A Loosely Coupled Metacomputer: Cooperating Job Sub-
missions across Multiple Supercomputing Sites

GREGOR VON LASZEWSKI

Mathematics and Computer Science Division, Argonne Nafibaboratory, 9700 S. Cass Ave., Argonne, IL 60439. U.S.A.

Contents

1. INTRODUCTION 1
2. MOTIVATION AND PROBLEM ANALYSIS 2

3. AMOTIVATING APPLICATION AND THE COMPUTATIONAL TESTBED 4

4. ARCHITECTURE 5
5. JOB SUBMISSION 8

5.1. Uniform Job Submission 8

5.2. Cooperating Job Submission oL 8
6. JOB SCHEDULING 11
7. DYNAMIC RESOURCE SELECTION 12
8. RESULTS 13
9. CONCLUSION AND FUTURE RESEARCH 14

A Loosely Coupled Metacomputer: Cooperating Job Sub-
missions across Multiple Supercomputing Sites

GREGOR VON LASZEWSKI

Mathematics and Computer Science Division, Argonne Nafibaboratory, 9700 S. Cass Ave., Argonne, IL 60439. U.S.A.

SUMMARY

This paper introduces a general metacomputing framework fosubmitting jobs across
a variety of distributed computational resources. A first-come, first-served scheduling
algorithm distributes the jobs across the computer resoures. Because dependencies
between jobs are expressed via dataflow graph,the framework is more than just a
uniform interface to the independently running queuing sysems and interactive shells
on each computer system. Using the dataflow approach extentte concept of sequen-
tial batch and interactive processing to running programs &ross multiple computers
and computing sites in cooperation. We present results froma Grand Challenge case
study showing that the turnaround time was dramatically reduced by having access
to several supercomputers at runtime. The framework is apgtable to other complex
scientific problems that are coarse grained.

1. INTRODUCTION

Many supercomputing applications can be classified in ote@tategories, loosely cou-
pled applications and tightly coupled applications. Ldpseupled applications are char-
acterized by cooperating processes that do not requiradrégnessage exchange between
each other. In contrast, tightly coupled applications dr@racterized by the need for fast
message exchange between the cooperating processesalyeaanetacomputing envi-
ronment must be designed to support the execution of botlicatipn classes. Analogous
to the simple characterization for the applications, omectassify metacomputing environ-
ments. Thus, éghtly coupled metacomputing environmaeititizes hardware and software
technologies that enable rapid communication betweenegsicg elements on different
computational resources. In@osely coupled metacomputing environmsateral super-
computers or workstation clusters are utilized while ragrjobs in a distributed fashion.
In this context gobis defined by a set of processes that are executed on one oétttemas
without communication to another machine during the exeautAlthough the metacom-
puting framework introduced in this paper can be used foh lagplication classes, as
demonstrated in [16, 15], we concentrate here on issudedediaa loosely coupled meta-
computing environment. An important requirement for a Epsoupled metacomputing
environment is thefficientuse of the diverse and distributed computing resources.

In this paper, we introduce the different parts necessagntible such a metacomputing
framework. We motivate our work based on analysis of vari@tend Challenge applica-
tions. We outline the general system architecture anddnire the different components,
including a uniform job submission component, a task grajitog and a monitoring inter-
face. We then present a scripting language for supportiagl#taflow computations. The
paper ends with a brief discussion of current and futurearee

2. MOTIVATION AND PROBLEM ANALYSIS

This work was motivated by an analysis of the developmentaedution of parallel pro-
grams for various Grand Challenge problems and other catipaotlly intense problems,
including atmospheric modeling[13], x-ray diffraction1 linear programming [20], and
genome analysis [7]. Several observations from this aisalgd to requirements that in-
fluence the design of the loosely coupled metacomputing@mvient introduced in this
paper:

Reduction of development cost through software reusd?rograms to solve Grand
Challenge problems are highly specialized. Their devekurtakes many person-
years. Because of the cost involved in designing and maintathe parallel code, it

is desirable to reuse as many software components as pogsbhave been proven
to be working correctly.

Specification via a task graph. Many large, complex programs are designed and
specified in such a way that they can be represented by a tapk.grnterfaces
between the separate tasks are usually well defined so tregieémdent development
teams can implement the assigned task. Often the only comations of these
tasks are performed during initialization and terminatioorder to pass parameters
from one task to another.

Specialized infrastructure. These programs are designed with a particular infras-
tructure in mind. The infrastructure includes specialibagddware, ranging from
the processor on which the program is executed, to storageéaraad networks for
secondary data storage and data transfers. Such spetinfrdware generally is
located at supercomputer centers, because of the costoeidprg and maintaining

a reliable infrastructure. Job submission to superconmpiiesuch centers is usually
performed in batch mode.

High demand of runtime resource in space and time.The execution of jobs at
such centers consumes a lot of memory and time. Because tifnitesd resources
at the centers, applications utilizing fewer resourcesraguently assigned a higher
priority than applications requesting a large amount obueses. Grand Challenge
problems make maximum use of existent hardware infrastraéh order to achieve
usable results in the quickest time possible.

Parameter studies.Some applications require an instantiation of the prograra o
variety of input parameters. Although this requirement barviewed as additional
motivation for a high demand in space and time, equally irgrdrare the repetitive
characteristics and the potential of generating tens afghods of independent tasks
(as is the case for the molecular x-ray structure analy$js [9

Usability by application users through simple interfaces.lt is necessary to pro-
vide a simple interface to the metacomputing environmedthe parallel programs
in order to hide the often complicated infrastructure thakes the submission of
programs a complex task. Most users of the analyzed apiplicpteferred to view

the computing environment as a “black box.”

Before we introduce the detailed architecture of this franr, we emphasize that it is
possible to reduce the overall turn-around time while penfog one or more of the fol-
lowing strategies:

e Space reduction by using fewer processors for the same apgidition. The average
wait time of a job in a batch queue is determined not only byjdhs already lined
up in the queue, but also by administrative decisions. Thebmr of processors
used and the reservation time at queue submission have mpagt on the average
waiting time. In many centers, the waiting time in queueslémg-running jobs is
usually longer. Thus, the turn-around time can be reducéukifparallel program
uses fewer processors during the instantiation. Forma#ydefine the turn-around
time for an applicatio running onp processors as

T4(p) =t} (p) + t(p) + 2 (D) ,

wheret;;‘ specifies the average waiting time in the batch quegfjehe time to read
and write the input and the output data, arfdthe time for the actual calculation.
If the number of processors is reduced, the job can be réfidaktor execution in a
shorter queue. As indicated above, many supercomputirtgrsesthedule such jobs
with higher priority. This strategy does not require modifythe original applica-
tion.

¢ Time reduction by dividing the application in multiple smaller jobs. Although
the above strategy often leads to the reduction of the tiradfor queuing, it does
not guarantee that the overall time will be reduced. In masgs the application can
be divided into several independent running jobs. Althailgmumber of processors
used is not reduced, the execution time of the computatibtised parts is smaller.
Formally, the minimal turnaround time of an applicatidnthat is split into two
sequential taskd; and A, is defined as

min T4 (py) + T42(p2) ,
Al; A2 = A

»m<p

P2 <¢q

wherep; andp- are the number of processors used for the different partspas
the total number of available nodes. Often it is sufficienfirnd a combination that
is smaller than the original turn-around time.

¢ Space-time reduction by using multiple supercomputersUsing multiple super-
computers at different sites to execute the parallel taskkely to reduce the time
used to perform the overall calculation. In many cases thadso the only way that
the application can be run: namely, by using the combindihabf the distributed
resources.

The metacomputing framework introduced in this articlepargs all of the strategies men-
tioned above in order to reduce the wall-clock time of a paoginstantiation. A central
feature of this framework is the specification of the taskpgras part of a dataflow graph.
This specification allows the user to:

¢ specify the jobs easily in a maximal parallel fashion;

¢ specify dependencies between the jobs as links in the tagihgand as temporal
condition in the dataflow graph;

e use the simple representation in a dataflow graph to spavengotmss multiple su-
percomputers at potential different sites; and

o utilize a scheduling algorithm that makes it possible tonsitfpbs uniformly across
the sites.

Additionally, it is important that the computational resces in the metacomputing envi-
ronment be easy to use. The goal of simplicity results intfiewing requirements for the
metacomputing framework:

¢ enable remote file staging across the different computieg;si

e provide a uniform interface to the queuing systems contigthe submission of jobs
to the supercomputers, including cancellation of jobs omate sites; and

¢ provide the ability to monitor job status.

Users would also like to be able to develop their programdeir tocal computers, while
the compilation and execution are performed remotely oraffpgopriate target machine.
This feature should be available as a shell command as walGasphical User Interface.

3. A MOTIVATING APPLICATION AND THE COMPUTATIONAL
TESTBED

Before discussing the architecture design in detail, weflgrexamine the requirements for
a particular application. We have chosen the Grand Chalepglication known as Four-
Dimensional Data Assimilation (FDDA) [13] because it takelvantage of all the design
features presented in this paper. FDDA is a technique useliniate and weather fore-
casting to improve the quality of the forecast. The goal igrtmduce dest estimatef the
state of the system based on a physical model of the eartbnsystd actual observations
collected over time.

An essential problem in FDDA is to interpolate from a set oégular distributed data
values (the climate or weather observations) to a set of\@dities spawned over the globe
at predefined locations. This set of data values (often g grigsed as an initial condition
to a climate model or weather forecast. This calculatiorefgented for every six-hour
period.

A high level flowchart of the FDDA cycle is shown in Figure 1. fing the initialization,
the data is prepared and erroneous data points are coraatej@cted. This corrected list
of observations is input of an objective analysis algorithat derives the initial condition
for the climate model.

The data preparation, the quality control and the objedivalysis can be decomposed
based on the geographical location of the input data (thersagons and the variables de-
scribing the earth system). In Figure 3 we show one posstieaih decomposition which
divides the globe into four regions. Including the data friva overlap regions allows
to formulate the execution graph as shown in Figure 2. Inékample four processors

Data Preparation

Repeat for Quality Cortrol
every 6 hou

andysis

Objective Analysis

Figure 2. Decomposition of the
Figure 1. The Four Dimensional Four Dimensional Data Assimila-
Data Assimilation Cycle. tion Cycle.

o ||
LT

Figure 3. A possible domain decomposition for the data analysis.

can be utilized in parallel. More sophisticated decompmsstrategies including dynamic
decompositions, can be found in [16]. For the mathematmah@lation[10, 11], the se-

quential and parallel algorithm[18, 15], and further imf@tion[4] about this problem, we
refer the reader to the literature.

During the observation of the scientists conducting theretitive experiments with dif-

ferent parameters or source modifications, we noticed Heaturnaround time is slowed
down by the large queuing times for submitting the prograthédocal scheduling system.
At the same time, we observed that the queues at other ceveegnot as busy. Thus, we
included selected cites into a testbed.

For the testbed environment we used computers located aliffeeent geographical lo-

cations, as shown in Figure 4. For most of our experimentstiliead a subset: the SP2
at the Northeast Parallel Architectures Center, Cornefiorit Center and Maui High Per-
formance Computing Center. Since the scientists were moilifa with these systems,
the requirements for uniform job submission, file stageamgl uniform program execution
becomes apparent.

4. ARCHITECTURE

Many possibilities exist to provide a framework that fuffithe design goals and require-
ments introduced earlier. Because we wish to keep the desigimple as possible, the
general architecture is based on a client-server modelbakie components of the archi-
tecture are depicted in Figure 5 and are explained in mogdldetater sections.

E|

;. NPAC. SP2
sl) cTC-SP2

Figure 4. Geographical distribution of the metacomputing composast used in
the NASA Four-Dimensional Data Assimilation Grand Chajleproject.

Four interface components enable users to communicatelvatimetacomputing environ-
ment in the following ways:

e monitoringthe activities on a remote compute resource (e.g., the loptebes),
e submittingjobs uniformly to the different batch queues,
e composing parallel application with the help of a task graph editod a

e scriptinga parallel application with a simple text based editor.

For the monitoring, submission and composition requires@naphical user interface
component are available. The desire of some users not to@saphical User Interface is
implicitly addressed in this design, since the componermisact with the backend system
via a universally used scripting language. Each of the carapts will be described in
more detail later in this article.

—> User
:h Batch Batch
. Client Server Batch
Graph Editor Uniiform Job Queue i
O@I) Submisson Job

Form Server

:> A@
Ej

Batch Job le»! Batch Job
.
® RemoteMadiines ®
. .
Local Machine Copy
Server

Monitor Generator
Figure 5. General architecture of the metacomputing framework.

b
| —Y

.

GuUI
Highlevel .
User Interfaces Script
Job Object K
Representation Job Object

High Lewel UserlInterfaces

Job Object Representation
and Intermediate System Level

Low level Remote File | | Remote Rurtime| | Remote Inquiry
Low level Application Functions Furctions Functions
s Interface
Application cp, mkdir, rm run, kil suspend ~ getState, getQueue

Interface

Infrastructure |

Infrastructure

NFS, DFS ... ‘ ‘ expect, s, ... ‘

LSF, sh, ... ‘

Figure 7. Components and applica-
Figure 6. The layers of the metacom- tion interfaces of the metacomputing
puting framework. framework.

The general metacomputing framework is based on a layecbitecture (Figure 6), which
contains a small set of application interfaces that can begdo different infrastructures.
These interfaces are distinguished by their functiongékitgure 7):

¢ Remote File Functionsallow users to access files on a remote machine. The func-
tions includecp, for copying a file from one machine to the othekdir, for creating
a directory on a remote machine; and , for deleting a file orother machine. The
function existsis used to test if a file on a remote machine is available. Taiobt
more information about the size and the access rightgripertyfunction is used.

¢ Remote Runtime Functionsenable a program to execute on a remote machine.
Authentication is performed in clear text, though it is ghaforward to provide a
key-based infrastructure. Besides starting a program thighrun command, it is
important to be able t&ill andsuspendhe command on the remote machine.

¢ Remote Inquiry Functions allow users to obtain information about jobs running on
remote machines. This includes information not only abbatdurrent job, but also
about batch queues that might run on the remote machine.

These functions are invoked through methods that are part object specification of the
jobs submitted through scripts or the graph editor. The jojeais are stored in the job
database, which provides a persistent storage for theddtttte system.

A typical interaction is invoked on the user's home machipaibing either a specialized
scripting language or the task graph editor. The jobs sekifi such a way are recorded
in a job database, and the batch job generator is notified b@teh job generator controls
the job submission and execution from the client to the am@te remote computational
resource. The status of the batch queuing system, as weltleastdte recorded in the
job database, can be observed with the job monitor. On eatlieamote sites hatch
serverand ajob serversupervise the program execution. Specifically, the batchese
monitors the batch system at the remote site and reportgekda all jobs running on this
machine. The only function of the job server is to submit atjplthe appropriate batch

queue. After this step is completed, the job server is teatnithat the remote machine in
order to conserve valuable compute resources.

The design allows for computational resources that opénabatch and in time-sharing

mode. Hence, one can extend the framework to large distdbeamputing networks. The
architecture is implemented by using Java, Perl[2], andxpkct[12, 8] using rsh, telnet,
ftp, and TCP/IP[14].

Since the metacomputing framework is able to execute atyasfaasks, we first demon-

strate the capability to perform uniform job submissionstdr, we will demonstrate the
extended batch control mechanism based on the dataflowgibnce

5.JOB SUBMISSION

In this section we discuss the mechanisms implemented imet&computing system to
assist users of different supercomputing sites who aredfadth the problem of using
different interfaces to the batch queues running on diffesapercomputers.

5.1. Uniform Job Submission

A uniform job submission form allows users to submit jobs néenote shell execution of
the appropriate commands accessing the queuing system spetialized scripts based on
expect.Figure 8 shows a screenshot of the general submission foptiaegd to the FDDA
application. Only a few essential characteristics of theeulying job submission systems
are used in order to keep the submission process as simptssible.

The form requests that the user specify the name of the fildiohithe job is described, the
directory from which the program is executed, the files fandtard output and error, the
users e-mail for notification upon completion of the job, &l was, parameters determining
how long the program should run and how many processorsdheulised. The status of
a queuing system on a remote site can be visualized as display-igure 9.

5.2. Cooperating Job Submission

To demonstrate the way in which a loosely coupled metacoanpubgram functions, we

use the example of the FDDA application. The parallel prograsolve the mathematical
tasks associated with the FDDA can be divided into seveaglest [18], each of which is

executed in parallel separately (a very common approadarfge codes).

Figure 10 shows an example of such a program. The task of tgggm is to use some

input data, process it with a program, forward the outputiatlaer program, and show the
result of the overall calculation on a terminal. In the extenuspecification, program A

is mapped onto a DEC Alpha workstation farm, while programaB be mapped onto the
SP2’s from NPAC, Cornell, or Maui.

The uniform job description form, as displayed in FiguresBused to specify differences
for each machine due to the file system and user accounts lleesvtiee differences in the

batch program operating at the different sites. After thesjbave been properly defined,
the program can be executed. A job database is used to ssgénei running jobs on the
different machines. The contents of the database can balizied with a monitoring user

interface (Figure 11). Each job is assigned a unique ideatifin and can have input and
output data dependencies with other jobs (e.g., beforamibesstarted, a job has to wait for

Job Specification Queue . Comell SPZ (LLE) ~Comell SP2 (SPE) > Maui SP2
Machine: AComell Maul GSFC Stalus ~GSFC Cray C80 ~~Caltec Paragon
Im - Submitbed ST FRI Clams Running on
Joh Filename: run.comeli
= £rénos.179.0 Farica 8/21 13:39 B 50 medium eriomoz (A
Initial Directary. /afsAheory.comell.edu/useruser] ZrenorEX AMP ?;"::i::g *l“mrd :ﬁi i; ;:: :g "di:"x ?:Sni:
r6n0l.129. =page mmall leng £rlTa

. E£r15a05 220 0 Eremback 8/21 11:47T R 50 emall long ErlTa0s
Error Qulput R 8(Clusten).ery £rén1s.150.0 P 6/21 0343 % 50 lomg Erisnia

. £ren1s.155.0 Figh /21 03:35 R 50 medium £r2Tans
Eifestael Ouifuit R.$(Clusten.ouf E£rinoE.335.0 davia 8/20 07111 R 50 lemg £r18n02
Job Type el g £ronos.140.7 badmen 8/21 12114 & 50 emall chork Erdn0l .
Class #15-min +30-min = =
Wall clock Limit(ibmim:ss): | 000500 Kill Joh| Info on Job
Frocessors: Iin i Iax

4 Display Jobs: _((Rjrunning I (Ddle (P)ending
[e-mail notification: gregor@npac syr.ed All JiCiompleted _I(R)e(Mjoved _I(Rjemoved (Fjending
Cammands: B
User.
ata_assimilatior; E .
- N Reg. Exp.:
’7 Update | Dismiss
I Read data from file: data/maui_sp2.dat

=] i

Figure 9. The job monitor allows the

user to observe the status of jobs sub-
mitted to remote supercomputers, in-
cluding the state of the batch queues.

Figure 8. The uniform job submis-
sion form allows the user to submit
a job to the batch queues of remote
supercomputers as well as interactive
shells.

the completion of the jobs given in the input dependency. liss a job is completed, the
state is updated in the job database, and dependenciestivithjobs are resolved. Jobs
that do not depend on any other jobs (their dependenciegsoéved) are then submitted
for execution. Once the job is running on the particular nraelthe database and the mon-
itoring interface are updated again. The selection of jotzktaeir execution are repeated
until all dependencies are resolved. It is a straightfodaerplementation of a classical
dynamic dataflow concept using global control.

Internally, the dataflow graph is converted to a sequencéa&f sommands that are exe-
cuted in a special Java thread. The thread is responsilbdeli@duling and supervising the
parallel jobs that are executed asynchronously. For edxhajgeparate thread is created.
A job can be in one of the following states:

¢ Submitted — the job is submitted and prepared for running on the targehine.

Running- the job is running on the target machine.

Completed- the job is completed, and the result is available for otbles

Failed — the execution of the job has failed.

Waiting — the job is waiting for the completion of one of its dependesdinput
resolution).

Halted — the job has been halted by the operator.

A separate list is used to collect failed jobs. They are eitesubmitted or, after a par-
ticular timeout, forwarded to another component of the m@tgouting environment. This
approach provides a minimal fault-tolerant behavior oféheironment. Global control on
the user’'s home machine is used to supervise the jobs in thk Qaeue.

Process Momitor

File bGenerate Options Layout Help d Dependency Stat us Command

EH i 3 - ind ad IO T m] =T)

1,6 Waiting Maui: Start Optimal Interpolati
- Running Cornell: Copy File to Maui MHAQ
Running Syr.. Copy File to Maui MH
Waiting Maui.: Copy File to Syracuse !

Submitted Syr.: Prepare Graphical Outp
Waiting Maui: Start Quality Control |

Waiting Cornell: Start Optimal Interpolation

Info| Kill UEdaLEI Dismiss

Command: || CP ~/ 4dda/ obser vati ons. dat maui: ~/ run

o>

3
1
2
4
5
6
1

PR Asw

N
=

Debug; TJdob 1

current anticipated tine of conpletion: 30s]‘

no network failure encountered
the machine tsunam in Maui is up

]

I~ |

Figure 10. A loosely coupled meta-

computer program. Figure 11. List of jobs submitted to

the metacomputing environment.

Once aloosely coupled job is generated with the help of thplycal editor, itis transferred
to an intermediate language. This language is similar toe#l sbript. Such similarity is
essential to enable programming a tightly coupled metacoeniin textual form as well as
in graphical form. Again, simplicity is important becausels an environment will be used
by scientists who do not necessarily know the newest tedigiyah computer science.

The language is built around a few simple commands allowéngate file access and re-
mote compilation. Each command can be attached wiild ,amhich allows the generation
of dependencies between jobs. TBBMITcommand submits a job to the specified re-
mote computer and returns a unigde Jobs are all submitted asynchronously. The job id
can be used t€ANCELthe job or perform other actions on it. TRAIT command waits
on the execution of the specified job or job set. It is posdiblMait for the completion of
all jobs WAIT(ALL) in ajobset or to wait till one job/AIT(ONE) of the set is completed.
The immediately returnin@ROBEcommand returns the state of a job. Thus, it is possi-
ble to check for the states introduced earlier (SUBMITTEDNNING, COMPLETED,
FAILED, WAITING, HALTED). In combination with the WAIT comrand, the PROBE
can be applied to sets and returns the first job id for whictptisding command returns a
value.

Figure 12 depicts a simple script for compiling and running EDDA program on two
remote machines. The script uses a first-come, first-sectegtislling policy. One of the
strengths of this approach is the simplicity of formulatangrogram running on multiple
platforms through different batch operating systems. Jaisat would have to be executed
normally by hand, while inspecting batch queues, can novkbelged automatically. Ad-
ditionally, the method to specify such jobs is for many ugatstive since it is based on the
extension of a shell/Perl like language. Thus, the learnirge for utilizing this approach
is low.

10

Create the directory
MKDIR cornell : PROJ
Copy the sourcecode from Maui
id$1 := CP home : PROJ/Makefile cornell : PROJ/.
id$2 := CP home : PROJ/run cornell : PROJ/.
id$3 := CP home : PROJ/fdda.f90 cornell : PROJ/.
id$4 := CP home : PROJ/fdda.h cornell : PROJ/.
id$5 := CP home : PROJ/Makefile maui : PROJ/.
id$6 := CP home : PROJ/run maui: PROJ/.
id$7 := CP home : PROJ/ fdda.f90 maui : PROJ/.
id$8 := CP home : PROJ/ fdda.h maui: PROJ/.
WAIT(ALL) id$1 — 8
Compile the program
id$cornell := APPLY cornell : PROJ/make all
id$maui := APPLY maui : PROJ/make all
W AIT(ALL) id$maui, id$cornell
Submit the job
id$runcornell :== SUBMIT cornell : run
id$runmaui := SUBMIT maui : run
idSexecuting := WAIT(PROBE(SUBMITTED)) id$runcornell id$runmaus
Get the result from the machine starting the job first
if (idSexecuting == id$runmaui) {
CANCEL id$runcornell
tdSwait :== WAIT(ALL) id$runmaui
$machine = “maui ”
}else {
CANCEL id$runmaui
idSwait := WAIT(ALL) id$runcornell
$machine = “cornel | ”

}
W AIT(ALL) id$wait
CP $machine : PROJ/ final.dat .

Figure 12. Example of the scripting language used to define a looselgledumeta-
computing application.

6. JOB SCHEDULING

The goal of the job-scheduling algorithm is to minimize the@ll wall-clock time for
executing the program. For efficient job scheduling, a matprediction algorithm can be
included in the framework.

The mapping of jobs to machines operating in time-sharirgtzaich mode forces one to
use different strategies for predicting the runtime of a jbbtime-sharing mode, system
values such as current load and load averages are used tot phedcompletion time of
the job. This information is especially useful when a parfance prediction function is
available for the job.

If performance prediction is not possible or the job is exedwn a supercomputer oper-
ating in batch mode, the execution time is not as easy to gre@ine way to solve this
problem is to submit all jobs to a global queue. This globawidecides which machine
the job will be executed on. For example, the batch operatifigvare CODINE is able to
submit jobs to different machines [3, 1].

In most cases, however, the metacomputing center mainitairmsvn local queues and

11

policies. In such a case, the jobs can be simply replicate€agh one of the machines.
The first job completed causes the other jobs to be terminateith are then removed
from the queue. The disadvantage of this strategy is thati jare started at the same
time, valuable resources in CPU cycles might be wasted. Mophisticated algorithms
are possible in case advanced reservation policies aréeehabthe batch queues.

Once more performance data of the average wait times in ttoh loeues and the exe-
cution time of the applications on the compute server ardadla, the machine on which
the job is executed can be selected based on its performbhacacteristics. Specifically, a
more sophisticated algorithm can be used that first pretlietexpected turn-around time
on a variety of machines and then selects only those machinere the time for execution
is minimal. For parameter studies on deterministic alpong of known complexity, this
strategy results in a very effective scheduling since tha daprevious runs is recorded
in the job database and the performance characteristicsecegused in the next job to be
scheduled.

The status of the machines can be monitored in multiple wiys possible to run a Java
server on the supercomputer side and send information destatus upon request. The
current setup allows the user to start a remote procedurarwkonsult the job queue for
information about the status of the running jobs.

In the next section we show the design of a more sophistiahtadmic resource selection
instead of the rather simple first-come first-served schieguésource scheduling.

7. DYNAMIC RESOURCE SELECTION

The dynamic execution of a program is driven by three fact¢t3 the software mod-
ules available for the different hardware platforms, (2 #vailability of a computational
resource, and (3) the use of the computational resourcgard-1.3 illustrates the process
responsible for selecting the hardware and software usextitute the program on existing
hardware platforms.

N!qchipe l Batch Job Generator
Utilization Jobs Machines

@ Job Queue Machine Pod ®

)
6
s __ @0
© ©
@ Insertajob
® Selectajob Performance
@© Select amachine Datebase

Insert amachine
Hardware @

Figure 14. Steps performed in the

Figure 13. Dynamic selection pro- . X
dynamic selection process.

cess during program execution

As pointed out previously, in some scientific programs (stbed parameter studies), a
problem is solved many times for similar instances of datth litle difference in execu-

12

tion time. The information about the execution time on d#éf& machines is stored in a
database, either via direct measurement or via a perforeqaediction analysis algorithm.
This information can then be used to predict the real-tintéopmance of the program. If
several choices of software and hardware mappings arabigithe one with the shortest
execution time is chosen. Hence, the selection not onlyded a hardware mapping, but
also can include the use of completely different algorithonsolve the (meta)problem.
Figure 14 depicts the steps that are performed to updatafinariation in the performance
database. Several important asynchronously running tasldistinguished with the letters
a, b, c,andd.

(a) Jobs are continuously inserted in the job queue.

(b) A job is selected from the queue for execution. Differeelection algorithms can
be integrated into the environment. The simplest stratedy select the jobs in a
first-in-first-out fashion. More sophisticated algorithmske use of the time and
memory used to complete the jobs while sorting them appatgdyi. The strategy for
selecting the jobs can be configured by the user.

(c) Once a job is selected, an appropriate machine has taibe féf no machine seems
to be appropriate to run the current job, the job is insertwtkbnto the end of the
job queue, and step b will be performed. If a machine for etienwas determined,
the job is submitted. After completion, the runtime infotioa is stored into the
performance database for improving future schedules.

(d) Machines that are exceeding a particular number of otlyrescheduled jobs are
removed temporarily from the machine pool in order to capthe fact that many
computing centers have a policy of “maximum number of jobsyser” in place.
This number can be configured individually for each machine.

The maintenance of a machine pool in addition to the job gufeom which resources are
selected, allows the dynamic resource selection.

8. RESULTS

To test the metacomputing environment, we ran experimente@SP2 in Cornell, Syra-

cuse, and in Maui. During these experiments, the jobs wdymited asynchronously to

the machines. We used the scheduling algorithm, as welhagredicted waiting times in

the queues for both machines. Based on this predictionptigeyere started on the ma-
chine with the least amount of waiting time. Whenever a jols wecepted in a machine,
the corresponding job on the other machine was deleted.sithisle strategy reduced the
wall-clock time for the completion of the job by 3-5 hoursdahus enabled us to obtain
dramatically reduced turnaround during peak hours.

In addition, it is important to point out that the metacompgtramework, introduced in

this article, is easy to use. It allows for easy specificatbprograms as well as their
monitoring in a distributed environment.

Another important result is the ability to port the framewén other metacomputing in-

frastructures. Recently, a port based on the Globus Metpating toolkit was developed

and is currently under improvement.

13

9. CONCLUSION AND FUTURE RESEARCH

The metacomputing system introduced in the precedingseis very general. Itis useful
for providing a uniform interface to the job submission syss$ at different supercomput-
ing sites, as well as integrating multiple jobs in an ovepatigram. Dynamic behavior of
the infrastructure can be monitored and used for steerimgdmputation. The system can
be ported to different sites, since only a small set of ragimterfacing with the environ-
ment need to be adapted. A port that replaces the job startaghanism via the Globus
metacomputing toolkit is under development [5].

The integration of the framework introduced in this papéo i@ larger framework such as
the Globus metacomputing toolkit allows expansion of i@hility. We plan additional ap-
plications of this framework in other Grand Challenge petgeinitial results were demon-
strated at Supercomputing '98 [19]. The next step will imeotleveloping more sophisti-
cated scheduling algorithms that make better use of thendigahchanging infrastructure.

ACKNOWLEDGMENTS

This research would not have been possible without the catipe of several researchers
at Northeast Parallel Architectures Center (NPAC) and atdaod Space Flight Center in
Greenbelt, MD. In particular, | thank Geoffrey C. Fox[6] aMdoje Makivic at NPAC for
their valuable discussions related to this research. IrDida Assimilation Office, | am
grateful to Peter Lyster for his guidance, his many helpfithments, and fruitful discus-
sions. | thank David Lamich, James Stobie, Mike Seabloorinde DaSilva, and Steve
Cohen. | am especially grateful to Richard B. Rood for hispsuwpand hospitality dur-
ing several visits at NASA Goddard Space Flight Center asgfahe Universities Space
Research Association. Facilities from the Northeast Rdraichitectures Center, Cornell
Theory Center, Maui High Performance Supercomputer Ca@tetdard Space Flight Cen-
ter, and the Jet Proportion Laboratory were used to contleatxperiments. This project
has been funded by NASA High Performance Computing and Camuations Earth Sci-
ence Project. | thank Gail Pieper for her assistance in pirggp¢he final manuscript. The
more recent developments were conducted in the DistribBystems Laboratory, led by
lan Foster at the Mathematics and Computer Science Divaidngonne National Labo-
ratory.

References

[1] Baker, M., Fox, G. C., and Yau, H. Cluster Computing RevieTech. Rep. 1995,
Center for Research on Parallel Computation, Nov. 1995.

[2] Christiansen, L. W. T., and Schwartz, R. Programming Perl 2nd ed. O’Reiley,
1996.

[3] CODINE. http://www.genias.de/genias/english/cadaodine.html.

[4] Daley, R. Atmospheric Data AnalysisCambridge Atmospheric and Space Science
Series, Cambridge University Press, 1991.

[5] Foster, I., and Kesselman, C. Globus: A Metacomputirfgastructure Toolkit.In-
ternational Journal of Supercomputer Applications 2§1997), 115-128.

14

[6] Fox, G. C., Haupt, T., and Furmanski, W. Webflow.
http://www.npac.syr.edu/users/haupt/WebFlow/padeérag.

[7] Gasterland, T., and Sensen, C. Fully Automated GenonayArs that Reflects User
Needs and Preferences — a Detailed Introduction to the MEGE/stem Architec-
ture. Biochemie 784 (1996).

[8] Libes, D. Exploring ExpectO’Reiley, 1995.

[9] Miller, R., Gallo, S., Khalak, H., and Weeks, C. SnB: Galsstructure determination
via Shake-and-Bake&lournal of Applied Crystallography 2(1994), 613—621.

[10] NASA Data Assimilation Office at Goddard Space Flighh@s. Data Assimilation
Program Version 1.2Greenbelt, MD, 1993.

[11] NASA Data Assimilation Office at Goddard Space Flighn@e. Data Assimilation
Program Version 2.0Greenbelt, MD, 1993.

[12] Ousterhout, JTcl and the Tk ToolkitAdisson Wessley, 1994.

[13] Pfaendtner, J., Bloom, S., Lamich, D., Seablom, M. n&iewicz, M., Stobie, J.,
and da Silva, A. Documentation of the Goddard Earth Obsgr@iystem (GEOS)
Data Assimilation System - Version 1. Tech. Rep. 4, Goddgac8 Flight Center,
Greenbelt, MD, 1996.

[14] Stevens, R. WUNIX network programmingPrentice Hall, 1990.

[15] von Laszewski, G. An Interactive Parallel Programmiroyironment applied in at-
mospheric Science. IMaking its Mark, Proceedings of the 6th Workshop of The use
of Parallel Processors in MeteorolodiReading, UK, Dec. 1996), G.-R. Hoffman and
N. Kreitz, Eds., European Centre for Medium Weather Foited&lerld Scientific,
pp. 311-325.

[16] von Laszewski, G.A Parallel Data Assimilation System and its Implicationsan
Metacomputing EnvironmenlPhD thesis, Syracuse University, Dec. 1996.

[17] von Laszewski, G. The Argonne Grand Challenge X-ray WWpsge.
http://www.mcs.anl.gov/xray, 1999.

[18] von Laszewski, G., Seablom, M., Makivic, M., Lyster,&hd Ranka, S. Design Issues
for the Parallelization of an Optimal Interpolation Algimin. In Coming of Age,
Proceedings of the 4th Workshop on the Use of Parallel Psingsn Atmospheric
Scienceg(Reading, UK, Nov. 1994), G.-R. Hoffman and N. Kreitz, Edsuropean
Centre for Medium Weather Forecast, World Scientific, pf-2D2.

[19] von Laszewski, G., Westbrook, M., Foster, I., WestloB., and Barnes, C. Us-
ing Computational Grid Capabilities to Enhance the Abitifyan X-Ray Source for
Structural Biology.to be submitte1999).

[20] Wright, S. OT: Optimization Toolkit for large scale @pization problems.
http://www-unix.mcs.anl.gov/ot, 1998.

15

