
A Loosely Coupled Metacomputer: Cooperating Job Sub-
missions across Multiple Supercomputing Sites

GREGOR VON LASZEWSKI
Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439. U.S.A.

Contents

1. INTRODUCTION 1

2. MOTIVATION AND PROBLEM ANALYSIS 2

3. A MOTIVATING APPLICATION AND THE COMPUTATIONAL TESTBED 4

4. ARCHITECTURE 5

5. JOB SUBMISSION 8
5.1. Uniform Job Submission .. 8
5.2. Cooperating Job Submission 8

6. JOB SCHEDULING 11

7. DYNAMIC RESOURCE SELECTION 12

8. RESULTS 13

9. CONCLUSION AND FUTURE RESEARCH 14

1

A Loosely Coupled Metacomputer: Cooperating Job Sub-
missions across Multiple Supercomputing Sites

GREGOR VON LASZEWSKI
Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439. U.S.A.

SUMMARY
This paper introduces a general metacomputing framework for submitting jobs across
a variety of distributed computational resources. A first-come, first-served scheduling
algorithm distributes the jobs across the computer resources. Because dependencies
between jobs are expressed via adataflow graph,the framework is more than just a
uniform interface to the independently running queuing systems and interactive shells
on each computer system. Using the dataflow approach extendsthe concept of sequen-
tial batch and interactive processing to running programs across multiple computers
and computing sites in cooperation. We present results froma Grand Challenge case
study showing that the turnaround time was dramatically reduced by having access
to several supercomputers at runtime. The framework is applicable to other complex
scientific problems that are coarse grained.

1. INTRODUCTION

Many supercomputing applications can be classified in one oftwo categories, loosely cou-
pled applications and tightly coupled applications. Loosely coupled applications are char-
acterized by cooperating processes that do not require frequent message exchange between
each other. In contrast, tightly coupled applications are characterized by the need for fast
message exchange between the cooperating processes. Generally, a metacomputing envi-
ronment must be designed to support the execution of both application classes. Analogous
to the simple characterization for the applications, one can classify metacomputing environ-
ments. Thus, atightly coupled metacomputing environmentutilizes hardware and software
technologies that enable rapid communication between processing elements on different
computational resources. In aloosely coupled metacomputing environmentseveral super-
computers or workstation clusters are utilized while running jobs in a distributed fashion.
In this context ajob is defined by a set of processes that are executed on one of the machines
without communication to another machine during the execution. Although the metacom-
puting framework introduced in this paper can be used for both application classes, as
demonstrated in [16, 15], we concentrate here on issues related to a loosely coupled meta-
computing environment. An important requirement for a loosely coupled metacomputing
environment is theefficientuse of the diverse and distributed computing resources.
In this paper, we introduce the different parts necessary toenable such a metacomputing
framework. We motivate our work based on analysis of variousGrand Challenge applica-
tions. We outline the general system architecture and introduce the different components,
including a uniform job submission component, a task graph editor, and a monitoring inter-
face. We then present a scripting language for supporting the dataflow computations. The
paper ends with a brief discussion of current and future research.

1

2. MOTIVATION AND PROBLEM ANALYSIS

This work was motivated by an analysis of the development andexecution of parallel pro-
grams for various Grand Challenge problems and other computationally intense problems,
including atmospheric modeling[13], x-ray diffraction[17], linear programming [20], and
genome analysis [7]. Several observations from this analysis led to requirements that in-
fluence the design of the loosely coupled metacomputing environment introduced in this
paper:

� Reduction of development cost through software reuse.Programs to solve Grand
Challenge problems are highly specialized. Their development takes many person-
years. Because of the cost involved in designing and maintaining the parallel code, it
is desirable to reuse as many software components as possible that have been proven
to be working correctly.

� Specification via a task graph. Many large, complex programs are designed and
specified in such a way that they can be represented by a task graph. Interfaces
between the separate tasks are usually well defined so that independent development
teams can implement the assigned task. Often the only communications of these
tasks are performed during initialization and terminationin order to pass parameters
from one task to another.

� Specialized infrastructure. These programs are designed with a particular infras-
tructure in mind. The infrastructure includes specializedhardware, ranging from
the processor on which the program is executed, to storage media and networks for
secondary data storage and data transfers. Such specialized hardware generally is
located at supercomputer centers, because of the cost for providing and maintaining
a reliable infrastructure. Job submission to supercomputers in such centers is usually
performed in batch mode.

� High demand of runtime resource in space and time.The execution of jobs at
such centers consumes a lot of memory and time. Because of thelimited resources
at the centers, applications utilizing fewer resources arefrequently assigned a higher
priority than applications requesting a large amount of resources. Grand Challenge
problems make maximum use of existent hardware infrastructure in order to achieve
usable results in the quickest time possible.

� Parameter studies.Some applications require an instantiation of the program on a
variety of input parameters. Although this requirement canbe viewed as additional
motivation for a high demand in space and time, equally important are the repetitive
characteristics and the potential of generating tens of thousands of independent tasks
(as is the case for the molecular x-ray structure analysis [9]).

� Usability by application users through simple interfaces.It is necessary to pro-
vide a simple interface to the metacomputing environment and the parallel programs
in order to hide the often complicated infrastructure that makes the submission of
programs a complex task. Most users of the analyzed application preferred to view
the computing environment as a “black box.”

2

Before we introduce the detailed architecture of this framework, we emphasize that it is
possible to reduce the overall turn-around time while performing one or more of the fol-
lowing strategies:

� Space reduction by using fewer processors for the same application. The average
wait time of a job in a batch queue is determined not only by thejobs already lined
up in the queue, but also by administrative decisions. The number of processors
used and the reservation time at queue submission have a big impact on the average
waiting time. In many centers, the waiting time in queues forlong-running jobs is
usually longer. Thus, the turn-around time can be reduced ifthe parallel program
uses fewer processors during the instantiation. Formally,we define the turn-around
time for an application

�
running on� processors as

� � �� � � ��� �� � 	 ��
� �� � 	 ��� �� �

where��� specifies the average waiting time in the batch queue,��
� the time to read
and write the input and the output data, and��� the time for the actual calculation.
If the number of processors is reduced, the job can be reclassified for execution in a
shorter queue. As indicated above, many supercomputing centers schedule such jobs
with higher priority. This strategy does not require modifying the original applica-
tion.

� Time reduction by dividing the application in multiple smal ler jobs. Although
the above strategy often leads to the reduction of the time spend for queuing, it does
not guarantee that the overall time will be reduced. In many cases the application can
be divided into several independent running jobs. Althoughthe number of processors
used is not reduced, the execution time of the computations of their parts is smaller.
Formally, the minimal turnaround time of an application

�
that is split into two

sequential tasks
� �

and
��

is defined as

��� � � � �� � � 	 � �� �� � �
� � � � � � �
� � � �
� � � �

where� � and� � are the number of processors used for the different parts, and p is
the total number of available nodes. Often it is sufficient tofind a combination that
is smaller than the original turn-around time.

� Space-time reduction by using multiple supercomputers.Using multiple super-
computers at different sites to execute the parallel tasks is likely to reduce the time
used to perform the overall calculation. In many cases this is also the only way that
the application can be run: namely, by using the combined ability of the distributed
resources.

The metacomputing framework introduced in this article supports all of the strategies men-
tioned above in order to reduce the wall-clock time of a program instantiation. A central
feature of this framework is the specification of the task graph as part of a dataflow graph.
This specification allows the user to:

3

� specify the jobs easily in a maximal parallel fashion;

� specify dependencies between the jobs as links in the task graph and as temporal
condition in the dataflow graph;

� use the simple representation in a dataflow graph to spawn jobs across multiple su-
percomputers at potential different sites; and

� utilize a scheduling algorithm that makes it possible to submit jobs uniformly across
the sites.

Additionally, it is important that the computational resources in the metacomputing envi-
ronment be easy to use. The goal of simplicity results in the following requirements for the
metacomputing framework:

� enable remote file staging across the different computing sites;

� provide a uniform interface to the queuing systems controlling the submission of jobs
to the supercomputers, including cancellation of jobs on remote sites; and

� provide the ability to monitor job status.

Users would also like to be able to develop their programs on their local computers, while
the compilation and execution are performed remotely on theappropriate target machine.
This feature should be available as a shell command as well asa Graphical User Interface.

3. A MOTIVATING APPLICATION AND THE COMPUTATIONAL
TESTBED

Before discussing the architecture design in detail, we briefly examine the requirements for
a particular application. We have chosen the Grand Challenge application known as Four-
Dimensional Data Assimilation (FDDA) [13] because it takesadvantage of all the design
features presented in this paper. FDDA is a technique used inclimate and weather fore-
casting to improve the quality of the forecast. The goal is toproduce abest estimateof the
state of the system based on a physical model of the earth system and actual observations
collected over time.
An essential problem in FDDA is to interpolate from a set of irregular distributed data
values (the climate or weather observations) to a set of datavalues spawned over the globe
at predefined locations. This set of data values (often a grid) is used as an initial condition
to a climate model or weather forecast. This calculation is repeated for every six-hour
period.
A high level flowchart of the FDDA cycle is shown in Figure 1. During the initialization,
the data is prepared and erroneous data points are correctedor rejected. This corrected list
of observations is input of an objective analysis algorithmthat derives the initial condition
for the climate model.
The data preparation, the quality control and the objectiveanalysis can be decomposed
based on the geographical location of the input data (the observations and the variables de-
scribing the earth system). In Figure 3 we show one possible domain decomposition which
divides the globe into four regions. Including the data fromthe overlap regions allows
to formulate the execution graph as shown in Figure 2. In thisexample four processors

4

InitializationInitialization

PredictionPrediction

Data Preparation

Quality Control

Objective Analysis

Repeat for
every 6 hour
analysis

Figure 1. The Four Dimensional
Data Assimilation Cycle.

InitializationInitialization

PredictionPrediction

Data Preparation

Quality Control

Objective Analysis

Scatter

Gather

Figure 2. Decomposition of the
Four Dimensional Data Assimila-
tion Cycle.

Figure 3. A possible domain decomposition for the data analysis.

can be utilized in parallel. More sophisticated decomposition strategies including dynamic
decompositions, can be found in [16]. For the mathematical formulation[10, 11], the se-
quential and parallel algorithm[18, 15], and further information[4] about this problem, we
refer the reader to the literature.
During the observation of the scientists conducting their repetitive experiments with dif-
ferent parameters or source modifications, we noticed that the turnaround time is slowed
down by the large queuing times for submitting the program tothe local scheduling system.
At the same time, we observed that the queues at other centerswere not as busy. Thus, we
included selected cites into a testbed.
For the testbed environment we used computers located at fivedifferent geographical lo-
cations, as shown in Figure 4. For most of our experiments we utilized a subset: the SP2
at the Northeast Parallel Architectures Center, Cornell Theory Center and Maui High Per-
formance Computing Center. Since the scientists were not familiar with these systems,
the requirements for uniform job submission, file stageing,and uniform program execution
becomes apparent.

4. ARCHITECTURE

Many possibilities exist to provide a framework that fulfills the design goals and require-
ments introduced earlier. Because we wish to keep the designas simple as possible, the
general architecture is based on a client-server model. Thebasic components of the archi-
tecture are depicted in Figure 5 and are explained in more detail in later sections.

5

Internet

JPL

MHPCC

SP2

SP2

SP2

C90
Y/MP
Silo

NPAC
CTC

GSFC

Figure 4. Geographical distribution of the metacomputing components as used in
the NASA Four-Dimensional Data Assimilation Grand Challenge project.

Four interface components enable users to communicate withthe metacomputing environ-
ment in the following ways:

� monitoringthe activities on a remote compute resource (e.g., the batchqueues),

� submittingjobs uniformly to the different batch queues,

� composinga parallel application with the help of a task graph editor, and

� scriptinga parallel application with a simple text based editor.

For the monitoring, submission and composition requirements graphical user interface
component are available. The desire of some users not to use aGraphical User Interface is
implicitly addressed in this design, since the components interact with the backend system
via a universally used scripting language. Each of the components will be described in
more detail later in this article.

Batch Job
Generator

 User

Graph Editor
 Batch
Queue

Batch
Server

Job
Server

Batch
Client

Local Machine

Remote Machines

Batch Job
Monitor

Uniform Job
Submission

Form

Copy
Server

Job
Database

Figure 5. General architecture of the metacomputing framework.

6

Low level
Application
Interface

Job Object Representation
and Intermediate System Level

High Level User Interfaces

Infrastructure

Figure 6. The layers of the metacom-
puting framework.

Remote File
Functions

Job Object

Remote Inquiry
Functions

Remote Runtime
Functions

Script

GUI

cp, mkdir, rm run, kill , suspend getState, getQueue

Low level
Application
Interface

Job Object
Representation

High level
User Interfaces

Infrastructure NFS, DFS, ... expect, ssh, ... LSF, sh, ...

Figure 7. Components and applica-
tion interfaces of the metacomputing
framework.

The general metacomputing framework is based on a layered architecture (Figure 6), which
contains a small set of application interfaces that can be ported to different infrastructures.
These interfaces are distinguished by their functionality(Figure 7):

� Remote File Functionsallow users to access files on a remote machine. The func-
tions includecp, for copying a file from one machine to the other;mkdir, for creating
a directory on a remote machine; and , for deleting a file on theother machine. The
functionexistsis used to test if a file on a remote machine is available. To obtain
more information about the size and the access rights, thepropertyfunction is used.

� Remote Runtime Functionsenable a program to execute on a remote machine.
Authentication is performed in clear text, though it is straightforward to provide a
key-based infrastructure. Besides starting a program withthe run command, it is
important to be able tokill andsuspendthe command on the remote machine.

� Remote Inquiry Functions allow users to obtain information about jobs running on
remote machines. This includes information not only about the current job, but also
about batch queues that might run on the remote machine.

These functions are invoked through methods that are part ofan object specification of the
jobs submitted through scripts or the graph editor. The job objects are stored in the job
database, which provides a persistent storage for the stateof the system.
A typical interaction is invoked on the user’s home machine by using either a specialized
scripting language or the task graph editor. The jobs specified in such a way are recorded
in a job database, and the batch job generator is notified. Thebatch job generator controls
the job submission and execution from the client to the appropriate remote computational
resource. The status of the batch queuing system, as well as the state recorded in the
job database, can be observed with the job monitor. On each ofthe remote sites abatch
serverand ajob serversupervise the program execution. Specifically, the batch server
monitors the batch system at the remote site and reports changes to all jobs running on this
machine. The only function of the job server is to submit a jobto the appropriate batch

7

queue. After this step is completed, the job server is terminated at the remote machine in
order to conserve valuable compute resources.
The design allows for computational resources that operatein batch and in time-sharing
mode. Hence, one can extend the framework to large distributed computing networks. The
architecture is implemented by using Java, Perl[2], and tcl/expect[12, 8] using rsh, telnet,
ftp, and TCP/IP[14].
Since the metacomputing framework is able to execute a variety of tasks, we first demon-
strate the capability to perform uniform job submissions. Later, we will demonstrate the
extended batch control mechanism based on the dataflow concept.

5. JOB SUBMISSION

In this section we discuss the mechanisms implemented in ourmetacomputing system to
assist users of different supercomputing sites who are faced with the problem of using
different interfaces to the batch queues running on different supercomputers.

� ��� ������	
�� �
�	 ������

A uniform job submission form allows users to submit jobs viaremote shell execution of
the appropriate commands accessing the queuing system or via specialized scripts based on
expect.Figure 8 shows a screenshot of the general submission form appliaed to the FDDA
application. Only a few essential characteristics of the underlying job submission systems
are used in order to keep the submission process as simple as possible.
The form requests that the user specify the name of the file in which the job is described, the
directory from which the program is executed, the files for standard output and error, the
users e-mail for notification upon completion of the job, as well as, parameters determining
how long the program should run and how many processors should be used. The status of
a queuing system on a remote site can be visualized as displayed in Figure 9.

� �� � �����������
�� �
�	 ������

To demonstrate the way in which a loosely coupled metacomputer program functions, we
use the example of the FDDA application. The parallel program to solve the mathematical
tasks associated with the FDDA can be divided into several stages [18], each of which is
executed in parallel separately (a very common approach forlarge codes).
Figure 10 shows an example of such a program. The task of the program is to use some
input data, process it with a program, forward the output to another program, and show the
result of the overall calculation on a terminal. In the execution specification, program A
is mapped onto a DEC Alpha workstation farm, while program B can be mapped onto the
SP2’s from NPAC, Cornell, or Maui.
The uniform job description form, as displayed in Figure 8, is used to specify differences
for each machine due to the file system and user accounts, as well as the differences in the
batch program operating at the different sites. After the jobs have been properly defined,
the program can be executed. A job database is used to supervise the running jobs on the
different machines. The contents of the database can be visualized with a monitoring user
interface (Figure 11). Each job is assigned a unique identification and can have input and
output data dependencies with other jobs (e.g., before it can be started, a job has to wait for

8

Figure 8. The uniform job submis-
sion form allows the user to submit
a job to the batch queues of remote
supercomputers as well as interactive
shells.

Figure 9. The job monitor allows the
user to observe the status of jobs sub-
mitted to remote supercomputers, in-
cluding the state of the batch queues.

the completion of the jobs given in the input dependency list). As a job is completed, the
state is updated in the job database, and dependencies with other jobs are resolved. Jobs
that do not depend on any other jobs (their dependencies are resolved) are then submitted
for execution. Once the job is running on the particular machine, the database and the mon-
itoring interface are updated again. The selection of jobs and their execution are repeated
until all dependencies are resolved. It is a straightforward implementation of a classical
dynamic dataflow concept using global control.
Internally, the dataflow graph is converted to a sequence of shell commands that are exe-
cuted in a special Java thread. The thread is responsible forscheduling and supervising the
parallel jobs that are executed asynchronously. For each job, a separate thread is created.
A job can be in one of the following states:

� Submitted – the job is submitted and prepared for running on the target machine.

� Running– the job is running on the target machine.

� Completed– the job is completed, and the result is available for other jobs.

� Failed – the execution of the job has failed.

� Waiting – the job is waiting for the completion of one of its dependencies (input
resolution).

� Halted – the job has been halted by the operator.

A separate list is used to collect failed jobs. They are either resubmitted or, after a par-
ticular timeout, forwarded to another component of the metacomputing environment. This
approach provides a minimal fault-tolerant behavior of theenvironment. Global control on
the user’s home machine is used to supervise the jobs in the batch queue.

9

Figure 10. A loosely coupled meta-
computer program.

Id Dependency Status Command

3 1,6 Waiting Maui: Start Optimal Interpolation
1 - Running Cornell: Copy File to Maui MHPCC
2 - Running Syr.: Copy File to Maui MHPCC
4 3 Waiting Maui.: Copy File to Syracuse
5 4 Submitted Syr.: Prepare Graphical Output
6 1 Waiting Maui: Start Quality Control
12 11 Waiting Cornell: Start Optimal Interpolation

CP ~/4dda/observations.dat maui:~/run

Job 1

 current anticipated time of completion: 30s
 no network failure encountered
 the machine tsunami in Maui is up

Figure 11. List of jobs submitted to
the metacomputing environment.

Once a loosely coupled job is generated with the help of the graphical editor, it is transferred
to an intermediate language. This language is similar to a shell script. Such similarity is
essential to enable programming a tightly coupled metacomputer in textual form as well as
in graphical form. Again, simplicity is important because such an environment will be used
by scientists who do not necessarily know the newest technology in computer science.
The language is built around a few simple commands allowing remote file access and re-
mote compilation. Each command can be attached with anid, which allows the generation
of dependencies between jobs. TheSUBMITcommand submits a job to the specified re-
mote computer and returns a uniqueid. Jobs are all submitted asynchronously. The job id
can be used toCANCELthe job or perform other actions on it. TheWAITcommand waits
on the execution of the specified job or job set. It is possibleto wait for the completion of
all jobs (WAIT(ALL)) in ajobset or to wait till one job (WAIT(ONE)) of the set is completed.
The immediately returningPROBEcommand returns the state of a job. Thus, it is possi-
ble to check for the states introduced earlier (SUBMITTED, RUNNING, COMPLETED,
FAILED, WAITING, HALTED). In combination with the WAIT command, the PROBE
can be applied to sets and returns the first job id for which theprobing command returns a
value.
Figure 12 depicts a simple script for compiling and running the FDDA program on two
remote machines. The script uses a first-come, first-served scheduling policy. One of the
strengths of this approach is the simplicity of formulatinga program running on multiple
platforms through different batch operating systems. Tasks that would have to be executed
normally by hand, while inspecting batch queues, can now be executed automatically. Ad-
ditionally, the method to specify such jobs is for many usersintuitive since it is based on the
extension of a shell/Perl like language. Thus, the learningcurve for utilizing this approach
is low.

10

� ������ ��� � ���	�
��
�
 ��� ������� � � �� �

� �
�� ��� �
��	�	
�� ��
� �� �
!"#$ �% & � '�(� � � �� �)� *+�, !�� ������� � � �� �) -
!"#. �% & � '�(� � � �� �)�/� ������� � � �� �) -
!"#0 �% & � '�(� � � �� �), ""* -, 12 ������� � � �� �) -
!"#3 �% & � '�(� � � �� �), ""* -' ������� � � �� �) -
!"#4 �% & � '�(� � � �� �)� *+�, !�� (*/! � � �� �) -
!"#5 �% & � '�(� � � �� �)�/� (*/! � � �� �) -
!"#6 �% & � '�(� � � �� �), ""* -, 12 (*/! � � �� �) -
!"#7 �% & � '�(� � � �� �), ""* -' (*/! � � �� �) -
8 9�: ;9<<= !"#$ > 7

� �
�� �?� ��� ��
@���
!"#������� �% 9� � <A ������� � � �� �)(*+� *��
!"#(*/! �% 9� � <A (*/! � � �� �)(*+� *��
8 9�: ;9<<= !"#(*/! B !"#�������

� C�D� �� ��� E
D
!"#�/�������� �% F G H� �: ������� � �/�
!"#�/�(*/! �% F G H� �: (*/! � �/�
!"#�I��/J!�K �% 8 9�: ;� ��HL ;F G H� �: : L � == !"#�/�������� !"#�/�(*/!

� M�� ��� ����?� ��
� ��� � �	� �N� ����� �N@ ��� E
D � ����
!, ;!"#�I��/J!�K %% !"#�/�(*/!= O

& 9P &L < !"#�/��������
!"#Q *!J �% 8 9�: ;9<<= !"#�/�(*/!
#(*�'!�� %

“maui”R ��S� O
& 9P &L < !"#�/�(*/!
!"#Q *!J �% 8 9�: ;9<<= !"#�/��������
#(*�'!�� %

“cornell”R
8 9�: ;9<<= !"#Q *!J
& � #(*�'!�� � � �� �), !�*� -"*J -

Figure 12. Example of the scripting language used to define a loosely coupled meta-
computing application.

6. JOB SCHEDULING

The goal of the job-scheduling algorithm is to minimize the overall wall-clock time for
executing the program. For efficient job scheduling, a runtime prediction algorithm can be
included in the framework.
The mapping of jobs to machines operating in time-sharing and batch mode forces one to
use different strategies for predicting the runtime of a job. In time-sharing mode, system
values such as current load and load averages are used to predict the completion time of
the job. This information is especially useful when a performance prediction function is
available for the job.
If performance prediction is not possible or the job is executed on a supercomputer oper-
ating in batch mode, the execution time is not as easy to predict. One way to solve this
problem is to submit all jobs to a global queue. This global queue decides which machine
the job will be executed on. For example, the batch operatingsoftware CODINE is able to
submit jobs to different machines [3, 1].
In most cases, however, the metacomputing center maintainsits own local queues and

11

policies. In such a case, the jobs can be simply replicated oneach one of the machines.
The first job completed causes the other jobs to be terminated, which are then removed
from the queue. The disadvantage of this strategy is that if jobs are started at the same
time, valuable resources in CPU cycles might be wasted. Moresophisticated algorithms
are possible in case advanced reservation policies are enabled on the batch queues.
Once more performance data of the average wait times in the batch queues and the exe-
cution time of the applications on the compute server are available, the machine on which
the job is executed can be selected based on its performance characteristics. Specifically, a
more sophisticated algorithm can be used that first predictsthe expected turn-around time
on a variety of machines and then selects only those machineswhere the time for execution
is minimal. For parameter studies on deterministic algorithms of known complexity, this
strategy results in a very effective scheduling since the data of previous runs is recorded
in the job database and the performance characteristics canbe reused in the next job to be
scheduled.
The status of the machines can be monitored in multiple ways.It is possible to run a Java
server on the supercomputer side and send information aboutthe status upon request. The
current setup allows the user to start a remote procedure call and consult the job queue for
information about the status of the running jobs.
In the next section we show the design of a more sophisticateddynamic resource selection
instead of the rather simple first-come first-served scheduling resource scheduling.

7. DYNAMIC RESOURCE SELECTION

The dynamic execution of a program is driven by three factors: (1) the software mod-
ules available for the different hardware platforms, (2) the availability of a computational
resource, and (3) the use of the computational resources. Figure 13 illustrates the process
responsible for selecting the hardware and software used toexecute the program on existing
hardware platforms.

MachineMachineMachine

Performance
Measurement
Performance
Measurement

Software
Performance

Database

Machine
Util ization
Machine

Util ization

Predicted
Performance
Predicted

Performance

Software
Selection
Software
Selection

Hardware
Selection

Hardware
Selection

Program/
Task

Program/
Task

Figure 13. Dynamic selection pro-
cess during program execution

Batch Job Generator
Jobs

Job Queue Machine Pool

Performance
Database

Machines

a

b

c c

Insert a job
Select a job
Select a machine
Insert a machine

d

a
b
c
d

Figure 14. Steps performed in the
dynamic selection process.

As pointed out previously, in some scientific programs (so-called parameter studies), a
problem is solved many times for similar instances of data, with little difference in execu-

12

tion time. The information about the execution time on different machines is stored in a
database, either via direct measurement or via a performance prediction analysis algorithm.
This information can then be used to predict the real-time performance of the program. If
several choices of software and hardware mappings are available, the one with the shortest
execution time is chosen. Hence, the selection not only includes a hardware mapping, but
also can include the use of completely different algorithmsto solve the (meta)problem.
Figure 14 depicts the steps that are performed to update the information in the performance
database. Several important asynchronously running tasksare distinguished with the letters
a, b, c, and d.

(a) Jobs are continuously inserted in the job queue.

(b) A job is selected from the queue for execution. Differentselection algorithms can
be integrated into the environment. The simplest strategy is to select the jobs in a
first-in-first-out fashion. More sophisticated algorithmsmake use of the time and
memory used to complete the jobs while sorting them appropriately. The strategy for
selecting the jobs can be configured by the user.

(c) Once a job is selected, an appropriate machine has to be found. If no machine seems
to be appropriate to run the current job, the job is inserted back into the end of the
job queue, and step b will be performed. If a machine for execution was determined,
the job is submitted. After completion, the runtime information is stored into the
performance database for improving future schedules.

(d) Machines that are exceeding a particular number of currently scheduled jobs are
removed temporarily from the machine pool in order to capture the fact that many
computing centers have a policy of “maximum number of jobs per user” in place.
This number can be configured individually for each machine.

The maintenance of a machine pool in addition to the job queue, from which resources are
selected, allows the dynamic resource selection.

8. RESULTS

To test the metacomputing environment, we ran experiments on the SP2 in Cornell, Syra-
cuse, and in Maui. During these experiments, the jobs were submitted asynchronously to
the machines. We used the scheduling algorithm, as well as, the predicted waiting times in
the queues for both machines. Based on this prediction, the jobs were started on the ma-
chine with the least amount of waiting time. Whenever a job was accepted in a machine,
the corresponding job on the other machine was deleted. Thissimple strategy reduced the
wall-clock time for the completion of the job by 3–5 hours, and thus enabled us to obtain
dramatically reduced turnaround during peak hours.
In addition, it is important to point out that the metacomputing framework, introduced in
this article, is easy to use. It allows for easy specificationof programs as well as their
monitoring in a distributed environment.
Another important result is the ability to port the framework to other metacomputing in-
frastructures. Recently, a port based on the Globus Metacomputing toolkit was developed
and is currently under improvement.

13

9. CONCLUSION AND FUTURE RESEARCH

The metacomputing system introduced in the preceding sections is very general. It is useful
for providing a uniform interface to the job submission systems at different supercomput-
ing sites, as well as integrating multiple jobs in an overallprogram. Dynamic behavior of
the infrastructure can be monitored and used for steering the computation. The system can
be ported to different sites, since only a small set of routines interfacing with the environ-
ment need to be adapted. A port that replaces the job start-upmechanism via the Globus
metacomputing toolkit is under development [5].
The integration of the framework introduced in this paper into a larger framework such as
the Globus metacomputing toolkit allows expansion of its usability. We plan additional ap-
plications of this framework in other Grand Challenge projects; initial results were demon-
strated at Supercomputing ’98 [19]. The next step will involve developing more sophisti-
cated scheduling algorithms that make better use of the dynamical changing infrastructure.

ACKNOWLEDGMENTS

This research would not have been possible without the cooperation of several researchers
at Northeast Parallel Architectures Center (NPAC) and at Goddard Space Flight Center in
Greenbelt, MD. In particular, I thank Geoffrey C. Fox[6] andMiloje Makivic at NPAC for
their valuable discussions related to this research. In theData Assimilation Office, I am
grateful to Peter Lyster for his guidance, his many helpful comments, and fruitful discus-
sions. I thank David Lamich, James Stobie, Mike Seabloom, Arlindo DaSilva, and Steve
Cohen. I am especially grateful to Richard B. Rood for his support and hospitality dur-
ing several visits at NASA Goddard Space Flight Center as part of the Universities Space
Research Association. Facilities from the Northeast Parallel Architectures Center, Cornell
Theory Center, Maui High Performance Supercomputer Center, Goddard Space Flight Cen-
ter, and the Jet Proportion Laboratory were used to conduct the experiments. This project
has been funded by NASA High Performance Computing and Communications Earth Sci-
ence Project. I thank Gail Pieper for her assistance in preparing the final manuscript. The
more recent developments were conducted in the DistributedSystems Laboratory, led by
Ian Foster at the Mathematics and Computer Science Divisionat Argonne National Labo-
ratory.

References

[1] Baker, M., Fox, G. C., and Yau, H. Cluster Computing Review. Tech. Rep. 1995,
Center for Research on Parallel Computation, Nov. 1995.

[2] Christiansen, L. W. T., and Schwartz, R. L.Programming Perl, 2nd ed. O’Reiley,
1996.

[3] CODINE. http://www.genias.de/genias/english/codine/codine.html.

[4] Daley, R. Atmospheric Data Analysis. Cambridge Atmospheric and Space Science
Series, Cambridge University Press, 1991.

[5] Foster, I., and Kesselman, C. Globus: A Metacomputing Infrastructure Toolkit.In-
ternational Journal of Supercomputer Applications 11, 2 (1997), 115–128.

14

[6] Fox, G. C., Haupt, T., and Furmanski, W. Webflow.
http://www.npac.syr.edu/users/haupt/WebFlow/papers,1998.

[7] Gasterland, T., and Sensen, C. Fully Automated Genome Analysis that Reflects User
Needs and Preferences — a Detailed Introduction to the MAGPIE System Architec-
ture. Biochemie 78, 4 (1996).

[8] Libes, D. Exploring Expect. O’Reiley, 1995.

[9] Miller, R., Gallo, S., Khalak, H., and Weeks, C. SnB: Crystal structure determination
via Shake-and-Bake.Journal of Applied Crystallography 27(1994), 613–621.

[10] NASA Data Assimilation Office at Goddard Space Flight Center. Data Assimilation
Program Version 1.2. Greenbelt, MD, 1993.

[11] NASA Data Assimilation Office at Goddard Space Flight Center. Data Assimilation
Program Version 2.0. Greenbelt, MD, 1993.

[12] Ousterhout, J.Tcl and the Tk Toolkit. Adisson Wessley, 1994.

[13] Pfaendtner, J., Bloom, S., Lamich, D., Seablom, M., Sienkiewicz, M., Stobie, J.,
and da Silva, A. Documentation of the Goddard Earth Observing System (GEOS)
Data Assimilation System - Version 1. Tech. Rep. 4, Goddard Space Flight Center,
Greenbelt, MD, 1996.

[14] Stevens, R. W.UNIX network programming. Prentice Hall, 1990.

[15] von Laszewski, G. An Interactive Parallel ProgrammingEnvironment applied in at-
mospheric Science. InMaking its Mark, Proceedings of the 6th Workshop of The use
of Parallel Processors in Meteorology(Reading, UK, Dec. 1996), G.-R. Hoffman and
N. Kreitz, Eds., European Centre for Medium Weather Forecast, World Scientific,
pp. 311–325.

[16] von Laszewski, G.A Parallel Data Assimilation System and its Implications ona
Metacomputing Environment. PhD thesis, Syracuse University, Dec. 1996.

[17] von Laszewski, G. The Argonne Grand Challenge X-ray WWWpage.
http://www.mcs.anl.gov/xray, 1999.

[18] von Laszewski, G., Seablom, M., Makivic, M., Lyster, P., and Ranka, S. Design Issues
for the Parallelization of an Optimal Interpolation Algorithm. In Coming of Age,
Proceedings of the 4th Workshop on the Use of Parallel Processing in Atmospheric
Science(Reading, UK, Nov. 1994), G.-R. Hoffman and N. Kreitz, Eds.,European
Centre for Medium Weather Forecast, World Scientific, pp. 290–302.

[19] von Laszewski, G., Westbrook, M., Foster, I., Westbrook, E., and Barnes, C. Us-
ing Computational Grid Capabilities to Enhance the Abilityof an X-Ray Source for
Structural Biology.to be submitted(1999).

[20] Wright, S. OT: Optimization Toolkit for large scale optimization problems.
http://www-unix.mcs.anl.gov/ot, 1998.

15

