose XML-based
language, which can express complicated workflows including conditional control flows and loops.
A functional programming language formulation of Karajan also exists making it possible to define
workflows either through XML or through function definitions. The execution model is based on
executing elements and to react upon events generated during the workflow execution. Of especial
interest is the ability to replace the execution engine governing the workflow execution. This
allows users and developers to provide their own strategies that may be influenced by dynamic
events. Basic checkpointing has been also implemented on the workflow level (the workflow can
be checkpointed, when all its elements are in consistent states).

The Cyberaide workflow portal that we prototyped is based on a service oriented architec-
ture that allows users to access Grid infrastructure through JavaScript [12]. Such a framework
integrates well with other Web 2.0 technologies since it provides JavaScript toolkit to build web
applications. The framework consists of two essential parts. A client Application Programming In-
terface (API) to access the Grid via JavaScript and a full service stack in server side through which
the Grid access is channeled. The framework uses commodity Web service standards and provides
extended functionality such as asynchronous task management and file transfer. The availability of
this framework simplifies not only the development of new services, but also the development of
advanced client side Grid applications that can be accessed through Web browsers. Figure 2 shows
an example of Cyberaide workflow portal.

3 Contamination source characterization in urban Water Dis-
tribution Systems

3.1 Problem definition

As mentioned earlier, CSC [13] in a Water Distribution System (WDS) is to find the contaminant
source locations and their temporal mass loading history. The temporal mass history is defined
through values such as as the start time of the contaminant release, duration of release, and the

600 Grid Portal (by using JavaScript CoG APY) (=)

() 209 (C)) () QAL oo 1L oo poras e % v YUK Coosle a)
—
Authentication Authenticated sucossstully! = -
myproxy server host | myproxy.teragrid.org)
s
R
as
o
.
b opensn =
Toragrid News RSS
popmasn e o i i e
o 002000104005 TS0 EST) Nawrk Cmmchty
W v 5 208152757 T 000 (EST) e Ut 115
[e 0 e oot s o oo
T ow 04 2008 61338 0500 (EST) TorardUnrPore Sysm s 11
i o 03 20 162051 T 400 €51 Lo, Gor v
Soor 0200805425 QU050 EST) oo
L1 200 155844 HTGAODEDT) e iy 0120084
110t 34 2008 15809 o 400 (07 _ P aannce 15608, a2
Result: x w12
I
-
oty el e o
e Fo
et e
.I.
s
=
Resut
st s e EEY

Figure 2: Cyberaide workflow portal

contaminant mass loading during this time. An essential problem is to identify appropriate lo-
cations for the sensors to minimize the time needed to detect a contamination. A few nodes are
selected as the sensor locations in the Water Distribution System. During a contamination event,
concentration readings are obtained at these locations at specified time intervals. Contamination
sources are assumed to be present at arbitrary locations in the WDS for a predetermined period of
time.

To identify the true contaminant sources, an estimate is generated for the contamination source
locations and their release histories i.e. start time of the contaminant, duration and the amount
of contaminant present. For every such estimate, the water quality simulation is run to obtain the
resulting concentration readings for all the sensor locations for every time step.

The problem of CSC in a WDS is to locate optimized estimated contaminant source locations
by minimizing the differences between concentration readings of estimations and those of real
measurement from sensors.

The problem of CSC in a WDS is to find a characterization of contaminant sources S =
(X, H(X,t),t0),

I tlena

i=1 t=tg
where,
. .th

® 7. 77" S€nsor,

e [is the number of sensors,

e {: time of simulation,

e {y: estimated start time of a contaminant sources,
e t..q: end time of simulation,

e X: contamination source locations, for CSC with multiple contaminant sources, X is a set
of contaminant source locations: X = (21, zs, ..., :L’k)T, where k is number of contaminant
sources

e H(X,t): contaminant mass loading, which is contaminant concentration of sources at time
t: H(X,t) = (hy(t), ho(t), ..., hp(t))T

e O(i,t): observed concentration of sensor i at time ,

e S: characterization of contaminant sources with contaminant sources of X, contaminant
mass loading of H (X,), and starting time of ¢, and

e ((i,t,S): calculated concentration of sensor i at time ¢ via a WDS simulation with an
estimated characterization of contaminant sources S.

Running such experiments multiple times and obtaining variations on the locations for sensors
with the goal to minimize the time for feedback can significantly reduce the cost of the sensor
placement.

3.2 Simulation and optimization framework

To solve the aforementioned problem, an optimization framework is introduced that uses simula-
tions to obtain the result (see Figure 3) [14]. An optimization model is coupled with the simu-
lation model by providing various input trial variables and retrieving simulated results. The op-
timization model generates optimized trials for the characterization of the contaminant sources
S = (X, H(X,t),ty) as part of the CSC problem. These optimized trials are then sent to the simu-
lation model. Together with other input data such as the network model of a WDS, the simulation
model computes the output determining the contaminant concentrations at the locations of sen-
sors. The simulation outputs are compared with the observational sensor data to be integrated into
a self-correction. If however the error between the simulation and the observed values is below a
threshold, the optimization and simulation approach is terminated.

4 PEPANET as a simulation engine for CSC

The EPANET software [15] models water distribution piping systems and performs the simu-
lation of the hydraulic and water quality behavior within a pressurized network of water pipes.
The EPANET computer program [16], developed by the U.S. EPA (Environmental Protection

Optimization
model

\i
trial decision——)

input

\
Simulation
model

h (
known input

\4

N

\

T (
simulated output »-[Calculate error]4— observed output

\

Y
optimized
decision input

Figure 3: The simulation and optimization approach

Agency), solves the nonlinear energy equations and linear mass equations for pressures at nodes
and flowrates in pipes. The EPANET reads the data file that defines the characteristics of the pipes,
the nodes (connection points of the pipe), and the control components (such as pumps and valves)
in the pipe network. The calculation of flowrates involves several iterations because the mass
and energy equations are nonlinear. The number of iterations depends on the system of network
equations and the user-specified accuracy. A satisfactory solution of the flowrates must meet the
specified accuracy, the law of conservation of mass and energy in the Water Distribution System,
and any other requirements imposed by the user. The calculation of HGL requires no iteration
because the network equations are linear. Once the flowrate analysis is complete, the water quality
computations are then performed.

A parallelized version of EPANET called PEPANET was developed by our partners at NCSU.
This MPI based software is available to simulate the water flow in a WDS and a Parallel Genetic
Algorithm is used as the optimization model.

5 Genetic algorithm as an optimization engine for CSC

The genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution to
generate useful solutions to optimization and search problems. We use a PGA in the optimization
model to find optimized Contamination Sources S in the CSC problem. Algorithm 1 shows the
GA skeleton for the CSC in a WDS. In the GA, a trial Contamination Source S is encoded as
individuals within a population. The simulation time is discretized into multiple time steps. In
each time step, a GA is applied with multiple generations to reach an optimized S. The evaluation

0NN B W=

— e e
Nk W = O\

process of individuals includes the following steps:

1. Calculated the simulated output via the simulation model implemented by the PEPANET

software

2. Calculated the fitness, which is the prediction error as follows:

f= Z|0(¢,t> —C(i,t,9)]

2)

The GA optimization is done in all time steps until the simulation time reaches the end time

tend .

Algorithm 1 WTM application skeleton

t = to
g =0
individuals := assign at random;
generate a set of N sub—populations;
while ¢t = t.nd do
t = t+1
while the predefined termination criteria is not reached do
g = g+1
foreach sub—population do
apply GA operators: selection, replication , mutation;
end
calculate the fitness foreach individual
calculate the distances between all sub—populations;
end
end

6 Parallel contamination source characterization with Cyberaide

workflow

Instead of using the PEPANET MPI based code, we have transformed the code to be executed
as part of a workflow. This allows us to decouple the computation of CSC by distributing tasks
and orchestrating them with cyberaide workflow framework. This includes the interplay between

a multi-population GA and the PEPANET simulations.

MGA: MGA is a framework for multi-population based niched co-evolutionary approach based
evolutionary strategy for generating multiple alternative solutions for the Water Distribu-
tion System contaminant source identification problem. The MGA code is the optimization
engine of the simulation — optimization framework. It calls the simulation component: a

mga: map

(generation 1)

mga: map
(generation k)

] input-k-n
GridFTP

GridFTP

Y i i
GridFTP ¥ \computational Grids %
- (Peanet) ([pepanet | ... (peplane‘)
‘ !
GridFTP GrerTe

GridFTP

output-k-1 output-k-n

output-k-2

output-k

mga: finalize
(generation k)

reduce

mga
(generation k+1)

Figure 4: Parallel contamination source characterization with Cyberaide workflow

persistent wrapper residing in the directory “PEPANET” to carry out EPANET simulations
in parallel. For the water distribution problem, solutions are represented as a location (node
number), start time with an integer and contaminant loading profile as a list.

PEPANET: The PEPANET is the parallel version of EPANET simulator [13]. It receives a num-
ber of contamination source parameters from an input file and divides them into multiple
file chunks to different EPANET servers to compute. The communication between EPANET
servers is done using MPI.

REDUCE: The REDUCE code collects and merges computing results from multiple EPANET

servers, and sends them to MGA for individual evaluation.

Table 1: Testbed setup in TeraGrid

| Compute site | Resource description

Abe (NCSA) Dell blade system: 1200 PowerEdge 1955 nodes

Each node: dual socket, quad core compute blades
InfiniBand interconnect

100 TB of storage in a Lustre filesystem

Big Red (IU) IBM €e1350: 768 IBM JS21 compute nodes

Each node: two dual-core 2.5 GHz PowerPC 970MP CPUs
8 GB memory

72 GB of local scratch disk

Queen Bee (LONI) | Dell PowerEdge 1950 cluster: 668 nodes.

Each node: two Quad Core Intel Xeon 2.33GHz 64-bit processors
8 GB of memory

10 Gb/sec Infniband

192TB (raw) of storage in Lustre a file system .

The Cyberaide workflow for the CSC is shown in Figure 4. The MGA code is executed itera-
tively on multiple generations at the client. At each generation, it sends input data for PEPANET
computation via GridFTP. The PEPANET servers are launched on remote Grid resources and sim-
ulate the urban Water Distribution System. After the simulation finishes, the results are sent back to
the REDUCE code via GridFTP. The MGA code resumes when all results are due, it then evaluates
all individuals and proceeds to the next GA generation.

7 Performance evaluation and discussion

Our experiments are conducted on a number of TeraGrid compute resources [17]. TeraGrid in-
cludes 11 supercomputing centers across the USA. We test the performance of the CSC application
with our implementation while using three of them: Abe at National Center for Supercomputing
Application (NCSA), Big Red at Indian University (IU), and Queen Bee at the Louisiana Optical
Network Initiative (LONI). The reason why we chose these three resources is based on the fact
that the application could be easily ported to them. Other resources on TeraGrid did not provide
the right libraries or software stacks to run the application successfully. The test bed is described
in Table 1. We executed the CSC simulation with Cyberaide workflow on the above resources of
the TeraGrid. At each resource 16 processors are allocated for the CSC problem calculation.

7.1 Performance evaluation and discussion

Figure 5 shows the CSC task execution time on Big Red, Abe and Queen Bee with different GA
generation numbers. It shows that on each compute resource (Big Red, Abe and Queen Bee) task
execution time is proportional to the number of GA generation. This can be explained as follows:

e The execution time of simulating the WDS is determined largely by the input data size and
compute resource capacity. As we calculate the same WDS and the input data is the same for
all tests, the time to execute the simulations is proportional to the compute resource capacity.

e The data transferred between clients and TeraGrid resources (Big Red, Abe and Queen Bee)
includes the WSD system information and input trial individuals. The WDS system in-
formation contains the WDS parameters and layouts, whose size is around several tens of
megabytes in total for our test problem. These files can be uploaded to TeraGrid resources
before the test and remain unchanged during the execution. For a simulation of each input
individual, the input data is around several kilobytes. The data transfer time of input data
can be ignored considering the high-speed network of the TeraGrid (typically 1 Gigabit/S or
10 Gigabit/S).

Such performance characteristic can be easily included in better utilization of the distributed
resources in the TeraGrid for this application.

7000
6000
5000
4000
3000

2000

Task execution time (second)

1000

1 6 11 16 21 26 31 36 41 46

Generation number

—=ABE -—Big Red Queen Bee

Figure 5: Task execution time vs. generation number

8 Hadoop Implementation on FutureGrid

We implemented the application while using the Hadoop methodology. To evaluate the Hadoop
implementation performance, we also modified the original program and implemented a WTM in
a master/slave paradigm. To achieve this modified algorithm, we created in each generation of the
Genetic Algorithm that is inherent in the application, a master that divides multiple individuals
to sub-tasks that are then sent to slaves for individual evaluation. To allow the use of distributed
resources the communication between master and slaves is protected via SSL allowing the use
of tools such as ssh and scp to coordinate execution and copying of results. We refer to this
implementation as the ssh implementation. We used the india cluster from the FutureGrid project
to conduct performance experiments. Figures 6 and 7 show the performance of the hadoop vs the
ssh implementation while comparing it with the number of nodes used. We observer that the ssh
based solution is more efficient than the haddop based solution.

5000

4500

o
o
o
o

==Generation no.=1
=@=Generation no.=2
Generation no.=5

=*¢=Generation no.=10

RN N W W
u o u o un
o O o o o
o o o o o

Generation no.=20

Generation no.=30

Task execution time with Hadoop

=
. O
o O
o O

Generation no.=40

0 . . -
1 2 4 8
Number of nodes of the Hadoop cluster

Figure 6: Task execution time in hadoop vs. number of nodes

9 Conclusion

The Contaminant Source Characterization (CSC) in a Water Distribution System is a critical re-
search issue due the importance of Urban Water Distribution Systems. The CSC calculation is a
compute-intensive application that typically requires high performance computing resources. In
this paper, we solve the CSC problem on the supercomputing resources of the TeraGrid project
with the Cyberaide workflow. We developed the Cyberaide workflow engine, portal and wrapper
service for executing the optimization — simulation framework of the CSC application. Test results

T 3500
a 3000
o =0=Generation no.=1
£ 2500 - .
p Generation no.=2
o
-] 2000 Generation no.=5
(%]
g 1500 =*=Generation no.=10
()]
é 1000 p.- ¢ ; Generation no.=20
= 500 \ Generation no.=30

0 ' ot e Generation no.=40

node no.=1, node no.=2, node no.=4, node no.=8,
SSH SSH SSH SSH

number of nodes
Figure 7: Task execution time using ssh vs. number of nodes

of CSC problem on the TeraGrid resources justify our design and implementation of the Cyberaide
workflow system.

Although we have shown that one could design a master slave framework including fault tol-
erance with the Java CoG Kit Karajan workflow engine (as we have done), Hadoop provides also
an implicit framework for executing map reduce like tasks in parallel. The advantage of using
a framework such as Karajan is the ability to develop sophisticated fault tolerant services with
custom behaviors. The advantage of using a framework such as Hadoop is that fault tolerant mech-
anisms are provided by default with little effort. Effort to use frameworks such as map reduce is
non-trivial and poses the need for the engineers to be familiar not only with map reduce but also
with the target application. However, the cost for such an implementation is magnified by signifi-
cant performance overhead. In addition, we observed that the use of FutureGrid provided us with a
complete new way of implementing a solution to the problem that was not accessible to us before.

Acknowledgment

This work, conducted by Gregor von Laszewski and Lizhe Wang, is supported (in part) by NSF
CMMI 0540076, NSF SDCI NMI 0721656 and 2010 HP Annual Innovation Research Awards. The
original versions of MGA and PEPANET software with MPI were implemented by Dr. Jitendra
Kumar and Mr. Sarat Sreepathi from North Carolina State University.

References

[1] G. von Laszewski, K. Mahinthakumar, R. Ranjithan, D. Brill, J. Uber, K. Harrison,
S. Sreepathi, E. Zechman, “An Adaptive Cyberinfrastructure for Threat Management in

Urban Water Distribution Systems”, in Proceedings of the International Conference on Com-
putational Science, ICCS 2006, Volume 3993, pages 401-408, 2006.

[2] S. Sreepathi, K. Mahinthakumar, E. Zechman, R. Ranjithan, D. Brill, X. Ma,
G. von Laszewski, “Cyberinfrastructure for Contamination Source Characterization in Water
Distribution Systems”, in Proceedings of the International Conference on Computational Sci-
ence, ICCS 2007, Volume 4487 of Lecture Notes in Computer Science, page 1058. Springer,
2007.

[3] G. von Laszewski, “The Grid-Idea and Its Evolution™, Journal of Information Technology,
47(6): 319-329, June 2005.

[4] G. von Laszewski, I. Foster, J. Gawor, P. Lane, “A Java Commodity Grid Kit”, Concurrency
and Computation: Practice and Experience, 13(8-9): 643-662, 2001.

[5] G. von Laszewski, “Java CoG Kit Workflow Concepts”, Journal of Grid Computing, Jan.
2006, http://dx.doi.org/10.1007/s10723-005-9013-5.

[6] “FutureGrid”, Web page, URL http://portal.futuregrid.org.
[7] “The Globus Toolkit”, URL http://www.globus.org.
[8] “gLite”, URL http://glite.web.cern.ch/glite/.

[9] P. Beckman, “Building the TeraGrid”, Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 363(1833): 17151728, 2005.

[10] C. Catlett, “The Philosophy of TeraGrid: Building an Open, Extensible, Distributed TeraS-
cale Facility”, in Cluster Computing and the Grid, 2002. 2nd IEEE/ACM International Sym-
posium on, page 8, 2002.

[11] “The GridFTP Protocol and Software”, URL http://www.globus.org/datagrid/
gridftp.html.

[12] G. von Laszewski, F. Wang, A. Younge, Z. Guo, M. Pierce, “JavaScript Grid Abstrac-
tions”, 1in Proceedings of the Grid Computing Environments 2007 at SCO7. Reno, NV,
Nov. 2007, URL http://cyberaide.googlecode.com/svn/trunk/papers/
07-javascript/vonLaszewski-07-javascript.pdf.

[13] S. Sreepathi, “Cyberinfrastructure for Contamination Source Characteraization in Water Dis-
tribution Systems”’, Master’s thesis, North Carolina State University, Raleigh, North Carolina,
USA, 2006.

[14] B.Y. Mirghania, K.G. Mahinthakumara, M.E. Trybya, R.S. Ranjithana, E.M. Zechman, “A
parallel evolutionary strategy based simulation-optimization approach for solving groundwa-
ter source identification problems”, Advances in Water Resources, 32(9): 1373-1385, 20009.

[15] “EPANET”, [Online], http://www.epa.gov/nrmrl/wswrd/dw/epanet .html.

[16] L. Rossman, “EPANET 2 users manual”, Technical report, US Environmental Protection
Agency, Cincinnati, Ohio, 2000.

[17] “TeraGrid”, 2001, URL http://www.teragrid.org/.

