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Abstract—In recent years the power of Grid computing has
grown exponentially through the development of advanced mid-
dleware systems. While usage has increased, the penetration of
Grid computing in the scientific community has been less than
expected by some. This is due to a steep learning curve and
high entry barrier that limit the use of Grid computing and
advanced cyberinfrastructure. In order for the scientists to focus
on actual scientific tasks, specialized tools and services need to
be developed to ease the integration of complex middleware. Our
solution is Cyberaide Shell, an advanced but simple to use system
shell which provides access to the powerful cyberinfrastructure
available today.

Cyberaide Shell provides a dynamic interface that allows
access to complex cyberinfrastructure in an easy and intuitive
fashion on an ad-hoc basis. This is accomplished by abstracting
the complexities of resource, task, and application management
through a scriptable command line interface. Through a service
integration mechanism, the shell’s functionality is exposed to
a wide variety of frameworks and programming languages.
Cyberaide Shell includes specialized experiment management and
workflow commands that, with the scriptable nature of a shell,
provide a set of services which where previously unavailable.
The usability of Cyberaide Shell is demonstrated using a Water
Threat Management application deployed on the TeraGrid.

I. INTRODUCTION

Grid computing is a complex and diverse field where
different technologies are constructed and combined to enable
the use of distributed resources under administratively separate
domains. Applications of Grid computing include access to
large-scale computing power and storage resources harnessed
from otherwise unconnected resources in an efficient and
organized manner. This is commonly facilitated by middleware
solutions such as the Globus Toolkit [1] and g-Lite [2].
While sophisticated middleware solutions are necessary for
today’s Grid computing, they add complexities to its use and
seldom take into account user preferences. Thus, scientists and
researchers are finding the development of applications on the
Grid can be quite time consuming. We believe this is one of
the reasons why Grids have not yet been as widespread as one
would have hoped for.

The biggest problem with today’s Grid middleware is that it
does not support the infrastructure related concepts projected
by Grid computing. Instead, the Grid computing environment
leaves it up to a dedicated research team to develop custom
tools to fulfill this need. The absence of such teams in smaller
projects requires the scientist to become an expert in Grid
computing. In a typical Grid environment there are obstacles

that need to be dealt with. This includes task management,
job scheduling, resource monitoring, and organization manage-
ment. Many of these utilities could be abstracted to simplify
the scientific user’s experience and enable them to perform
their research in a more efficient and productive environment.
However, it is important that the abstraction doesn’t interfere
with the Grid infrastructure’s overall usability.

When we go back to the roots of job coordination we find
abstractions and tools that have been accepted for decades
and are familiar to most scientists. One of these tools is a
shell. A regular shell can support a variety Grid computing
as tools such as Condor [3], the Globus Toolkit, and the
CoG Kit [4] as they already provide command line interfaces
that can be reused within any shell. However, a regular
UNIX shell typically does not support the common tools of
a distributed environment projected by Grids and advanced
cyberinfrastructure.

Historically, a shell provides a layer of abstraction for a
complicated system (such as an Operating System) to make
it’s use streamlined and efficient. The concept of the Cyberaide
Shell is to provide this same level of abstraction to Grids and
advanced cyberinfrastructure. Thus, Cyberaide Shell is a novel
combination of old and new technologies so it is important
to simultaneously investigate existing shells and current grid
environments together.

The goal of this paper is to describe the current efforts of
Cyberaide Shell. First we present some related research in
Section 2, followed by our architectural design in section 3.
In section 4 we describe our implementation and we give an
example use case in Section 5.

II. RELATED RESEARCH AND TECHNOLOGIES

To design such a system as described, we need to first
understand the basics of shells, workflows, grids and advanced
cyberinfrastructure.

A. Shells

One of the oldest and most common tools in computing is a
shell [5]. Typically, a shell is used to abstract the details of an
operating system kernel by providing a unified interface and
a set of tools to the system’s users. By doing so, a shield is
created for the user to protect them from the intricate details
of the underlying system.



Shells are commonly found as part of open source develop-
ments. Most notably SourceForge [6] has almost 600 system
related shells. There are noteworthy features in some of these
shells that are not part of the more common system related
shell in dominant use today. These features include distributed
execution, object oriented shell manipulation and semantic
parsing. Some of the more elementary feature comparisons
for a small subset can be found at [7].

There are a number of shells in use today. We classify
these shells as system shells, distributed shells, or scripting
shells. System shells, typically found in a Unix environment
place emphasis on job control and file system management
in a Unix like environment, distributed computing shells
have extensions to execute commands easily on distributed
resources, and language shells emphasize the use of a given
scripting language as part of the scripting abilities.

1) System Shells: Current computer systems owe their
success of usability to the original UNIX system shells. At
the time, sh and csh were innovative and new ideas which
made computing systems easier to use for both developers and
non- developers. Many technologies today are based on shells,
especially in the UNIX and Linux environments. Microsoft
Windows owes much of its success on the original DOS shell
of the 1980’s that is now continued in the PowerShell.

A system shell provides a scripting framework to automate
tasks in a coordinated way. A user can automate a number of
tasks by writing an initial script and then using and modifying
the code as needed.

2) Distributed Computing, Grid, Cloud, Cluster Shells:
Traditional system shells were developed for use on a single
system. Over time, some shells have been enhanced to execute
jobs on a variety of remote systems. The frameworks to
address this distributed execution are numerous, so we focus
only on listing a few examples and highlighting features that
are important to the design of Cyberaide Shell.

In order to easily utilize many resources, distributed com-
puting and cluster shells provide functionality to execute jobs
simultaneously on many machines. This allows a user to
specify a single command, but use all of the machines in
parallel. This is beneficial not only for an end-user but also
for the deployment of a larger compute system.

There have been a number of efforts to try to simplify Grid
computing for the scientific community. Early on, the Globus
Toolkit and the Java CoG Kit provided a set of command
line tools that could be used to manage jobs in a Globus-
enableds Grid. This includes commands for authentication,
file transfer, and job submission. In the CoG Kit we even
developed a python-based Cyberaide Shell prototype, which
we will replace with the effort described in this paper.

One of the important efforts in making Grids more ac-
cessible is the introduction of an ssh client that uses the
Grid Security Infrastructure (GSI) as part of the authentication
process [8]. However, it is not a shell and thus limited in its
scope. The benefit of GSISSH is its ability to authenticate to
a remote machine using GSI.

A GridShell developed by Texas Advanced Computing

Center (TACC) [9], [10] is as an extension to the tcsh and
bash shells. It supports access to elementary Grid commands
within the shell and integrates it into the shell language. For
example, the use of the file redirection syntax allows users to
access GridFTP servers. To execute a command on a remote
machine the keyword on followed by the machine name can
be used to execute a job on another Grid resource.

One of the major deployments of Grid technologies is the
TeraGrid [11], which is sponsored by the National Science
Foundation (NSF). While the TeraGrid has a portal that
provides project and resource management tools to the user,
actual interactive job management on the TeraGrid remains
an unsolved task. TeraGrid provides access to all of the tools
listed in this section. In addition, it allows the access to remote
machines through a terminal using mindterm [12] integrated
into the portal.

Typically, a portal is orthogonal to a shell, while providing
an easy method of viewing the Grid at a glance and a large
array of information in an easy to use system. As such, ad-
hoc scripting is often not supported easily. Instead users may
achieve this by using sophisticated workflow frameworks that
have a steep learning curve.

A new term used in the community is Cloud Computing.
In cloud implementations, services are available to the user
through predefined APIs and Web services and hide all under-
lying hardware technologies. This is typically accomplished
by the use of virtualization [13] and exposing functionality as
services. A number of tools have been developed to access
clouds from the command line or from scripting languages,
such as the Amazon EC2 AMI tools [14].

3) Scripting Language Shells: A wide variety of shell
interpreters exist in scripting languages such as Python, Ruby,
and Groovy. These languages feature an interpreter by default
and can function as basic system shells if used correctly. Third
party shells such as iPython [15] and IRB [16] also exist which
use these languages to provide an easier interface and added
support for customization through objects.

B. Workflows

While relatively little has been pioneered in the connection
between Grids and shells, there is a wide array of research
in constructing Workflows in Grid environments [17]. These
workflow systems are overlayed on top of existing grid mid-
dleware to streamline execution of parallel and distributed
processes. One such example is Karajan [18], [19] workflow
engine which is effective at orchestrating jobs in a complex
Grid environment. While such workflow tools are effective,
there is a need to easily define and automate workflow systems.

III. DESIGN

The Cyberaide Shell contains four high-level design compo-
nents that make it unique when compared with any other cur-
rent technology. The four components are object management,
cyberinfrastructure backends, command line interpreters, and
services.



A. Design Overview

The design of Cyberaide Shell contains components to
enable access a variety of new cyberinfrastructure, Grid, and
Cloud toolkits and services. This includes Globus, Condor,
BOINC, Amazon EC2, and the CoG Kit. We have designed
an abstraction framework that will make it possible to integrate
these and other backends for future cyberinfrastructure needs.

The advanced Cyberaide Shell functionality is exposed as
a service. This allows other computing frameworks to easily
access our shell through independent entry point via another
tool or even another programming language. Naturally, an API
based binding can also be provided through our abstractions.
However, we envision that most interactions will be conducted
through secure Web services.

Users and high-level applications interface with Cyberaide
Shell through its standardized command line interface (CLI).
This interface allows users to have an easy way to manage
jobs, resources, and users. In reality, Cyberaide Shell is an
application that launches separate sub-applications. Each sub-
application or command is accompanied by a manual page that
accurately outlines its usage. Using this CLI in a consistent
manner allows for detailed scripts to be executed, which
further enriches the end user’s experience. These scripts can
contain workflows for one or more experiments a user may
want to execute. Using experiment management commands
a fully functional workflow system could be assembled with
ease.

By using a standardized command set, we can make Cy-
beraide Shell easily extendible in two ways. First, we enable
developers to create their own shell applications to provide
specialized functionality to scientists where a general shell
would leave off. Second, it enables scripts to be created that
can automate complex tasks with ease. These two components
are key for cyberinfrastructure developers to leverage when
creating their own scientific applications.

B. Architectural Design

Based on the high-level design goals we want to interact
with the Cyberaide Shell in a variety of ways. To support
this, we follow a layered architectural service and component
based design where different services interact with each other
in predefined channels. These services are provided through
a number of components. An overview of this architectural
design can be seen in Figure 1.

1) Resource Layer: Cyberaide Shell is designed to use a
variety of resources through different service abstractions. This
may include a wide variety of Grid and Cloud infrastructure.
However in this paper we focus mainly on the integration with
the TeraGrid, which uses the Globus Toolkit and simple remote
execution using SSH. In addition Cyberaide Shell is able to
utilize Web 2.0 services such as calendars, address books, and
other services provided for example by Google, and Facebook.

2) Shell Implementation Layer: Our shell is based on
a simple abstraction model that has proven to be useful
based on the lessons learned from the CoG Kit [20]. This
includes abstractions for job submissions, file transfers, and
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authentication. In addition to these traditional abstractions we
have introduced a new set of abstractions that are related to
managing people of a virtual organization and jobs that are
based on real time requirements that can be easily incorporated
as part of a calendar system.

Naturally, the Cyberaide Shell includes a command line
interface through which all commands are controlled and
managed. We defined literate command objects to interface
between the various components and provide a convenient
mechanism of access even from other languages or frame-
works.

3) Shell Service Layer: An important feature of the Cy-
beraide Shell is its ability to be used within a Web service.
This allows the shell functionality to be also exposed to other
services and application interfaces using this service. Thus a
very flexible way exists to integrate Cyberaide Shell through
a service-oriented architecture. This includes the possibility
of accessing Web 2.0 services to significantly enhance the
functionality of the shell and make these services accessible
easily through a command line or other interface that is
provided as part of the Cyberaide Shell.

4) Language Layer: The application interface and the ser-
vice provide an ideal way to expose the functionality of the
shell and its internal components through language bindings.
Thus it is possible to create a direct interface for new target
languages to a Cyberaide Shell Web service by providing a
useful application interface. This can be implemented in many
different languages such as Java, Python, Ruby, Matlab, C#,
or others.



5) User Layer: Through the interplay of components and
services our design enables interacting with the command shell
in a variety of ways. This includes an interactive command
line interface used by the end users, a Web service interface
used by portal developers, and an application programming
interface used by developers to interface directly with the
command line shell.

IV. IMPLEMENTATION

In this section we present a prototype implementation of the
design outlined above. The current state is a functioning Cy-
beraide Shell with the main components in place. Additional
features such as language bindings and additional cyberinfras-
tructure frameworks are currently under development. We will
focus only on the features that currently exist in Cyberaide
Shell.

A. Command Line Interface

The Command Line Interface (CLI) is the central com-
ponent of Cyberaide Shell. All incoming commands, either
directly through the CLI or through the Cyberaide Shell Web
service are interpreted through the CLI. Cyberaide Shell is
built using Apache CLI 1.1 [21].

We have implemented enhancements to Apache CLI that
make it easier to develop and manipulate command lines from
within our code. This includes the definition of a framework
that requires the creation of short and long command line
arguments as well as a mandatory documentation for all
commands.

Apache CLI is based on three stages of command line
processing: (a) definition, (b)parsing, and (c) interrogation.
The definition stage is based on a convenient Java API that
allows us to define options and parameters to commands. The
parsing stage takes a given command and splits it apart to
gather precise information about the options and parameters
specified. The interrogation stage is defined by the programmer
and allows querying options and parameters to execute the
appropriate actions.

We have provided an additional stage named the registration
stage allowing commands to be loaded at runtime. This
enables us to load in commands at startup via a specification
in the cyberaide properties file, or during the execution of the
CLI. Cyberaide Shell users are able to integrate commands
created by others that are either distributed with cyberaide, or
placed into a runtime repository.

Similar to other UNIX environments, Cyberaide Shell uses
the notion of a PATH variable that allows users to place scripts
in a directory accessible as part of the PATH. While using these
features, we have defined a number of basic commands that
simplify the use of the CLI. These commands include man,
history, cat, alias, sysinfo, and exit. Furthermore, we provide
a shell path to the underlying operating system within another
shell’s customary ! character proceeding the command.

A key component of Cyberaide Shell is the explicit use
of nested shells, or a shell-within-a-shell. This means that
each command has its own shell interpreter and that Cyberaide

Shell CLI handles the execution of subordinate CLI’s. These
CLI instances are dynamically loaded upon startup of the shell.
This means that the implementation of dynamic loading and
the creation of a nested shell is a straightforward extension.

Thus, within the main shell the user can specify either the
full command with arguments, or just the command name.
If a full command plus arguments are given, the CLI will
interrogate the options and will execute in the way specified.
If just the command name is given, a new shell for that
command will open within the main shell, allowing users
to issue sequentially different parameters while not leaving
the context of the command. This can lead to a significant
reduction in scripting for repetitive commands. Users will be
familiar with the following example as it is similar to most
other shells:

cybershell> set add -f parameter_set_a
cybershell> set add -f parameter_set_b
cybershell> set submit

Users can also take advantage of the nested shell feature:

cybershell> set
set> add -f parameter_set_a
set> add -f parameter_set_b
set> submit
set> return
cybershell>

In the first case execution is achieved by starting two sepa-
rate set commands with an internal quit that is not visualized to
the user. In the second case the contents of the super command
are preserved and multiple invocations of the commands with
different parameters can be issued. This allows for advanced
users to write scripts that save both time and space, as well
as provide context between commands.

B. Task Management and Job Execution

The current prototype of Cyberaide Shell supports two
resource types for remote job execution, performed by the
submit and experiment commands. The submit command sim-
ply takes in the appropriate commands to execute a given
task on a specified resource. If no resource is specified a
default resource is used. A submit is directly mapped to
the resource’s middleware controls to launch a new job. The
execution command includes a variety of sub-commands using
the nested shell approach. These subcommands include create,
add, dependency and submit. They allow for a workflow to
be easily created by the user and all resource management is
handled within Cyberaide Shell itself. All serial and parallel
tasks are implicitly defined by the nature of the workflow itself.
An example of this experiment tool is shown in Section V.

We have implemented TeraGrid-based job submissions as
part of our prototype. This is done using a combination of
tools that are part of the Globus Toolkit. Login is managed
through MyProxy [22], a x509 credential management service
that works with the Grid Security Infrastructure (GSI). Job
submission and monitoring is performed by the globusrun-ws



command, which uses the WS-GRAM protocol to submit jobs
to a variety of batch queuing systems, such as Condor or PBS.
The other job execution resource in the current prototype is
through SSH. The SSH extension logs into a remote computer
and spawns off a job as a new process. Monitoring the status
and getting the results are done by separate login attempts as
requested by the system.

In the design of Cyberaide Shell the difference between a
task and a job are highlighted. A task is defined as an event
that needs to take place. A Job is defined as an event that is
scheduled to execute or is currently executing on a specific
resource. Simply put, a job is a task mapped to a resource.
Cyberaide Shell uses a simple state model to represent a jobs
status:

• Queued A task has been submitted, however it has not
been assigned to a specific resource.

• Pending A job has been assigned to a specific resource
and awaiting execution

• Running A job is currently executing on a resource
• Finished A job has finished its execution and is returning

to the user
• Done A job has finished execution and all results have

been received by the user
• Failed A job has failed for any reason and cannot

execute.

C. Service Framework

In order to enable Cyberaide Shell in higher-level services
such as programming languages, APIs, or Web Portals, we use
a mediator Web service to provide remote connectivity to the
underlying CLI. Thus, the shell functionality can be exposed
to a variety of frameworks through the mediator service. This
includes also a Cyberaide JavaScript interface which we are
also developing [23]. Hence, the creation of a Cyberaide Portal
based on JavaScript that runs within a browser and remotely
contacts Cyberaide Shell is possible.

The Cyberaide mediator Web service is implemented using
the Apache CXF platform [24]. CXF uses the Jetty HTTP
server [25] as a platform for hosting the Web services. Jetty is
designed entirely in Java with Java-specific APIs. These APIs
enable standalone Web service applications to be deployed
automatically. CXF is compliant with the JAX-WS standard
and implements many of the Web Service Interoperability
(WSI) standards including WS-Addressing, WS-Policy, WS-
ReliableMessaging, and WS-Security. Cyberaide Shell makes
special use of the WS-Security standard, which uses SOAP-
level encryption to ensure endpoint-to-endpoint security.

The current web services implementation works by passing
Cyberaide Shell scripts in realtime via the mediator to a
backend service. The following commands make this possible:

• submit() – Loads the script into Cyberaide Shell.
• run() – Starts the script loaded into the Web service.
• kill() – Unconditionally stops the script currently running.
• getStatus() – Queries for the current state of the script.
• getOutput() – Returns the output generated by the script

• getError() –Returns any erroneous output generated by
the script

The Web service is deployed as an executable jar. After
starting the Web service, the WSDL is published and the web
service itself is ready to process requests. Clients connecting
need to also implement the WS-Security standard defined by
WSI over the secure HTTPS protocol and authenticate using
an X.509 certificate. Authentication can be customized through
local account management.

V. USE CASE

We illustrate the usability of Cyberaide Shell, by applying
it to a scientific application that is used for water threat
management [?]. The problem is to determine the location of
sensors in a water distribution system in order to minimize the
reaction time in an emergency situation determined by sensory
data.

To determine an optimal placement of the sensors, EPANET
[26], a widely used water distribution network hydraulic
and water quality modeling tool, is used to simulate our
placements. This program uses known pipe network topology,
link/node physical characteristics, and network boundary and
initial conditions, to simulate the space-time variation of
flows, pressures, and water quality concentrations using well-
established principles [27]. The EPANET engine is available
as a C language library with a well-defined API [28]. EPANET
is made malleable through adaptive control by the simulation
controller.

However, EPANET can only simulate one scenario within a
given execution. A parallel version of the EPANET application
exists [29] to simulate multiple EPANET instances at once. It
includes a wrapper interface to add in multiple sources and
utilizes MPI [30] to enable concurrent simulations.

The following Cyberaide Shell script describes a water
threat management simulation running multiple instances in
coordination.

cybershell> experiment
experiment> create watersimulation
experiment> add -nodes cyberaide.teragrid
experiment> add -task -f cyberaide.water
experiment> create -workflow simulation1
experiment> dependency init calc_1
experiment> dependency init calc_2
experiment> dependency init calc_3
experiment> dependency calc_1 gather
experiment> dependency calc_2 gather
experiment> dependency calc_3 gather
experiment> submit -workflow simulation1

Fist, an experiment is created named watersimulation within
the Cyberaide Shell. Next, all available nodes listed in the
cyberaide.teragrid object are added to the resource pool and
all tasks within the cyberaide.water object are loaded into
the system. The water task object contains jobs called calc1

to calc3, and init the initial job to obtain the input. The
calculation jobs contain parallel EPANET jobs, and the task



gather aggregates the results from the different runs. Finally,
the workflow is submitted and all tasks are scheduled on all
available TeraGrid resources.

This example illustrates how creating workflows using Cy-
beraide Shell becomes a trivial process. This is important for
many scientists, as they are able to quickly generate workflow
systems without employing a programmer. A portal system
such as the one described in the Implementation section can
provide a graphical workflow tool to further simplify workflow
creation. In contrast to other workflow systems however,
interaction with resources and tasks can be done dynamically
allowing steering of the workflow at runtime.

VI. CONCLUSION

Cyberaide Shell is designed to help overcome the challenges
scientists face when using advanced cyberinfrastructure in
today’s complex computing environment. This is accomplished
by combining the usability of shells with the power of grids
and advanced cyberinfrastructure. Cyberaide Shell leverages
a variety of novel concepts such as experiment management
tools, extendible APIs using Web services, complex interaction
with TeraGrid resources, and a new CLI that is familiar to
most users yet easily extendible by advanced developers. A
working prototype has been created that outlines the potential
of Cyberaide Shell and proves the plausibility of our design.
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