
An Abstraction Model for a Grid Execution Framework

Kaizar Amin,c,a Gregor von Laszewski,∗,a,b Mihael Hategan,b,a

Rashid Al-Ali,d Omer Rana,d and David Walkerc

aArgonne National Laboratory, Argonne, IL 60439, USA

bUniversity of Chicago, Chicago, IL 60637, USA

cUniversity of North Texas, Denoton, TX 76203, USA

dCardiff University, Wales, UK

Accepted for publication in Euromicro Journal of Systems Architecture
accepted 2004, publication date 2005.

Abstract

Computational Grids have been identified as one of
the paradigms revolutionizing the discipline of dis-
tributed computing. The contributions within the
Grid community have resulted in new Grid technolo-
gies and continuous improvements to Grid standards
and protocols. Though crucial to the success of the
Grid approach, such an incremental evolution of Grid
standards has become a primary cause of frustra-
tion for scientific and commercial application com-
munities aspiring to adopt the Grid paradigm. Moti-
vated by our rich experience and the need to decouple
the application development and the Grid technology
development processes, we propose an abstraction-
based Grid middleware layer as part of the Java
CoG Kit. In this paper, we showcase our abstrac-
tion model and verify its extensibility by integrating
it with an advanced quality-of-service–based execution
framework.

Keywords: Grid computing; Java CoG Kit; Grid
abstractions; Grid execution patterns; Grid quality
of service (QoS)

With the recent advancements in Grid technolo-
gies, a majority of the Grid community has focused on
the development of advanced Grid protocols and so-
phisticated Grid services. These Grid services include
execution services, data management services, infor-
mation services, workflow services, quality-of-service
(QoS) management services, fault-tolerance services,

∗Corresponding author, Gregor von Laszewski, Argonne
National Laboratory, Argonne National Laboratory, 9700 S.
Cass Ave, Argonne, IL 60439, USA, gregor@mcs.anl.gov

security services, and Grid infrastructure manage-
ment services. At the same time, a large number
of elementary commercial and scientific applications
have been identified and implemented reusing avail-
able Grid services. Intuitively, it should be sufficient
for Grid applications to directly invoke Grid services
and employ their functionality. However, applica-
tions developed with such a two-layered model are
severely restricted in their adaptability, extensibility,
and stability for several reasons. First, Grid protocols
and services are not standardized yet. Hence, inte-
grating Grid protocols within applications increases
their maintenance because of continuous changes in
the “evolving” Grid standards. Second, changes
in the Grid computing models [1, 2, 3] can ren-
der applications using a particular technology obso-
lete. Third, incorporating advanced Grid semantics
and implementation dependencies directly within the
applications can introduce unnecessary complexities,
thereby shifting the focus from its primary commer-
cial or scientific objective. Hence, there is an uncon-
tested need for an additional layer bridging the Grid
services layer (such as provided by the Globus Toolkit
[4]) and the application layer (see Figure 1). This in-
termediate layer represents application development
frameworks such as the Java Commodity Grid (CoG)
Kit [5]. We refer to this layer as the Grid abstraction
layer [6].

The Grid abstraction layer offers high-level
abstractions[7] to Grid applications, shielding them
from the technical and semantic complexities of var-
ious Grid implementations [3, 4, 8, 9, 10]. The Grid
abstraction layer can adapt to many changes and en-
hancements to Grid protocols and the Grid architec-

1



Figure 1: The Grid middleware layer decouples the
application development process and the Grid service
development process.

ture without reflecting them in the offered abstrac-
tions. As a result, applications developed with such
abstractions do not have to be actively maintained or
updated to become compatible with developing Grid
technologies [2, 11], thereby providing long-term in-
vestment protection.

This paper describes the design and implemen-
tation of the Grid abstractions offered by the Java
CoG Kit. We outline the key components of our ab-
stractions and describe the important patterns in our
abstraction-based execution framework. Our Grid
abstraction also provides pluggable functionality ex-
tensions, allowing the Grid community to incremen-
tally interface to new Grid middleware once they
become available, and to develop new abstractions
if desired. We demonstrate the extensibility of our
framework by showcasing the integration of Quality
of Service adaptors for job submission, allowing our
execution framework to support QoS-enabled Grid
execution without requiring modifications in the ap-
plications employing our abstractions.

The rest of this paper is organized as follows. Sec-
tion 1 presents a brief overview of several research
projects working toward provisioning advanced Grid
middleware. Section 2 gives a detailed overview of
the various abstractions offered by the Java CoG Kit
and their intended use. Section 3 discusses the exten-
sion of our Abstractions with QoS adaptors. Section
4 summarizes the current status of the project.

1 Related Research

The Java CoG Kit has its origin in a Grid like appli-
cation development framework dating back to 1994
[12, 13, 14]. Since then a variety of Grid and Grid
abstraction frameworks have been discussed in lit-
erature [15, 16, 17, 18, 19, 20, 21]. However, most
of the available frameworks concentrate on providing
an integrated API that is built to support a particu-
lar Grid tool, rather than focusing on an abstraction
model. Frameworks that do not adopt an abstraction
model are tightly bound to the semantics of a specific
Grid technology and exhibit the same shortcomings
described in the previous section, such as increased
maintenance, additional complexity, and lack of in-
vestment protection. In this section we discuss some
of the most prominent Grid middleware frameworks
that share our philosophy on the importance of an
abstraction-based execution framework.

The Grid application framework for Java (GAF4J)
[20] is a prototype developed as a part of IBM’s Grid
initiative [22]. It abstracts several Grid semantics
from the application logic and provides a high-level
programming model. At the base of its abstraction
model is the notion of a generic Grid task. Grid-
unaware applications formulate a Grid task and a
corresponding task definition. This task and its defi-
nition are then submitted to a task execution client,
which queues the task with the task dispatcher and
updates its status with a console component. The
task dispatcher services the dispatching queue with
a first-in-first-out (FIFO) policy. It also communi-
cates with a resource broker to identify suitable Grid
resources for the execution of the task. Once the ap-
propriate matchmaking is accomplished, the task and
the Grid resource are submitted to the job-starter.
The job-starter prepares the task based on its defini-
tion and submits it to the remote Grid resource, mon-
itoring its status. In its current implementation, the
job-starter component submits Grid jobs to Globus
Toolkit [4] v2.4-enabled resources using an older ver-
sion of the Java CoG Kit (version 0.9.13). In case
GAF4J would be modified to use our newer versions
of the Java CoG Kit, one could enable support for
various other Grid implementations without exten-
sive changes in the application. However, most of its
abstractions (and more) are already included in the
Java CoG Kit.

The Grid Application Toolkit (GAT) [21] of the
GridLab project [23] is a set of extensible, abstract
APIs for performing various Grid functions such as
job execution, file transfer, information query, and

2



data management. The GAT abstraction model is
based on the concepts of capability, capability adap-
tors, and capability invocation. The GAT model al-
lows for the creation of several capability adaptors,
which provide the necessary bridge between some
backend functionality, referred to as capability, and a
set of abstract GAT APIs. During the startup phase
of the GAT framework, each of the available capa-
bility adaptors registers the abstraction APIs that it
supports with a central capability registry. On invo-
cation of any GAT API, the functionbinding compo-
nent queries the capability registry for a list of rele-
vant adaptors that support the API. Once the appro-
priate adaptor is chosen, the API invocation is dele-
gated to the adaptor to access the specific capability.
The GAT model offers an extensible plug-and-play
solution, whereby the utility of the framework can
be incrementally improved by the provision of addi-
tional capability and corresponding adaptors. The
main advantage of GAT is that its abstractions are
based on the C programming language and appro-
priate Java bindings are available. However, this is
also its disadvantage as the Java CoG Kit is explic-
itly developed to match the framework provided by
Java. The CoG Kit effort seeks to implement similar
abstraction between Python and Java in the future.

The Simple API for Grid Applications (SAGA) re-
search group of the Global Grid Forum (GGF) [24]
is combining the benefits offered by several Grid ab-
straction frameworks into a well-defined GGF stan-
dard. Members from different research and commer-
cial projects are participating in this activity. We
believe that several novel features of our architec-
ture will contribute significantly toward this effort,
as evident from our presentations at various invited
participations at the Global Grid Forum [25, 26].

2 Grid Abstractions

The Grid abstractions offered by the Java CoG
Kit have been designed with a top-down approach
[27, 14, 28]. Rather than exposing the complex Grid
functionality to an application in a nonintuitive fash-
ion, we outline the most general and basic function-
alities desired by a number of applications and pro-
vide appropriate interfaces. With this approach, ap-
plications do not have to be penalized for limita-
tions in the existing Grid implementations. Instead,
the approach decouples the application development
and the Grid development processes. In the rest of
this section we describe important abstractions of our

framework.

2.1 Task

At the core of our abstraction model is the notion
of a task. It is an atomic unit of Grid execution.
Examples of Grid tasks include remote job execution,
file transfers, file operations, information query, and
resource reservation. Every task is annotated in a
way specific to its functionality. A task acts as a
container for several related abstractions:

• Identity: A uniform resource name (URN) that
uniquely identifies the task.

• Specification: A detailed description specifying
the details of a task including parameters and
other requirements. The semantics of the spec-
ification depend on the type of the task. For
example, a job execution specification describes
important parameters required for job execution,
whereas a file transfer specification specifies the
source and destination files along with several
other relevant attributes.

• Security Context: A security credential associ-
ated with the Grid task. This credential is used
to authenticate the task to the backend Grid im-
plementation. Grid implementations may use
different security mechanisms. Thus, the secu-
rity abstraction in our framework represents a
generalized credential container that can be cast
to a specialized representation relevant to a par-
ticular Grid implementation.

• Service Contact: The endpoint address of a
backend service that will be used to execute this
task. For example, if this task is a job execution
task, its service contact represents a job execu-
tion service. Similarly, for a file transfer task, it
represents a file transfer service.

• Status: The progress of the task execution,
allowing the application to monitor its execu-
tion. The task can be in any one of the fol-
lowing states: unsubmitted, submitted, active,
suspended, canceled, failed, or completed. Fig-
ure 2 shows the state transition diagram of the
task status in our abstraction model.

• Provider: The provider backend used for this
task. The provider attribute plays a key role

3



in translating the abstract task into protocol-
specific constructs. For example, an applica-
tion can formulate an abstract Grid task and
assign it a provider as GT2, implying that it
is to be executed with a Globus Toolkit v2
(GT2) service. The service contact, security con-
text, and the specification are translated into
GT2 protocol-specific constructs and executed
accordingly. For the same task to be executed
with a Globus Toolkit v3 (GT3) service or a
Unicore service, the application merely needs to
change its provider attribute accordingly. Thus,
the same abstract task can be executed by mul-
tiple Grid implementations and architectures
based on the application requirement and imple-
mentation functionality.

Figure 2: State transition diagram of the task and
task graph status.

Figure 3: Hierarchical task graph.

2.2 Task Graph

A Grid task provides the necessary ability to repre-
sent a unit of execution on the Grid. Nevertheless,

advanced applications require a more sophisticated
execution framework that facilitates complex execu-
tion patterns and dependencies. The task graph rep-
resents a directed acyclic graph (DAG) that allows
applications to express execution (control) flows be-
tween multiple tasks modeled as DAGs.

Task graphs can support arbitrary levels of hierar-
chy. In other words, every node in the task graph can
be either a task or another task graph (see Figure 3).
Hierarchies in a task graph enable the Grid applica-
tions to conveniently modularize the execution com-
ponents without introducing unnecessary complexity.

A task graph has an associated status that rep-
resents the collective execution status of all its sub-
nodes. The task graph status is determined by the
logic depicted in Figure 4. Additionally, we provide
extensions to the basic task graph abstractions to
form some common utility objects such as queues and
sets. A queue is a task graph with a predefined FIFO
execution ordering. As shown in Figure 5, every ele-
ment of the queue can be either a task or a task graph,
hence the concept of hierarchical queues. A set is a
special task graph with no dependencies, thereby of-
fering a collective mechanism of parallel execution of
a hierarchy of tasks.

Figure 4: Pseudocode to determine the status of a
task graph

if (any Task in the TaskGraph has failed) {
status = failed

} else if (all tasks are unsubmitted) {
status = unsubmitted

} else if (any task is suspended) {
status = suspended

} else if (any task is active) {
status = active

} else if (any task is submitted) {
status = submitted

} else if (every task is completed) {
status = completed

}

Another notable aspect of a task graph is that it is a
checkpointable entity. That is, the execution of every
node of the task graph evolves into a new checkpoint
status. Re-execution of a failed task graph will re-
sume the execution from the last valid checkpoint sta-
tus (see Figure 8). This type of graph checkpointing
not only allows applications to restart failed execu-
tion flows but also allows them to suspend executions

4



Figure 5: A hierarchical queue is a special case of
hierarchical task graph with a FIFO execution de-
pendency.

Figure 6: An active task graph containing two tasks.
One task is “completed” while the other is “unsub-
mitted”. Hence the overall status of the task graph
os “active”

and restart them after migrating the suspended task
graphs to a different host (see Figure 9). Thus, the
checkpointable task graphs in our abstraction model
support the notion of fault-tolerance and migratable
execution. Checkpointing of task graphs is not anal-
ogous to checkpointing of tasks. In task checkpoint-
ing, the corresponding execution program is instru-
mented with special checkpoint-instructions that fa-
cilitate the rollback and restart of the executable
from any checkpoint-instruction. Hence, the restart
of any failed task will resume the execution from the
last checkpoint-instruction that was successfully pro-
cessed. In the task graph checkpointing scheme, how-
ever, rather than checkpointing the progress of a par-
ticular task, we checkpoint the progress of the task
graph. Our checkpointing scheme does not support
task checkpointing. We assume that this is provided

by the underlaying framework or by the application
that is wrapped into a task. To keep our task graph
checkpointing model simple, we maintain the check-
point status in XML notation. Listing 7 shows the
checkpointed XML notation for the task graph de-
picted in Figure 6.

Figure 8: Checkpointable task graphs allow applica-
tions to resume failed execution flows from the point
of failure.

Figure 9: Checkpointable task graphs allow applica-
tions to suspend the execution of a task graph, mi-
grate the suspended task graph to a different host,
and resume the execution from the point of suspen-
sion.

2.3 Handler-Exectution Pattern

In our abstraction model, tasks and task graphs are
static container entities that describe the semantics
of the execution. The actual execution, however, is
carried out by the handlers defined in our model.
The handlers transform the abstract representation of
tasks and task graphs into protocol-specific objects.

The task handler, as the name suggests, han-
dles and processes abstract tasks. It is responsi-
ble for translating the specification, security con-
text, and service contact into artifacts that are
understood by the backend Grid implementation.

5



Figure 7: A sample checkpoint status with an “active” task graph. The task graph has two subtasks, one of
them “completed” and the other “unsubmitted”. Resubmission of this checkpoint status will execute only
the unsubmitted task.

<taskGraph>
<identity> id:taskGraph </identity>
<name> Main Graph </name>

<task>
<identity> id:task1 </identity>
<name> Task1 </name>
<type> File Transfer </type>
<provider> GT2 </provider>
<specification>
<fileTransferSpecification>
<source> gsiftp://hot.anl.gov:2811//source.txt </source>
<destination>
gsiftp://cold.anl.gov:2811//dest.txt

</destination>
<directoryTransfer> false </directoryTransfer>
<thirdParty> true </thirdParty>

</fileTransferSpecification>
</specification>
<status> Completed </status>
<submittedTime> 2004-06-23T16:27:29.606 </submittedTime>
<completedTime> 2004-06-23T16:27:47.819 </completedTime>

</task>

<task>
<identity> id:task2 </identity>
<name> Task2 </name>
<type> File Transfer </type>
<provider> GT2 </provider>
<specification>
<fileTransferSpecification>

<source>gsiftp://new.anl.gov:2811//source</source>
<destination>
gsiftp://old.anl.gov:2811//dest

</destination>
<directoryTransfer> true </directoryTransfer>
<thirdParty> true </thirdParty>

</fileTransferSpecification>
</specification>
<status> Unsubmitted </status>

</task>

<dependencyList>
<dependency from="id:task1" to="id:task2"/>

</dependencyList>
<status> Active </status>
<submittedTime> 2004-06-23T16:27:20.606 </submittedTime>

</taskGraph>

6



Figure 10: The task handler provides the mapping
between abstract tasks and protocol-specific entities.
We currently provider GT2 and GT3 handlers. Other
handlers are either under construction or planned for
future development.

Hence, for every protocol provider there must be
a corresponding task handler providing the neces-
sary abstract-to-protocol binding. The handler is
the only component in our abstraction model that is
backend implementation-specific, thereby minimizing
the dependency on technology-specific functionality.
Therefore, our framework can support and adapt to
backend implementation as long as the appropriate
handlers for it are available (see Figure 10).

A task graph handler, on the other hand, enforces
the execution ordering on task graphs. It also man-
ages the checkpoint status for the task graph and its
successful resumption after execution failure or sus-
pension. We note that the task graph handler is inde-
pendent of the protocol provider. As shown in Figure
11, it simply delegates the execution of its nodes to
the appropriate task handlers or task graph handlers
in a recursive manner. Since the base elements of a
task graph are tasks, this recursive execution of the
task graph is terminated when all the base tasks are
executed.

We refer to the pattern of executing arbitrary
Grid tasks using our handler model as the handler-
execution pattern. With the handler-execution pat-
tern, applications create a task, assign a detailed
specification for the task, associate a security con-
text and service contact with the task, and designate
a provider. In the case of a task graph, the applica-
tion prepares multiple tasks and imposes execution

Figure 11: The task graph handler recursively dele-
gates the execution of every node of the task graph
to an appropriate task handler or another task graph
handler.

dependencies on these tasks. The task or the task
graph is then submitted to an appropriate handler
that executes it on the Grid, allowing the application
to monitor its execution status.

2.4 Resource-Execution Pattern

Tasks, task graphs, corresponding handlers, and the
handler-execution pattern focus on abstracting units
of execution in a Grid. Additionally, one can abstract
Grid resources. We know that computational Grids
aggregate several services dispersed across geographic
boundaries [6]. Our resource abstractions allow ap-
plications to map, aggregate, and classify arbitrary
Grid services into abstract execution resources. Such
an abstract arrangement of services provides a map-
ping from the Grid service space to a user perspective
of those services in the application space.

In the execution resource pattern, services of dif-
ferent types (job execution, file transfer, or informa-
tion query) for various providers (GT2, GT3, Uni-
core, and Condor) are aggregated into a single exe-
cution resource (see Figure 12). The classification of
the service aggregation is application- or user-defined.
Every execution resource contains the following enti-
ties:

• Security Context Mapping: Every provider sup-
ported by the execution resource needs a corre-
sponding security context. This security context
is used by the execution resource to authenticate
the task with the remote service.

7



Figure 12: The execution resource aggregates geo-
graphically distributed Grid services into an abstract
entity capable of task execution.

• Service Contact Mapping: The execution re-
source maps each provider and service type com-
bination to a specific service contact capable of
offering the required functionality following the
provider protocol.

• Resource Queue: Every task submitted to the
execution resource is appended to the resource
queue, which manages the execution requests.

• Dispatcher: The resource queue is serviced by
the resource dispatcher. The dispatcher extracts
tasks from the queue and inspects the task type,
protocol provider, and several other attributes
such as the task priority and the estimated exe-
cution time. Based on these parameters, it asso-
ciates an appropriate service contact and secu-
rity context with the task and submits the task
to an appropriate handler for execution. The dis-
patcher has a dispatching policy that decides the
selection of the next task. This can be a classical
policy such as first-in-first-out, shortest job first,
or a user-defined customized heuristic policy [29]
[30].

Such an execution pattern allows the application
to partition available Grid services into logical or
virtual resources and execute Grid tasks with ab-
stract resources. We refer to the pattern of executing
Grid tasks as the resource-execution pattern. Unlike
the handler-execution pattern, the resource-execution
pattern does not require the knowledge of service con-
tacts on a per task basis. Applications classify their

Grid services and partition them into Grid resources,
selecting a specific dispatching policy for each of these
resources. The scheduler selects the tasks submitted
to a resource and executes them with an appropriate
service, internally employing the handler-execution
pattern.

Figure 13: A resource broker aggregates multiple exe-
cution resources and performs the necessary resource
mapping to execute the submitted tasks on the ap-
propriate Grid resources.

2.5 Broker-Execution Pattern

The broker-execution pattern allows an application to
aggregate a set of services into a single resource. The
resource broker model, on the other hand, allows the
application to aggregate several execution resources
to represent a distributed Grid. The application can
create multiple execution resources, thereby forming
a working context of a computational Grid. The ex-
ecution resources are then associated with a resource
broker that functions as a matchmaking entity be-
tween submitted tasks and their appropriate execu-
tion services (see Figure 13). We refer to the pattern
of submitting Grid tasks as the broker-execution pat-
tern.

Every resource broker has the following associated
entities:

• Execution Resource Pool: A set of execution re-
sources capable of handling different service type
and provider combinations.

• Broker Queue: An input queue for managing the
task (task graph) execution requests submitted
to the resource broker.

8



• Dispatcher: A means for servicing the broker
queue. The dispatcher has an associated policy
that selects the next brokered task from the bro-
kering queue. Several policies can be supported,
such as first-in-first-out, shortest job first, or ran-
dom.

• Brokering Policy: The policy responsible for the
matchmaking decisions between the dispatcher-
selected tasks and the available set of execution
resource. A number of different brokering poli-
cies can be formulated with the resource broker,
including round-robin, least loaded, or random.

Tasks or task graphs, when submitted to the bro-
ker, are appended to the input queue. The dispatcher
selects the next task to be brokered from the input
queue based on its internal selection policy. For ev-
ery selected task, the broker consults its policy to
choose a resource from the pool of available execution
resources, thereby internally adopting the resource-
execution pattern.

Any of the three abstract execution patterns dis-
cussed thus far (handler-execution pattern, resource-
execution pattern, and the broker-execution pat-
tern) can be used by applications. However, the
handler-execution pattern offers maximum control
over task execution with reduced flexibility, whereas
the broker-execution pattern allows maximum flexi-
bility with the autonomy delegated to the resource
broker rather than the application itself.

3 QoS Execution Extensions

To support our philosophy of an extensible Grid
abstraction model, we integrate it with an ad-
vanced Grid quality-of-service (QoS) execution back-
end. Our objective is to showcase the fact that several
Grid frameworks can be interfaced via our abstrac-
tions without modifications to existing applications
that employ our abstraction model. First, we pro-
vide a brief overview of the Grid QoS Management
project that provides the necessary backend for a pos-
sible prototype QoS handler.

3.1 Grid Quality-of-Service Manage-
ment

Execution requests from Grid applications are ser-
viced by remote execution services on a best-effort
basis rather than with deterministic guarantees. Nev-
ertheless, some applications need to obtain results for

their tasks within strict deadlines. Hence, a nonde-
terministic scheduling approach without guarantees
is often not suitable. For these applications, it is of-
ten necessary to reserve Grid resources and services
at a particular time (in advance or on demand) to
ensure deterministic bounds for execution latencies.
Such QoS features are highly desirable, indeed re-
quired, if the Grid execution management service is
to be able to handle complex scientific and business
applications.

Grid Quality-of-Service Management (GQoSM) is
a framework to support QoS management in compu-
tational Grids [31, 32]. GQoSM consists of three main
operational phases: establishment, activity, and ter-
mination. During the establishment phase, a client
application states the desired service and QoS re-
quirements. GQoSM then undertakes a service dis-
covery, based on the specified QoS properties, and
negotiates an agreement for the client application.
During the activity phase, additional operations such
as QoS monitoring, adaptation, accounting, and pos-
sibly renegotiation may take place. During the termi-
nation phase, the QoS session is ended as a result of
resource reservation expiration, agreement violation,
or service completion; resources are then freed for use
by other clients.

Figure 14: GQoSM service architecture.

As shown in Figure 14, one of the key component
of the GQoSM framework is the GQoSM service. The
GQoSM service provides QoS functionalities such as
negotiation, reservation, and resource allocation with
certain quality levels. Each QoS-enabled Grid re-
source is accessed through a GQoSM service. It
publishes itself to a registry service, so clients and

9



QoS brokers can discover the existence of the differ-
ent GQoSM services. The GQoSM service primarily
performs two functions: resource reservation and re-
source allocation.

When a reservation request is received, the GQoSM
service undertakes an admission control to check the
feasibility of granting such a request. This feasibility
check is undertaken by the reservation manager. If
such a reservation is possible, the requested resources
are reserved, the reservation table is updated, and an
agreement consisting of the reservation specification
is generated and returned to the client. On the other
hand, when a resource allocation request is received,
the GQoSM service verifies that the user has indeed
made a reservation based on the supplied agreement.
If this test is successful, then the GQoSM service sub-
mits the specification of the job to be executed, along
with its reservation agreement to the appropriate ex-
ecution manager, such as the Globus Resource Allo-
cation Manager (GRAM) [33] on that particular Grid
resource.

3.2 GQoSM Handler Integration

The GQoSM framework offers the requisite function-
ality for QoS-related features that allows the trans-
formation of any arbitrary Grid resource into a QoS-
aware Grid entity. However, to take advantage of
such QoS-aware Grid resources, applications must be
able to interact with such entities without significant
changes in logic and implementation. Hence, we pro-
vide interactions with the GQoSM framework via our
abstraction model, making it seamless for Grid appli-
cations to benefit from the GQoSM architecture. The
only additional effort required is the “one-time” de-
velopment of a GQoSM handler for our model.

As depicted in Figure 15, a possible implementa-
tion of the GQoSM handler is split into two mod-
ules: the QoS reservation module and the job exe-
cution module. When an abstract Grid task is del-
egated to the GQoSM handler, it invokes the reser-
vation module to communicate with the peer reser-
vation manager of the GQoSM service and obtain its
reservation token. After the token is retrieved, the
execution module of the handler communicates with
the resource allocation manager of the corresponding
GQoSM service and submits the Grid task based on
the task parameters (start time and end time).

All Grid applications that currently use our ab-
straction model can attain QoS assurances without
being aware of complex QoS discovery, QoS negotia-
tion, and QoS execution phases. Applications sim-

Figure 15: GQoSM handler integration.

ply formulate an abstract Grid task and assign it
a provider as “GQoSM”. Further, if the application
requires asynchronous job startups, additional at-
tributes such as task startup and end times can also
be specified. Based on the degree of autonomy and
flexibility, the application can leverage from several
execution patterns described in the previous sections
while interfacing with an advanced QoS architecture.

4 Conclusion

The Grid community under the auspices of the Global
Grid Forum is moving in the right direction toward
standardizing the Grid architecture. However, the
Grid standardization is an incremental process sub-
ject to ongoing refactoring. Although such enhance-
ments in the Grid architecture will ultimately prove
beneficial for the entire Grid community, they im-
pose an undue overhead on Grid applications to con-
tinuously keep abreast of these changes. Motivated
by the need to provide an application development
framework that shields the Grid users and applica-
tion developers from the technological complexities
of the Grid implementation, we present a suite of
pattern-based Grid abstractions. Applications using
our framework can concentrate on their objectives
while remaining compatible with the latest Grid tech-
nologies.

The basic elements in our Grid abstractions are
tasks and the task graphs. A Grid task is an atomic
unit of work in our framework. Our model can sup-
port an execution flow ordered as a hierarchical di-
rected acyclic graph, referred to as a task graph.

10



The task graph is a checkpointable entity facilitat-
ing fault-tolerance and mobility in execution flows.
An alternative perspective on Grid abstractions is
also presented focusing on the notion of execution
resources. Abstract services can be aggregated into
execution resources capable of servicing execution re-
quests. Higher levels of execution abstractions are
offered via the resource broker constructs that aggre-
gate multiple execution resources providing advanced
matchmaking functionality.

We have tested the utility and ease of use of our
abstraction model by integrating it with the GQoSM
execution framework with an older version of the Java
CoG Kit. Although the GQoSM handler is not pub-
licly distributed with the current Java CoG Kit v4
[34], it validates our hypothesis that advanced back-
end systems can be seamlessly integrated in our ab-
straction model without changes to the application.

A prototype implementation of the elementary
Grid abstractions is available as a part of the Java
CoG Kit v4. In the current distribution, we have
implemented task handlers for Globus Toolkit v2.4,
Globus Toolkit v3.02, Globus Toolkit v3.2.0, Globus
Toolkit v3.2.1, and secure shell (SSH). Community
members have also provided handlers for the Unicore
framework. A port to Globus Toolkit 4 is under de-
velopment. Furthermore, the Globus Toolkit v4 con-
tains already several abstractions that have its origin
in the Java CoG Kit.

Acknowledgments

This work was supported by the Mathematical, In-
formation, and Computational Science Division sub-
program of the Office of Advanced Scientific Comput-
ing Research, Office of Science, U.S. Department of
Energy, under Contract W-31-109-Eng-38. DARPA,
DOE, and NSF support Globus Alliance research and
development. The Java CoG Kit Project is supported
by DOE SciDAC, NSF Alliance, and the NMI Portals
project. We acknowledge Philip Wieder and Donal
Fellows for their contribution in developing the han-
dler for the Unicore framework.

References

[1] Ian Foster, Carl Kesselman, Jeffrey M. Nick,
and Steven Tuecke. Grid Computing: Making
the Global Infrastructure a Reality, chapter The

Physiology of the Grid, pages 217–249. Wiley,
2003. http://www.globus.org/ogsa.

[2] Web Services Resource Framework (WSRF).
Web Page. http://www.globus.org/wsrf.

[3] M. Govindaraju, S. Krishnan, K. Chiu,
A. Slominski, D. Gannon, and R. Bramley.
XCAT 2.0 : A Component Based Programming
Model for Grid Web Services. In Grid 2002,
3rd International Workshop on Grid Comput-
ing, 2002. http://www.extreme.indiana.edu/
xcat.

[4] The Globus Project. Web Page. http://www.
globus.org.

[5] Gregor von Laszewski, Ian Foster, Jarek
Gawor, and Peter Lane. A Java Commod-
ity Grid Kit. Concurrency and Computa-
tion: Practice and Experience, 13(8-9):643–
662, 2001. http://www.mcs.anl.gov/~gregor/
papers/vonLaszewski--cog-cpe-final.pdf.

[6] Gregor von Laszewski and Kaizar Amin.
Grid Middleware, chapter Middleware for
Commnications, pages 109–130. Wiley, 2004.
http://www.mcs.anl.gov/~gregor/papers/
vonLaszewski--grid-middleware.pdf.

[7] Kaizar Amin, Mihael Hategan, Gregor von
Laszewski, and Nestor J. Zaluzec. Abstract-
ing the Grid. In Proceedings of the 12th
Euromicro Conference on Parallel, Distributed
and Network-Based Processing (PDP 2004),
pages 250–257, La Coruña, Spain, 11-13 Febru-
ary 2004. http://www.mcs.anl.gov/~gregor/
papers/vonLaszewski--abstracting.pdf.

[8] The Legion Project. Web Page. http://
legion.virginia.edu.

[9] Unicore. Web Page. http://www.unicore.de/.

[10] Douglas Thain, Todd Tannenbaum, and Miron
Linvy. Grid Computing: Making the Global In-
frastructure a Reality, chapter Condor and the
Grid. Number ISBN:0-470-85319-0. John Wiley,
2003.

[11] Open Grid Services Architecture (OGSA). Web
Page. http://www.globus.org/ogsa.

[12] Gregor von Laszewski, Mike Seablom, Milo
Makivic, Peter Lyster, and Sanya Ranka. De-
sign Issues for the Parallelization of an Optimal

11

http://www.globus.org/ogsa
http://www.globus.org/wsrf
http://www.extreme.indiana.edu/xcat
http://www.extreme.indiana.edu/xcat
http://www.globus.org
http://www.globus.org
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-cpe-final.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-cpe-final.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--abstracting.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--abstracting.pdf
http://legion.virginia.edu
http://legion.virginia.edu
http://www.unicore.de/
http://www.globus.org/ogsa


Interpolation Algorithm. In G.-R. Hoffman and
N. Kreitz, editors, Coming of Age, Proceedings
of the 4th Workshop on the Use of Parallel Pro-
cessing in Atmospheric Science, pages 290–302,
Reading, UK, 21-25 November 1994. European
Centre for Medium Weather Forecast, World
Scientific. http://www.mcs.anl.gov/~gregor/
papers/vonLaszewski94-4dda-design.pdf.

[13] Gregor von Laszewski. An Interactive Par-
allel Programming Environment Applied in
Atmospheric Science. In G.-R. Hoffman and
N. Kreitz, editors, Making Its Mark, Proceedings
of the 6th Workshop on the Use of Parallel Pro-
cessors in Meteorology, pages 311–325, Reading,
UK, 2-6 December 1996. European Centre for
Medium Weather Forecast, World Scientific.
http://www.mcs.anl.gov/~gregor/papers/
vonLaszewski--ecwmf-interactive.pdf.

[14] Gregor von Laszewski. A Loosely Cou-
pled Metacomputer: Cooperating Job Sub-
missions Across Multiple Supercomputing
Sites. Concurrency, Experience, and Practice,
11(5):933–948, December 1999. The initial
version of this paper was available in 1996.
http://www.mcs.anl.gov/~gregor/papers/
vonLaszewski--CooperatingJobs.ps.

[15] Rich Wolski, John Brevik, Graziano Obertelli,
Neil Sprong, and Alan Su. Writing Pro-
grams that Run EveryWare on the Computa-
tional Grid. IEEE Transactions on Parallel and
Distributed Systems, 12(10):1066–1080, October
2001.

[16] Hidemoto Nakada, Mitsuhisa Sato, and Satoshi
Sekiguchi. Design and Implementations of Ninf:
towards a Global Computing Infrastructure.
Future Generation Computing Systems, 15(5-
6):649–658, 1999.

[17] Henri Casanova and Jack Dongarra. NetSolve:
A Network Server for Solving Computational
Science Problems. International Journal of Su-
percomputer Applications and High Performance
Computing, 11(3):212–223, 1997.

[18] G. Allen, W. Benger, T. Goodale, H.-C. Hege,
G. Lanfermann, A. Merzky, T. Radke, E. Sei-
del, and J. Shalf. The Cactus Code: A Prob-
lem Solving Environment for the Grid. In
High-Performance Distributed Computing, 2000.

Proceedings. The Ninth International Sympo-
sium on, pages 253 –260, Pitsburg, PA, August
2000. http://xplore2.ieee.org/iel5/6975/
18801/00868657.pdf?isNumber=18801.

[19] J. Novotny. The Grid Portal Development
Kit, 2001. http://dast.nlanr.net/Projects/
GridPortal/.

[20] Albee Jhoney, Manu Kuchhal, and Venkatakr-
ishnan. Grid Application Framework for Java
(GAF4J). Technical report, IBM Software Labs,
India, 2003. https://secure.alphaworks.
ibm.com/tech/GAF4J.

[21] E. Seidel, G. Allen, A. Merzky, and J. Nabrzyski.
Gridlab: A grid application toolkit and testbed.
Future Generation Computer Systems, 18:1143–
1153, 2002.

[22] IBM Grid Computing. Web Page. http://
www-1.ibm.com/grid/.

[23] Gabrielle Allen, Kelly Davis, Konstanti-
nos N. Dolkas, Nikolaos D. Doulamis, Tom
Goodale, Thilo Kielmann, Andre Merzky, Jarek
Nabrzyski, Juliusz Pukacki, Thomas Radke,
Michael Russell, Ed Seidel, John Shalf, and
Ian Taylor. Enabling applications on the grid:
A gridlab overview. International Journal of
High Performance Computing Applications,
17(04):449, November 2003.

[24] The Global Grid Forum Web Page. Web Page.
http://www.gridforum.org.

[25] Gregor von Laszewski. Keynote: Cog kit
abstractions. Workshop on Grid Applica-
tion Programming Interfaces in conjunction
with GGF12, Brussels, Belgium, 20 September
2004. (Keynote). http://www.cs.vu.nl/ggf/
apps-rg/meetings/ggf12.html.

[26] Gregor von Laszewski. Java cog kit workflow ab-
stractions. GGF Workshop Management Work-
ing Group, GGF11 - The Eleventh Global Grid
Forum, Honolulu, Hawaii USA, 6-10 June 2004.
(Presentation).

[27] L. Smarr and C.E. Catlett. Metacomputing.
Communications of the ACM, 35(6):44–52, 1992.

[28] D. Bhatia, V. Burzevski, M. Camuseva, G. C.
Fox, W. Furmanski, and G. Premchandran.
WebFlow - a visual programming paradigm for

12

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski94-4dda-design.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski94-4dda-design.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--ecwmf-interactive.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--ecwmf-interactive.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--CooperatingJobs.ps
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--CooperatingJobs.ps
http://xplore2.ieee.org/iel5/6975/18801/00868657.pdf?isNumber=18801
http://xplore2.ieee.org/iel5/6975/18801/00868657.pdf?isNumber=18801
http://dast.nlanr.net/Projects/GridPortal/
http://dast.nlanr.net/Projects/GridPortal/
https://secure.alphaworks.ibm.com/tech/GAF4J
https://secure.alphaworks.ibm.com/tech/GAF4J
http://www-1.ibm.com/grid/
http://www-1.ibm.com/grid/
http://www.gridforum.org
http://www.cs.vu.nl/ggf/apps-rg/meetings/ggf12.html
http://www.cs.vu.nl/ggf/apps-rg/meetings/ggf12.html


Web/Java based coarse grain distributed com-
puting. Concurrency: Practice and Experience,
9(6):555–577, 1997.

[29] Gregor von Laszewski, Ian Foster, Jarek
Gawor, Warren Smith, and Steve Tuecke.
CoG Kits: A Bridge between Commodity
Distributed Computing and High-Performance
Grids. In ACM Java Grande 2000 Confer-
ence, pages 97–106, San Francisco, CA, 3-5 June
2000. http://www.mcs.anl.gov/~gregor/
papers/vonLaszewski--cog-final.pdf.

[30] Gregor von Laszewski. Using the Globus Meta-
computing Toolkit for Seamless Computing. Su-
percomputing Center at ECMWF, Reading, UK,
December 1997. (Invited Talk).

[31] Rashid Al-Ali, Kaizar Amin, Gregor von
Laszewski, Omer Rana, and David Walker.
An OGSA-based Quality of Service Frame-
work. In Proceedings of the Second Interna-
tional Workshop on Grid and Cooperative Com-
puting (GCC2003), number LNCS 3003 in Lec-
ture Notes on Computer Science, pages 529–540,
Shanghai, China, 7-10 December 2003. Revised
Papers, Part II. Springer Verlag. ISBN: 3-540-
21993-5. http://www.mcs.anl.gov/~gregor/
papers/vonLaszewski--qos.pdf.

[32] Rashid Al-Ali, Kaizar Amin, Gregor von
Laszewski, Mihael Hategan, Omer Rana, David
Walker, and Nester Zaluzec. QoS Sup-
port for High-Performance Scientific Applica-
tions. In Proceedings of the IEEE/ACM 4th
International Symposium on Cluster Comput-
ing and the Grid (CCGrid 2004), Chicago
IL, USA, 2004. IEEE Computer Society
Press. http://www.mcs.anl.gov/~gregor/
papers/vonLaszewski--qos-ccgrid04.pdf.

[33] Karl Czajkowski, Ian Foster, Nick Karonis,
Cral Kesselman, Stewart Martin, Warren Smith,
and Steve Tuecke. Resource Management Ar-
chitecture for Metacomputing Systems. In
Proc. IPPS/SPDP:Workshop on Job Scheduling
Strategies for Parallel Processing, pages 62–82,
March 30 - April 3 1998. http://www.isi.edu/
~karlcz/papers/gram97.pdf.

[34] Gregor von Laszewski, Kaizar Amin, Matt
Bone, Mike Hategan, Pankaj Sahasrabudhe,

Mike Sosonkin nd Robert Winch, Nithya Vi-
jayakumar, and David Angulo. The Next Gen-
eration of the Java CoG Kit (Version 4). Su-
percomputing 2004, Pittsburgh, 6-12 Novem-
ber 2004. (Refereed Poster) Best poster award.
http://www.sc-conference.org/sc2004.

13

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-final.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-final.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--qos.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--qos.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--qos-ccgrid04.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--qos-ccgrid04.pdf
http://www.isi.edu/~karlcz/papers/gram97.pdf
http://www.isi.edu/~karlcz/papers/gram97.pdf
http://www.sc-conference.org/sc2004

	Related Research
	Grid Abstractions
	Task
	Task Graph
	Handler-Exectution Pattern
	Resource-Execution Pattern
	Broker-Execution Pattern

	QoS Execution Extensions
	Grid Quality-of-Service Management
	GQoSM Handler Integration

	Conclusion

