
A Grid Certificate Authority for Community and Ad-hoc Grids ∗

Gregor von Laszewski
1Argonne National Laboratory

9700 S. Cass Ave.
Argonne, IL 60439, U.S.A.

2University of Chicago, Chicago, IL
gregor@mcs.anl.gov

Mikhail Sosonkin,
3 Polytechnic University

6 Metrotech Center
Brooklyn, NY 11201, U.S.A.
mike@isis.poly.edu

Abstract

One of the most important issues in Grid computing is
to provide a secure environment that allows administrators
to contribute their resources and users to utilize them. Cur-
rently diverse methods are required to obtain certificates for
the different Grids. In this paper we showcase a prototype
of a tool that simplifies the tasks associated with maintain-
ing a Grid certificate authority and simplifies the applica-
tion process for the user to interact with multiple certificate
authorities.

1. Introduction

The Grid approach [1] provides a vision for the utiliza-
tion of multiple physically dispersed computing resources.
Grid services unite the resources and provide the user with
access to seamlessly integrated resources. In order to uti-
lize these resources, production Grids employ a trust model.
The following two trust models are most common. In a
community production Grid, members provide resources
and allow users of the community to use the resources once
the users are trusted and obtain authorization to use the re-
sources. In avolunteer production Grid, users donate un-
used computational cycles to achieve, (most often), a non-
profit scientific task [2]. The membership is based on an
implicit trust model established through an inverse security
assurance. While in a traditional community Grid the users
run their applications on trusted resources, in a volunteer

∗7th International Workshop on Javatm for Parallel and Distributed
Computing, held in conjunction with the 19th International Parallel and
Distributed Processing Symposium (IPDPS 2005) April 4-8, 2005, Denver,
CO, USA. This work was supported by the Mathematical, Information, and
Computational Science Division subprogram of the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Department of En-
ergy, under Contract W-31-109-Eng-38 and by the National Science Foun-
dation under Grant No. 0353989.

Grid the resource contributors execute trusted applications.
In the paper we focus on community production Grids that
restrict access to its resources through an account applica-
tion process.

Establishing trust to such a Grid requires special efforts.
Grid middleware provides the resources with secure com-
munication methods to prevent exploitation of the commu-
nication between clients and services. In order to establish
such secure communication, various methods exist. For ex-
ample,symmetric key cryptographyis used to secure com-
munication from source to destination. This type of cryp-
tography uses the same key for both encryption and decryp-
tion of data. The mechanism is secure only when both par-
ties have exchanged the keys using another secure mech-
anism. A convenient mechanism used for secret key ex-
change isasymmetric cryptography. It uses one key for
encryption and another for decryption. To complete this
process, one needs a way of linking a key to an entity that
it belongs to. The process involves a third party, the Cer-
tificate Authority (CA). The authority can issue a certificate
that only the authority can modify. The certificate uniquely
identifies the CA. Systems and users that trust this CA can
obtain certificates that are signed by this CA. The signing
process is usually well documented and is cause for the trust
based into the CA. In order to increase the trust, in many
systems a hierarchical structure of CAs is used. In Figure1
we depict such a system, where the most trusted authority is
at the top and the least trusted authorities are at the bottom.
The root authority is trusted by a variety of other less trusted
authorities. The authorities at the bottom are trusted only to
issue certificates to clients but are not trusted by other au-
thorities. A client may need multiple certificates in order to
interact with different entities that are not part of the same
trust domain; in other words authentication is governed by
different CAs.

While reviewing a variety of community Grids we ob-
served that few tools are readily available for the process
of maintaining a Grid CA and simplifying the process of

1

gregor@mcs.anl.gov
mike@isis.poly.edu

Figure 1. Illustration of the hierarchal nature
of certificate authorities and certificates.

obtaining a user certificate. We believe that this situation
is a cause of concern since it prevents the widespread de-
ployment of Grids. Users are faced with complex applica-
tion processes that make the use of a community production
Grid to cumbersome to use for users with limited informa-
tion technology knowledge. Administrators are faced with
the burden of issuing many certificates taking a consider-
able time.

Hence, with our proposed solution we address specifi-
cally the following issues:

1. Make it easy to set up a CA on behalf of a community.

2. Make it easy to maintain certificate requests from the
community.

3. Make it easy for the community members to obtain
certificates and place them on a client machine.

4. Make it possible to obtain certificates from multiple
CAs if desired.

2. Requirements

To design our CA toolkit appropriately, we take a closer
look at a number of requirements that have immediate ben-
efit to our target audience.

Different user identities. One important factor in setting
up a CA is the verification of the users identity as part of a
community. The application process typically involves the
gathering of data from the user. In Table1 we have listed
a number of such fields as they are required by CAs that
spawn a large number of Grid users. These CAs include
DOE [3], NCSA [4], NPACI [5], Access Grid (AG) [6], the
Java CoG Kit CA applets [7], and the Simple CA [8]. We

observe that certain fields overlap and some are not required
to submit a request.1

Additionally we observe systems that are tightly inte-
grated with an existing account application process such as
the NCSA or NPACI user ID and accounts. Although this
table is not exhaustive, it gives a general idea of what the ad-
ministrators of CA’s want from the user for authentication
and authorization.

From this table and from the analysis of existing Grid
middleware toolkits, it is clear that we do not yet have con-
venient middleware tools to help setting up certificate au-
thorities with slightly different identity requirements. The
current generation of tools, including those provided by
community projects such as ESG [9] and Fusion Grid [10],
provide only a relatively fixed solution with little flexibil-
ity in setting up easily different identity requirements. That
such individualization is necessary is obvious from efforts
documented as part of the the European Policy Management
Authority for Grid Authentication (Eu Grid PMA) [11] and
the list of authorities at [12]. Once a CA has been designed,
it can been reviewed based on the policies that are going to
be gathered in [11].

Table 1. Fields needed to make a request to
various CAs

Field Name D
O

E

N
C

S
A

N
P

A
C

I

A
cc

es
s

G
rid

Ja
va

C
oG

K
it

S
im

pl
e

C
A

Full Name × × ×
Email Address × × ×
Contact Email ×
Contact Phone ×
Affiliation ×
Name of Sponsor ×
Sponsor’s Email ×
Additional Info ×
Key Length ×
NCSA User ID ×
NCSA Kerberos Password ×
NPACI Workstation Account ×
Certificate Type ×
Domain ×
Organization ×
Organization Unit ×
Country ×
Common Name ×

1We have not listed fields that are not required for the establishment of
the identity.

2

Multiplicity of CAs. Since different Grid communities
have different authoritative requirements, as discussed in
[13], users are frequently part of multiple communities.
(In fact, the first author of this paper is in three different
communities requiring different certificates for each of the
Grids. This situation poses a significant problem to users
that are not as technology aware.

Simple use. One of the important features of the tool must
be its ease of use for users and administrators. A graphical
user interface (GUI) is needed to simplify the certificate ap-
plication by users and administrators.

Simple to deploy. The tool must be easy to deploy for the
same reasons given in the preceding requirements.

Simple to enhance. The tool must be simple to enhance
because adaptations for various community Grids will be
necessary.

3. Design

The design of our tool to develop a Grid CA is based
on a client-server model that uses one server and multiple
clients (Figure2). Our design should not be confused with
the applets that are already distributed with the Java CoG
kit and can interface with a myProxy maintained CA [14]
and are referred to in Table1.

Figure 2. Client-server model of the system

Figure3 shows the high-level design of the system and
depicts interactions between the user and administrator and
the different components that are part of the system. A user
can request a certificate from an administrator by using the
GUI that is part of our client. The client will contact on be-
half of the user to the certificate server and retrieve a num-
ber of fields that need to be completed and are defined by
the CA administrator. Once the user has completed the in-
formation and approves its submission, the client GUI for-
wards the information to the client certificate manager. The
client certificate manager saves the information in a secure
local database and generates the request. The client certifi-
cate manager then uses a connection to the CA server to
send the request to the administrator. The CA server ac-
cepts the request and saves it in the server database. When
the administrator returns to his workstation, the request will
be read from the database by the specialized administra-
tor interface and displayed. At this point the administra-
tor can either sign the request and generate a certificate for

Figure 3. High-level design of the system

the user requesting it or deny it. If the administrator signs
the request, the certificate is saved in the server’s database.
The administrator might notify the user that the certificate
is ready through some other agreed on protocol (such as e-
mail), or the user simply may periodically try to retrieve the
certificate until it’s available. When the users client receives
the certificate it is stored in the local database. In order for
the system to work, the client needs to know the address of
the certificate server. This can be integrated in our distri-
bution or a custom distribution can be provided making the
contact implicit. This adaptation is easy because our code is
based on object-oriented technologies that allow adaptation
through Java interfaces and their implementation.

With the help of this tool the steps can be implemented
as part of a client portal that simplifies the certificate re-
quest. Variations to these steps are possible and depend on
the communitys requirement.

1. Go to the Grid community portal you are a member of.

2. Go to the certificate request page.

3. Click on request a certificate.

4. The portal will now install or invoke the client request
program and connect to the appropriate CA.

5. The client retrieves fields necessary to conduct the
identification step.

6. Fill out the request form.

7. Press the submit button to send the request to the CA.

8. A mail is sent to the user that the certificate is ready
for pickup.

9. Press the retrieve button to obtain the certificate.

3

In comparison to the procedure that is necessary for re-
trieving a DOE certificate [3], for example, our process ap-
pears to the user significantly simpler. Less technical exper-
tise is necessary to complete the process, and the user has
to focus only on filling out the form, submitting it, and re-
trieving the certificate at a later time through a simple button
click.

To set up a certificate authority suitable for the commu-
nity, the CA designer can configure the fields necessary to
establish identity. Once the CA is installed, it accepts in-
coming requests from clients and stores the incoming re-
quest till they are managed by the administrator. Once the
administrator connects securely with the GUI to the CA, the
approval process can be easily implemented as follows for
each certificate request.

Steps for the CA to generate the certificate include:
1. Verify the identity of the person conducting the request

based on the information provided by the requestor.
2. If the request is denied, end this request
3. If the request is approved, press a button to continue.

Internally the certificate is generated and placed in a spe-
cial location for pickup and an optional mail is created to
inform the user that the certificate is ready for pickup.

4. Implementation

We have implemented the system as specified in our ini-
tial design.

Certificate authority management. The certificate au-
thority is administered through a simple GUI as shown in
Figure 4 and 5. The administrator can easily specify the
fields used for the user identification (Figure4). The order
of the fields can be changed, new fields can be added, and
fields can be marked as required to be filled out by the client
before a request can be submitted to the CA. The fields and
their contents can be included as part of a certificate. Out-
standing certificate requests can be viewed and approved
through a convenient approval panel (Figure5). The data
on the server side is organized in a hierarchical file system.
It contains directories for requests that are newly received
requests that have been read, but not yet completed requests
that have been signed and requests that are denied. Each re-
quest is assigned a unique ID. The server is designed to be
multithreaded in order to handle multiple incoming requests
from clients.

User certificate management. The convenient client
GUI lets users view CAs, certificates, and proxies in the
local database, using a tree structure (Figure6) represent-
ing an entry for each CA. Below each CA is the list of all
the certificates and requests. A certificate is augmented by a
check box that represents the validity of he certificate. Be-
low each certificate are listed the proxies associated with the

Figure 4. Administrator request fields editor

Figure 5. Administrator request list viewer

Figure 6. User certificate and proxy viewer

Figure 7. User certificate authority manager

4

certificate and their validity is identified through a check in
the associated checkbox. New certificate authorities can be
added simply by invoking the CA management panel (Fig-
ure 7). After the CA server has been added, the fields are
retrieved from the remote location. Once the CA is in-
cluded, and the required fields have been filled out by the
user, the certificate form the CA can be requested. The in-
formation stored by a client is organized hierarchically on
the operating system’s file and directory system in an espe-
cially assignable directory. A number of configuration files
determine the CA server, the fields that need to be filled out,
the requests that have been issued, and the signature of the
configuration and can be identified by an MD5 hash.

Data Formats. To support the communication between
client and server, we use a number of data formats. A re-
quest contains a specially marked PKCS10 certificate re-
quest and a CA envelope, both encoded in Base64. The
envelope is created because that data needs to be sent to
the server confidentially. The private key is stored in a
Based64 encoded PKCS8 format. However, we have en-
hanced our framework to support multiple formats, such as
PKCS1, which can be used if the CA designer requires. Sig-
natures of the server and client parameter file are stored in
PKCS7 format in order to protect the data from unautho-
rized tampering. We have designed special Java objects that
abstract these data formats and provide a convenient inter-
face of handling the data. For a short description about the
intent of these formats, we refer the reader to [15].

Network Communication. Figure8 shows the messages
that are passed between the client and the server when the
client adds a new CA retrieves the information about this
CA from the server. A client request to retrieve a certificate
is depicted in Figure9 according to our design discussions
from Section3.

Figure 8. Client-server communication to re-
ceive the CA certificate and fields from the
CA.

Information Security. Since the information gathered
from the identity form may contain sensitive information, it
is important to secure the location in which that information
is stored and to secure the communication path between the
client and server. The latter is achieved by using encryption

Figure 9. Client-server communication to re-
ceive a certificate.

on the socket and using a PKCS5 padding scheme. To avoid
blocks being created with the same value during encryption,
we use a cipher block chain (CBC) mode [16] to encrypt a
message.

At present we have implemented the strategy to obtain
the servers certificate through a secure download process.
To limit the risks of a man-in-the-middle attack, however,
we intend our final implementation to distribute the public
key as part of our signed software distribution. This way
we can assure confidence in establishing a direct connection
between the client and the server.

Program Design. The graphical interface and the actual
implementation are cleanly separated; the design is such
that there is oneway communication instantiation between
the GUI and the backend. That is, the backend has no
knowledge of how its features are presented to the user.
This design allows for an easy way of replacing the GUI
or automating tasks. All of the functions are accessed by
invoking methods that are defined by an interface for a par-
ticular component. The design style is applied to both the
client and the server.

For example, the connection from the client to the server
is abstracted through a convenient interface as listed in List-
ing 1.2 This interface is reused as part of the GUI compo-
nent. Hence, if improvements to the connection handling
or the GUI are necessary, the impact on the overall code by
modifying these components is minimal.

The client and server use an event model to send commu-
nications to the client’s GUI. The listeners are used to notify
components that need to be informed if requests have been
issued. The client and server are checkpointable to allow
graceful shutdown and startup. The user could, for exam-
ple, start filling out the identify fields and return at a later

2For space saving reasons, we have not included Exceptions in our code
examples. Hence they represent pseudo codes and not the real interfaces.
These can be obtained from the www.cogit.org Web page.

5

Listing 1. Pseudo Interface for a connection
to CA.

package org . g lobus . cog . s e c u r i t y . management . c l i e n t ;
pub l i c i n t e r f a c e CAConnection {

pub l i c vo id sendReques t (Reques t req)
pub l i c C e r t i f i c a t e g e t C e r t i f i c a t e (Reques t req)
pub l i c byte [] g e t P a r a m e t e r s ()
pub l i c byte [] g e t S i g n a t u r e ()
pub l i c vo id w r i t e (Outpu tS t ream ou t)
pub l i c vo id r ead (I npu tS t ream i n)

}

time to submit or retrieve the request. For the system admin-
istrator it provides the added benefit that he can interrupt the
approval process at any time and revisit it later. Hence our
system more closely adapts to the process users naturally in-
teract with the Grid instead of forcing the user to conduct an
uninterruptible process. We believe that through our system
the user experience with a CA is much enhanced.

5. Conclusion

We introduce a new system that provides a Grid certifi-
cate authority. The system is targeted to design, deploy,
and use a manageable system to handle certificates from
the point of view of the user and Grid administrator. As
our system is expandable, enhancements are easily integrat-
able, such as the deployment of keys as part of grid map
files. The main design goals have been supported through
appropriate use of object-oriented programming as well as a
preliminary graphical user interface that hides much of the
complexities. Because our system is easy to use and install,
it supports the sporadic and ad-hoc nature of many research
collaborations. We have started to improve our GUI to al-
low the deployment through Java Webstart and to provide
a customizable GUI interface for the client that focuses on
just one CA to support a much more simplistic user clien-
tele. We emphasize, however, that many of our advanced
users have the need to access multiple CAs, a requirement
that is already supported by our software.

It would be conceivable to enhance the system in such
a way that the user must never need to think about certifi-
cate authorities or certificates. This could be achieved by
integrating a simple request procedure as part of the setup
component of the Java CoG Kit that has for years provided
a simple way to interact with Grids. We as a project would
be willing to work with other Grid projects together to de-
velop appropriate deployment modules customized for the
particular Grid community.

The Java CoG Kit has an abstraction layer to include be-
sides GSI multiple other security frameworks such as SSH.

Our CA does not have at this time the ability to work with
different security providers. The focus at this time is on
GSI.

References

[1] G. von Laszewski and P. Wagstrom,Tools and
Environments for Parallel and Distributed Computing,
ser. Series on Parallel and Distributed Computing.
Wiley, 2004, ch. Gestalt of the Grid, pp. 149–187.
[Online]. Available:http://www.mcs.anl.gov/∼gregor/
papers/vonLaszewski--gestalt.pdf

[2] E. Korpela, D. Werthimer, D. Anderson, J. Cobb,
and M. Leboisky, “SETI@home-massively distributed
computing for SETI,”Computing in Science & Engi-
neering, vol. 3, no. 1, pp. 78–83, January–February
2001.

[3] “DOEGrids Certificate Service,” Webpage, June 2004.
[Online]. Available:https://www.doegrids.org:443/

[4] “NCSA CA Client Software,” Webpage, June
2004. [Online]. Available: http://grid.ncsa.uiuc.edu/
ca/client/

[5] “NPACI HotPage Grid Computing Portal,” Webpage,
June 2004. [Online]. Available:https://hotpage.npaci.
edu/

[6] Webpage, June 2004. [Online]. Available:http:
//www.accessgrid.org/

[7] Jean-Claude Cote, “NRC Certificate Applets,” Web-
page, also distributed as part of the Java CoG Kit.,
June 2004. [Online]. Available:http://www.cogkit.org

[8] “Globus Toolkit Simple CA,” Webpage, June 2004.
[Online]. Available: http://www.globus.org/security/
simple-ca.html

[9] “Earth System Grid CA,” unpublished. [Online].
Available: https://www.earthsystemgrid.org

[10] “Fusion Grid CA,” unpublished. [Online]. Available:
http://www.fusiongrid.org/

[11] “European Grid Policy Management.” [Online]. Avail-
able:http://www.eugridpma.org/

[12] “Certificate Authorities,” Webpage, August 2004.
[Online]. Available: http://marianne.in2p3.fr/
datagrid/ca/ca-table-ca.html

[13] G. von Laszewski and K. Amin,Grid Middle-
ware. Wiley, 2004, ch. Chapter 5 in Middle-
ware for Commnications, pp. 109–130. [Online].
Available: http://www.mcs.anl.gov/∼gregor/papers/
vonLaszewski--grid-middleware.pdf

[14] G. von Laszewski, B. Alunkal, K. Amin, J. Gawor,
M. Hategan, and S. Nijsure, “The Java CoG
Kit User Manual,” Argonne National Laboratory,
MCS Technical Memorandum ANL/MCS-TM-259,
Mar. 14 2003. [Online]. Available:http://www.mcs.
anl.gov/∼gregor/papers/manual-cog2.pdf

6

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gestalt.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gestalt.pdf
https://www.doegrids.org:443/
http://grid.ncsa.uiuc.edu/ca/client/
http://grid.ncsa.uiuc.edu/ca/client/
https://hotpage.npaci.edu/
https://hotpage.npaci.edu/
http://www.accessgrid.org/
http://www.accessgrid.org/
http://www.cogkit.org
http://www.globus.org/security/simple-ca.html
http://www.globus.org/security/simple-ca.html
https://www.earthsystemgrid.org
http://www.fusiongrid.org/
http://www.eugridpma.org/
http://marianne.in2p3.fr/datagrid/ca/ca-table-ca.html
http://marianne.in2p3.fr/datagrid/ca/ca-table-ca.html
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf
http://www.mcs.anl.gov/~gregor/papers/manual-cog2.pdf
http://www.mcs.anl.gov/~gregor/papers/manual-cog2.pdf

[15] RSA Laboratories, “PKCS Overview,” Webpage. [On-
line]. Available: http://www.rsasecurity.com/rsalabs/
node.asp?id=2124

[16] W. Mao,Modern Cryptography Theory and Practice.
Prentice Hall, 2004.

7

http://www.rsasecurity.com/rsalabs/node.asp?id=2124
http://www.rsasecurity.com/rsalabs/node.asp?id=2124

	. Introduction
	. Requirements
	. Design
	. Implementation
	. Conclusion

