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Abstract

The Grid approach allows collaborative pooling of
distributed resources across multiple domains. How-
ever, the benefits of the Grid are limited to those
offered by the commodity application development
framework used. Several elegant and flexible appli-
cation development frameworks support only specific
Grid architectures, thereby not allowing the applica-
tions to exploit the full potential of the Grid. In or-
der to initiate community interest to standardize a
high-level abstraction layer for different Grid archi-
tectures, this paper introduces a collection of abstrac-
tions and data structures that collectively build a basis
for an Open Grid Computing Environment.

1. Introduction

The benefits offered by the Grid [1, 2] has re-
sulted in the rapid expansion of the Grid commu-
nity. An increasing number of advanced scientific
and commercial applications have adopted the Grid
architecture to realize their goals. Until recently,
there were no standards in Grid development, a sit-
uation that resulted in several non-inter-operable
Grid frameworks [3, 4, 5, 6].

The Global Grid Forum (GGF) [7] has pre-
sented itself as the much-required body that co-
ordinates the process of standardization of the Grid
development. The Open Grid Services Architecture
(OGSA) [8] initiative of the GGF defines the ar-
tifacts for a standard service-oriented Grid frame-
work based on Web services. OGSA enables differ-
ent vendors to provide Grid service implementations

in a variety of technologies, yet conforming to the
GGF-defined OGSA standards, thus making them
inter-operable.

The GGF Grid Computing Environment research
group (gce-rg) [9] concentrates on the issues related
to client-side Grid development tools. It investigates
a collection of tools and user interfaces for accessing
the services and functionality offered by the Grid.
Since the gce-rg focuses on research aspects that
provide the constructs for client development, ser-
vice access tools, and the associated backend Grid
services, it does not enforce any standards on the ap-
plication development process. In order to address
and fulfill the needs of the increasing Grid user com-
munity, we need a framework that provides a stan-
dard interface for client-side Grid development just
as OGSA provides for server-side Grid development.
Implementing such a framework will enable the Grid
community to:

• develop client applications that will be inter-
operable across multiple Grid backend imple-
mentations;

• provide re-usable code to support rapid proto-
typing of basic Grid access patterns;

• provide an open-source and extensible architec-
ture that can be built collectively and incre-
mentally based on community feedback; and

• access the same set of interfaces implemented
in disparate technologies.

Motivated by the need to initiate an activ-
ity and foster community interest in the develop-
ment of such a cross-architecture and technology-
independent application development interface,



Figure 1: Development framework for Open Grid
Computing Environment

we propose a set of initial services, data struc-
tures, interfaces, and the patterns of their inter-
action. We propose to call this standard client
development environment the Open Grid Com-
puting Environment (OGCE). The purpose of
OGCE is to define and establish a set of stan-
dard Grid-centric patterns, services, and data
structures that can be used by client develop-
ers as building blocks to develop sophisticated
Grid-based applications. The data structures, in-
terfaces, and their interactions can be implemented
in different technologies as long as they con-
form to the common standards as proposed by
the Commodity Grid Project (see Figure 1). Fur-
ther, each of these implementations can provide
transparent support to multiple Grid architec-
tures and implementations.

The rest of this paper is organized as follows. Sec-
tion 2 provides an overview of the related work be-
ing done in the domain of Grid application devel-
opment frameworks. Section 3 describes a subset of
the OGCE interfaces in detail. Section 4 discusses
a reference implementation of the OGCE in Java.
Section 5 gives a set of applications developed us-
ing the OGCE interfaces. Section 6 concludes our
paper and outlines possible future research activi-
ties.

2. Related Work

A variety of application development toolkits are
discussed in literature. In this section we describe a
few of the most relevant projects and frameworks in
relationship to our research.

The jglobus module of the Java CoG Kit [10, 11]
(cog-jglobus) enables access to the Grid services
provided by the Globus Toolkit. It offers low-level
mappings to commonly used Grid services such as
the Grid Security Infrastructure (GSI) [12], the Grid
information services (MDS) [13, 14, 15], the Grid re-
source management services (GRAM) [16], and the
Grid data access services (GridFTP) [17]. It also
provides a range of low-level utility components that
enhance the Grid functionality beyond those offered
by the C implementation of the Globus Toolkit. The
Java CoG Kit jglobus library is included as a part of
the Open Grid Services Infrastructure (OGSI) [18]
implementation distributed by Argonne National
Laboratory. The Java CoG Kit enables a convenient
development environment for Grid computing since
1997. It also distributes a large number of proto-
type plug-n-play graphical components such as the
Grid desktop, Grid shell, Grid FTP manager [19],
and the Grid workflow manager to enhance the func-
tionality of Grid-aware applications [20].

The Grid application framework for Java
(GAF4J) [21] provides an abstraction layer over
the underlying Grid infrastructure. It offers a suite
of abstraction classes that hides the low-level im-
plementation from the end-users. The current im-
plementation of GAF4J uses the Java CoG Kit
jglobus library to provide its functionality over a
Globus Toolkit-enabled Grid infrastructure. It in-
cludes a programming model that introduces a
simple Task object as one of its main contribu-
tions. As the Globus Toolkit does not contain such
an abstraction level, it provides a higher level of ab-
straction than does the Globus Toolkit.

The abstract job object (AJO) [4] provides the
abstraction layer for the UNICORE protocol layer
(UPL) in UNICORE Grids. It defines the basic com-
munication abstraction between the client applica-
tions and the underlying Grid protocols. The Grid
interoperability project (GRIP) creates a bridge be-
tween the UNICORE and the Globus Toolkit frame-
works [22]. It translates UNICORE requests (in
AJO and UPL) for remote job execution, informa-
tion queries, authorized access into corresponding
Globus Toolkit constructs. The GRIP framework al-
lows a UNICORE client seamless access to both the
Globus Toolkit and UNICORE Grids.

The literature about the EveryWare toolkit [23]
reports that it enables Grid-aware applications to
submit tasks to multiple Grid architectures. It of-
fers the flexibility to submit jobs to the Globus
Toolkit, Legion [5], Condor [6], and NetSolve [24]
architectures. The toolkit provides a set of perfor-



mance forecasting services to optimize system per-
formance by making real-time performance predic-
tions and submitting the tasks to the appropriate
resources. However, this project seems no longer ac-
tive and due to the many recent cahnges in the Grid
community will be outdated.

Each of the frameworks described in this section
either concentrates on a specific technology or caters
to the needs of a particular backend Grid imple-
mentation. This paper proposes a technology- and
architecture-independent abstraction layer that pro-
vides true interoperability across multiple Grid im-
plementations. Adaptation to other Grid architec-
tures can be enabled while implementing the appro-
priate interfaces defined within this framework that
are derived from the the most common use patterns
in Grids.

3. OGCE

One of the most important usage patterns in Grid
computing is the execution of a Grid task. An exten-
sion to this basic Grid execution pattern is a Grid
workflow pattern that enable the user to submit a
set of Grid tasks along with an execution depen-
dency. Therefore, the initial design of OGCE con-
centrates on providing the artifacts required to sup-
port these important usage patterns. Other Grid
patterns can be supported by extending the flexi-
ble OGCE design based on community feedback.

Although the Globus Toolkit and Condor focused
on patterns related to file transfer and job execu-
tion, they did not sufficiently address the issues of
general task patterns. In Condor, the focus is clearly
on high throughput brokering by concentrating on
a limited pattern for job execution with integrated
file input and output. However, we believe that the
separation of file transfer, information services, and
job execution is necessary to allow general workflows
that can also enable the integration of non-Grid re-
lated tasks. Such a high level abstraction layer has
also the consequence that the architecture to be de-
ployed may be simplified as documented in [25]. As
an example for such a simplification we point out
that there is a great deal of overlap by dealing re-
liably with information queries, file transfers, and
job submissions. Hence, it warrants the introduc-
tion of our high level patterns that make the top
down development of sophisticated services a real-
ity. This contrasts and enhances the bottom up de-
sign conducted by many ongoing Grid research ef-
forts.

Figure 2 shows the class diagram of the OGCE

framework. A detailed listing of the attributes and
functions for each class has been omitted for sim-
plicity. In the rest of this section we describe the
important entities designed and their semantics as
a part of OGCE.

3.1. Task

A Task is the atomic unit of execution in OGCE.
It represents a generic Grid functionality including
remote job execution, file transfer request, or infor-
mation query. It has a unique identity, a security
context, a specification, and a service contact.

The task identity helps in uniquely representing
the task across the Grid. The security context repre-
sents the abstract security credentials of the task. It
is apparent that every underlying Grid implementa-
tion enforces its own security requirements therefore
making it necessary to abstract a generalized secu-
rity context. Hence, the security context in OGCE
offers a common construct that can be extended by
the different implementations of OGCE to satisfy
the corresponding backend requirement. The spec-
ification represents the actual attributes or param-
eters required for the execution of the Grid-centric
task. The generalized specification can be extended
for common Grid tasks such as remote job execu-
tion, file transfer, and information query. The ser-
vice contact associated with a task symbolizes the
Grid resource required to execute it.

Figure 3: Use cases for CompositeTask and Super-
Task

3.2. CompositeTask and SuperTask

A CompositeTask in OGCE provides a build-
ing block for expressing complex dependencies be-
tween tasks. All significantly advanced applications
require mechanisms to execute client-side workflows
that process the tasks based on user-defined depen-
dencies. Hence, the data structure representing the



Figure 2: UML Class Diagram for OGCE

composite task aggregates a set of tasks and allows
the user to define dependencies between these tasks.
In graph theoretical terms, a composite task pro-
vides the artifacts to express workflows as a directed
graph (see Figure 3). Hence, for a graph G(V,E),
the set of tasks represent the set of vertices V and
the dependencies correspond to the set of edges E.
Apparently, the composite task can also represent a
set of independent tasks with an empty set of edges.

A SuperTask in OGCE represents a workflow of
composite tasks aggregating a set of composite tasks
and associating it with a dependency. In graph the-
oretical terms, a super task represents a hierarchi-
cal graph, that is, a graph of graphs (see Figure 3).
It can also symbolize a cluster of task sets with
a null dependency. We note that with a combina-
tion of task, composite task, and super task a flexi-
ble framework is provided to express Grid workflows
conveniently.

3.3. Handlers

OGCE contains the TaskHandler, the Compos-
iteTaskHandler, and the SuperTaskHandler to pro-

cess a task, a composite task, and a super task, re-
spectively. The task handler provides a simple in-
terface to handle a generic Grid task submitted to
it. It is capable of categorizing the tasks and provid-
ing the appropriate functionality for it. For exam-
ple, the task handler will handle a remote job execu-
tion task differently than a file transfer request task.
OGCE does not impose any restrictions on the im-
plementation of the task handler as long as its work-
ing is transparent to the end user. We note that this
module is backend-specific and will have a separate
implementation for each Grid architecture it sup-
ports.

The composite task handler and the super task
handler provide a similar functionality as the task
handler interface. However, they have an additional
responsibility of enforcing the dependency on the
graph-like task sets submitted to them. They can
be implemented as advanced workflow engines co-
ordinating the execution of tasks on corresponding
Grid resources honoring the user-defined dependen-
cies.



Listing 1: Sample code snippet demonstrating the
level abstraction offered by the OGCE interfaces
p r i v a t e vo id prepareAndSubmitTask ( ) {

// Crea te a Gr id t a s k f o r j ob e x e c u t i o n
Task t a s k =

new TaskImpl (”myGridTask” ,
Task . JOB SUBMISSION ) ;

// Set the p r o v i d e r f o r t h i s t a s k as GT2 .
// I n o r d e r to submit t h i s t a s k as a GT3
// task , s imp l y s e t the p r o v i d e r to GT3
// and change to s e r v i c eC o n t a c t to po i n t
// the GT3 job e x e c u t i o n s e r v i c e .

t a s k . s e t P r o v i d e r (”GT2” ) ;

// c r e a t e a remote job s p e c i f i c a t i o n
J o b S p e c i f i c a t i o n spec =

new J o b S p e c i f i c a t i o n Imp l ( ) ;

// s e t a l l the j ob r e l a t e d pa ramete r s
spec . s e t E x e c u t a b l e (”/ bin /workf low” ) ;
spec . s e t S t d I n pu t (” job−inpu t ” ) ;
spec . se tStdOutput (” job−output ” ) ;
spec . s e t S t dE r r o r (” job−error ” ) ;

// b ind the s p e c i f i c a t i o n to the t a s k
t a s k . s e t S p e c i f i c a t i o n ( spec ) ;

// c r e a t e a s e c u r i t y con t e x t
Se cu r i t yCon t e x t Imp l s e c u r i t y C o n t e x t =

new G lobu sS e cu r i t yCon t e x t Imp l ( ) ;

// s e l e c t s the d e f a u l t c r e d e n t i a l s
s e c u r i t y C o n t e x t . s e t C r e d e n t i a l ( nu l l ) ;

// b ind the s e c u r i t y con t e x t to the t a s k
t a s k . s e t S e c u r i t yC o n t e x t ( s e c u r i t y C o n t e x t ) ;

// c r e a t e a s e r v i c e con t a c t
Se r v i c eCon t a c t s e r v i c eC o n t a c t =

new Se r v i c eCon t a c t Imp l (” s e r v e r : por t ” ) ;

// a s s o c i a t e the con ta c t w i th the t a s k
t a s k . s e t S e r v i c eCo n t a c t ( s e r v i c eC o n t a c t ) ;

// c r e a t e a t a s k hand l e r
TaskHandler h and l e r =

new Gene r i cTaskHand l e r Imp l ( ) ;

// submit the t a s k to the hand l e r
hand l e r . submit ( t a s k ) ;

}

Figure 4: The Java CoG Kit (core module) provides
a reference implementation of the OGCE interfaces
simplifying the development of Grid computing en-
vironments using portals or applications.

4. Reference Implementation

To validate the OGCE design, we have devel-
oped a reference implementation for it in Java.
Our reference implementation is available as the
core module of the Java CoG Kit (cog-core). At
time of writing of this paper the core module is in
prototype stage. The cog-core uses cog-jglobus to
provide support for Globus Toolkit v2 and imple-
ments an OGSA-compliant handler for supporting
the Globus Toolkit v3. Further, cog-core also sup-
ports secure shell (ssh) based job execution and file
transfer mechanisms. Although the ssh-based mech-
anisms are neither recommended nor suitable for
large scale Grid production environments, they of-
fer convenient facilities for quick prototyping of Grid
applications in the absence of a production Grid.
Once the required Grid infrastructure is in place,
the application can seamlessly shift from an ssh-
based mechanism to a Grid-based solution. List-
ing 1 shows a sample code snippet demonstrating
the abstractions offered by the OGCE interfaces. In
this example we create a task for submission to a
Globus Toolkit v2 job submission service. It is im-
portant to note that with a switch of a single pa-
rameter, the provider, the same task could be sub-
mitted to a Globus Toolkit v3 execution service.

5. Application

Applications of OGCE are manifold. It can be
used as convenient abstraction for elementary Grid



functionality to develop Grid middleware, high-level
Grid services, and Grid applications (see Figure 4).
As a consequence, several components distributed
with the Java CoG Kit [10] have been rapidly pro-
totyped using the cog-core reference implementa-
tion (see Figure 5). These components include a
Grid workflow [26], Grid desktop, Grid shell, Grid
job managers, and Grid portals [27]. These abstrac-
tions provided by the Java CoG Kit allow the appli-
cation developer to concentrate on the development
of higher level middleware components instead of
keeping up with the changes that are currently un-
derway in the Grid architecture.

5.1. Position-resolved Diffraction for
Nanoscale Structures

To further test the usefulness of our implementa-
tion we are prototyping a Grid computing environ-
ment for the analysis of nanoscale structures, ex-
plained in more detail in [26]. As a part of this ef-
fort, a new experimental technique, named position-
resolved diffraction, is being developed to study
nanoscale structures at the Argonne National Lab-
oratory’s advanced analytical electron microscope
[28]. With this technique, a focused electron probe
is sequentially scanned across a two-dimensional
field of view of a thin specimen. At each point on
the specimen, a two-dimensional electron diffraction
pattern is acquired and stored (see Figure 6). As
much as one terabyte of data can be taken dur-
ing such an experiment. This analysis of the data
requires a resource rich Grid infrastructure to ful-
fill the real-time constraints. The results need to be
archived, remote compute resources need to be re-
served and made available during an experiment,
and the data needs to be moved to the compute re-
sources where they will be analyzed. Finally, they
need to be presented in a meaningful way to the sci-
entist. Our cog-core patterns provide a convenient
initial abstraction for the application scientist to de-
velop this sophisticated environment while hiding
as much of the complexity of the underlaying Grid
middleware.

The need for such a flexible infrastructure is
demonstrated through a simple experiment flow de-
picted in Figure 7. The elementary logic of the in-
strument control can be expressed in a sequence of
processes that depend on each other. They include
the data acquisition, the data backup, the data anal-
ysis, and the result display.

By formulating the processes related to the ex-
periment through a graphical interface the scien-

Figure 6: The data analysis for the electron micro-
scope is formulated as workflow that uses Grid re-
sources. The progress of the calculation is updated
in real-time

tist will be able to conveniently interact through a
graphical component with the instrument and ex-
periment resources.

6. Summary and Future Work

This paper is motivated by the need to de-
velop a technology independent, architecture agnos-
tic, open, and extensible “lingua franca” for Grid
application development. We have presented our ini-
tial design of the OGCE abstraction interfaces. As
a proof of concept we have developed a reference
implementation of OGCE supporting the Globus
Toolkit versions 2 and 3. We showed the convenience
of the OGCE abstractions by using the reference im-
plementation in a suite of target applications.

The implementations of OGCE can be used by
clients to support multiple Grid architectures or by
backend services to provide cross-platform bridging
capabilities. The OGCE design is a work in progress
and will undergo changes based on community feed-
back while at the same time monitoring the develop-
ment of OGSA and OGSI. Ongoing research is con-
centrating on extending the OGCE framework for
providing abstractions for scheduling and resource
brokering mechanisms. Our reference implementa-
tion is available as the core module of the Java CoG
Kit.



Figure 5: Development of portable high-level graphical interfaces is simplified by using OGCE interfaces.
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