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Abstract—With the advent of Cloud computing, large-scale
virtualized compute and data centers are becoming common
in the computing industry. These distributed systems leverage
commodity server hardware in mass quantity, similar in theory to
many of the fastest Supercomputers in existence today. However
these systems can consume a cities worth of power just to run
idle, and require equally massive cooling systems to keep the
servers within normal operating temperatures. This produces
CO2 emissions and significantly contributes to the growing
environmental issue of Global Warming. Green computing, a
new trend for high-end computing, attempts to alleviate this
problem by delivering both high performance and reduced power
consumption, effectively maximizing total system efficiency.

This paper focuses on scheduling virtual machines in a
compute cluster to reduce power consumption via the technique
of Dynamic Voltage Frequency Scaling (DVFS). Specifically, we
present the design and implementation of an efficient scheduling
algorithm to allocate virtual machines in a DVFS-enabled cluster
by dynamically scaling the supplied voltages. The algorithm is
studied via simulation and implementation in a multi-core cluster.
Test results and performance discussion justify the design and
implementation of the scheduling algorithm.

Keywords - Dynamic Voltage and Frequency Scaling; Cluster
Computing; Virtual machine; Scheduling

I. INTRODUCTION

Modern high-end computing can provide high performance
computing solutions for scientific and engineering applica-
tions. However, today’s high performance computers consume
tremendous amounts of energy. For example, a 360-Tflops
supercomputer (such as IBM Blue Gene/L) with conventional
processors requires 20 MW to operate, which is approximately
equal to the sum of 22,000 US households power consumption
[1], [2]. Furthermore, it is estimated that servers consume 0.5
percent of the world’s total electricity usage [3], which if
current demand continues, is projected to quadruple by 2020.

Unfortunately, the computing system temperature may in-
crease rapidly due to inefficient cooling equipments. Based
on Arrhenius time-to-fail model [4], every 10◦C increase of
temperature leads to a doubling of the system failure rate.
Hence, it is obvious that power-aware resource management
for high end computing is highly desirable. Dynamic voltage
and frequency scaling (DVFS) [5] is an efficient technology to
control the processor power consumption. With aide of support
technologies such as Intel SpeedStep and AMD PowerNow!,
modern processors can be operated in several frequencies with
different supply voltages.

Virtual machine technology is adopted for high end com-
puting to achieve efficient computing resource usage. Some
technical work has reported that virtual machine could be
used for scientific applications with tolerable performance
punishment [6], [7]. A virtual machine (VM) is a software
based machine emulation technique to provide a desirable, on-
demand computing environments for users. As documented in
[8], [6], [9], virtual machine provisioning is a popular part of
cluster deployments. The normal process of a cluster operating
with the use of virtual machines for executing jobs is shown
as follows:

1) A compute cluster provides various virtual machine
templates.

2) When a job arrives at the cluster, the cluster scheduler
allocates the job with a preconfigured virtual machine
then starts it on proper compute nodes.

3) The job is executed in the virtual machine.
4) After the job is executed, the virtual machine is shut-

down.

Various scheduling algorithms such as the round-robin,
backing filling, and gang scheduling algorithms [10] can
be implemented in the virtual machine deployment process.
In this paper, we focus on implementing a power-aware
scheduling algorithm for high performance cluster computing
where virtual machines are dynamically provided for executing
cluster jobs. We propose a new cluster scheduling algorithm
to minimize the processor power dissipating by scaling down
processor frequencies without drastically increasing the overall
virtual machine execution time. This algorithm is implemented
in a simulator for DFVS-enabled clusters and an experimental
multi-core cluster. Performance evaluation and discussion are
also provided. Our aim is for the scheduling algorithm to be
deployed in various compute centers such as clusters within
Grid Computing deployments. Normally computational Grid
infrastructure contains multiple compute sites, which are com-
posed a number of high performance clusters. These clusters
provide multiple virtual machine templates for incoming jobs.

This paper is organized as follows. Section II introduces
related work on power-aware cluster computing and virtual
machine concept. Section III gives an sample usage of cluster
computing with virtual machines. Section IV presents a formal
model for the cluster computing with virtual machines and
Section IV-D formally defines the problem of scheduling
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virtual machines for a DVFS-enabled cluster. The scheduling
algorithm is specified in detail in Section V. Section VI
renders a real implementation of the scheduling algorithm and
evaluates a multi-core cluster system. Section VII discusses a
simulator for the scheduling algorithm, the simulation results
and performance evaluation of the scheduling algorithm. Fi-
nally Section VIII concludes the paper and point out future
work.

II. RELATED WORK

This paper provides a novel power-aware scheduling al-
gorithm for virtual machines in clusters. Therefore, related
work in both frequency and voltage scaling, cluster computing,
and virtual machine technologies need to be addressed and
evaluated.

A. Power-Aware Cluster Computing

Dynamic voltage and frequency scaling (DVFS) is an effec-
tive technique to reduce processor power dissipation [11], [12].
By lowering processor clock speed and supply voltage during
both idle times and compute intensive application phases,
large reductions in power consumption can be achieved with
modest performance loss. High-end computing communities,
for example, cluster computing and supercomputing in large
data centers, have applied DVFS techniques to reduce power
consumption and achieve high reliability and availability [13],
[14], [15], [16]. A power-aware cluster is defined as a compute
cluster where compute nodes support multiple power/perfor-
mance modes, for example, processors with frequencies that
can be turned up or down. Current technologies exist within
the CPU market such as Intel’s SpeedStep and AMD’s Pow-
erNow! technologies. These dynamically raise and lower both
frequency and CPU voltage depending on system load using
ACPI P-states [17]. Popular DVFS-based software solutions
for high end computing include:

• A scientific application is modeled with DAG and the
critical path is identified in for the application. Then it
is possible to reduce the processor supply voltage during
non-critical execution of tasks [18].

• Parallel applications are identified with different exe-
cution phase, in contrast to compiler or other system
level software schedules proper processor voltage and
frequency for different execution phases [19].

• Some implementations [20] build an online, performance-
driven runtime system to automatically scale processor
voltages.

The first two methods normally require prior knowledge of
applications with aides benchmarking and profiling. The third
method is based on a runtime algorithm and schedule jobs
dynamically with no prior information of running applications.

B. Virtual Machine-Based Computing

A VM is a software artifact that executes other software in
the same manner as the machine for which the software is
developed and executed [21]. This is typically achieved using
a hypervisor or Virtual Machine Monitor (VMM) in between

the harware level and the operating system level to abstract the
hardware and enable the use of multiple, concurent operating
systems. Figure 1 shows a host resource that provides two
virtual machines via the VMM support software.
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Fig. 1. Virtual Machine Concept

In general, cluster computing can benefit from virtual ma-
chines in the following aspects [22].

• On-demand creation and customization: Virtual machine
administrators can create and customize virtual machines,
which can provide specific required resource provisioning
for users e.g., operating system, memory, storage, etc.

• Legacy system support: Virtual machines can support
both legacy software and entire legacy computing en-
vironments, including hardware, operating system, and
applications, by on-demand creation of user-preferred
virtual machines.

• Administration privileges and site autonomy: Users of
virtual machines could obtain administrative privileges if
each user of the hosting resources is allocated a virtual
machine. This scenario alleviates the task of system
administrator and gives flexibility for application users.
As virtual machine can be started, shutdown and migrated
dynamically, it is therefore easier to manage virtual
machines in a computing center than a large amount of
jobs. The computing center that provides virtual machine
also can keep the site autonomy. For example, computing
center is free from supporting software licenses to users.

• Performance isolation: Virtual machines can guarantee
the performance for users and applications. Applications
executed in virtual machines would not find the per-
formance perturbation, which is invoked by simultane-
ous usage of multiple applications on traditional multi-
programmed computers.

The next section brings a real example of virtual machine
based cluster computing for high energy physics applications,
which is a killer application for computational Grids.
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III. SAMPLE USAGE SCENARIO

This section provides a typical cluster (IKEP cluster) opera-
tion scenario [8], [6] of virtual machines based on the WLCG
applications, for example, in the computer center of University
Karlsruhe. The Worldwide LHC Computing Grid (WLCG)
[23] is a global collaboration of more than 2000 physicists
of 182 institutes of 38 nations. One example of a typical
institute cluster is the IEKP Linux cluster, which consists of 40
compute nodes (x86-64 based architecture), 5 file servers with
a total capacity of 20 TB and 6 portal machines for software
development. The situation at the IEKP is also typical because
it serves three different groups which work on different large-
scale international projects (CDF [24], CMS [25] and AMS
[26]), each having different software and different comput-
ing requirements. The IKEP cluster has to balance different
requirements of software/hardware configuration for various
jobs from different projects. Even if an agreement is achieved
by multiple projects, it is still hard to configure computing
environments for High Energy Physics (HEP) computing. For
example, tens of hours are required to compile, install and
configure CMS computing environments.
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Fig. 2. Sample Usage of IKEP Cluster

Therefore, virtual machines are deployed to execute incom-
ing jobs. There is a file server to provide virtual machine
templates. All typical jobs from WLCG, CDF, CMS, and AMS
are preconfigured in virtual machine templates. When a job
arrives at the head node of the IKEP cluster, a correspondent
virtual machine is dynamically started on certain compute
node at IKEP cluster to execute the job (see Figure 2).

With the concrete background of virtual machine based
cluster computing and the DVFS technology, next section
formally define the system models and research issues of
scheduling a DVFS-enabled cluster.

IV. SYSTEM MODEL

This section provides the formal description for a DVFS-
enabled cluster, virtual machine jobs, and performance models,
which are employed as basis of the formal problem definition
in Section IV-D and the scheduling algorithm in Section V.

A. Performance Model

A DVFS-enabled cluster contains multiple compute nodes.
It is assumed that each compute node can be operated in mul-

tiple voltage with different frequencies. We define a operating
point opj as follows:

opj = (vop, sop) (1)

Where,
opj is the j-th operating point;
vop is the processor operating voltage of opj ;
sop is the processor operating frequency of opj ;
vmin = op1.v

op < op2.v
op < ... < opJ .v

op = vmax;
smin = op1.s

op < op2.s
op < ... < opJ .s

op = smax;
1 ≤ j ≤ J , J is the total number of operating point.

Therefore a set of operating points for a DVFS-enabled
processor, OP , is defined as:

OP =
⋃

1≤j≤J

{opj} (2)

The energy consumption of modern processor, E, can
be divided into two parts, dynamic energy consumption
Edynamic, and static energy consumption Estatic [27]:

E = Edynamic + Estatic (3)

According to [28], the dynamic power consumption Pdynamic

is computed as follows:

Pdynamic = ACv2s (4)

Where,
A is the percentage of active gates;
C is the total capacitance load;
v is the supply voltage;
s is the processor frequency.

Then, we have:

Edynamic =
∑
t

Pdynamic · 4t (5)

where,
Pdynamic is the dynamic power;
4t is a time period.

Estatic is normally proportional to Edynamic [29], [30]:

Estatic ∝ Edynamic (6)

Therefore the whole power consumption could be estimated
as follows [27]:

E ∝ Edyanmic (7)

In conclusion, we have the performance model:

E ∝
∑
t

v2 · s · 4t (8)

Where,
v is the processor operating voltage during 4t;
s is the processor operating frequency during 4t;
4t is a time period.
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B. Compute Cluster Model

A commodity cluster typically contains multiple compute
nodes, which are formally termed as Processing Elements
(PEs) in a general parallel computing context. In this paper
we focus on the study of homogeneous clusters: all PEs inside
the cluster have the same processor speed or provide identical
processing performance in term of MIPS (Million Instruction
Per Second). A homogeneous cluster, C, therefore can be
formally described as follows.

The k-th PE is defined as

pek = (oppe, vpe, spe) (9)

Where,
pek is the k-th PE inside a cluster C;
oppe is the operating point of pek; vpe is the processor
operating voltage of pek;
spe is the processor operating frequency of pek;
1 ≤ k ≤ K, K is the total number of PEs.

Hence, a cluster C is defined by its set of processing
elements

C =
⋃

1≤k≤K

{pek} (10)

C. Virtual Machine Model

Normally users submit virtual machine requests to popular
virtual machine management systems with QoS requirements,
such as required virtual processor speed, memory size, storage
size, operating system and other hardware/software environ-
ments.In the context of power-aware scheduling, we model a
virtual machine in terms of required processor frequency and
required execution time. Each virtual machine vmi is defined
as

vmi = (sr,∆t, tr) (11)

where,
vmi is the i-th virtual machine to be scheduled;
sr is the required processor speed for vmi;
∆t is the required execution time of vmi;
tr is the required starting time of vmi;
1 ≤ i ≤ I , I is the total number of incoming virtual machines.

Hence, the set of all virtual machines is defined by

VM =
⋃

1≤i≤I

{vmi} (12)

To simplify our model, we assume in this paper that the
scheduling virtual machines on PEs is conducted at a prede-
fined time interval. In each iteration, a number of incoming
virtual machines will be scheduled. Therefore, the virtual
machine required starting time is defined as certain index of
schedule round.

D. Virtual Machine Mapping

To schedule a virtual machine to a PE is a function, f ,
which maps virtual machine to certain PE operated in certain
operating point:

f : (vmi)→ (pek.s
pe, pek.v

pe), vmi ∈ VM, pek ∈ C (13)

Now we define the research issue of power-aware schedul-
ing virtual machines in DVFS-enabled cluster as follows:

Given a set of virtual machines VM and a cluster
C defined above, find an optimal schedule, f , which
minimizes the power consumption cluster C:

Emin = min

N∑
k=1

Ek (14)

where, Ek is the power consumption of the k-th PE
in the cluster.

V. POWER AWARE CLUSTER SCHEDULING ALGORITHM
FOR VIRTUAL MACHINES

A. Rules of Thumb for Scheduling

There are a few rules of thumb to build a scheduling
algorithm which schedules virtual machines in a cluster while
minimizing the power consumption:

1) Minimize the processor supply voltage by scaling down
the processor frequency.

2) Schedule virtual machines to PEs with low voltages and
try not to scale PE to high voltages.

Based on the performance model defined above, Rule 1 is
obvious since the power consumption could be reduced when
supplied voltages are minimized. Then Rule 2 is deviated: to
schedule virtual machines to PEs with low voltages and try not
to operate PEs with high voltages to support virtual machines.

B. Scheduling Algorithm

Algorithm 1 Scheduling VMs on DVFS-enable cluster

1: F1 = F2... = FJ = ∅

2: FOR k = 1 TO K DO
3: pek.s

pe = pek.s
a = smin

pek.v
pe = pek.v

a = smin

4: F1 = F1 ∪ {pek}
5: pek.∇s = smax

6: END FOR

7: t = 0

8: WHILE (¬ finished) DO
9: reduce current power profiles with Algorithm 3
10: schedule the set of incoming virtual machine requests
with Algorithm 2
11: t = t+ INTERVAL
12: END WHILE

This sub-section presents scheduling algorithms for virtual
machines in a DVFS-enabled cluster. As shown in Figure 3,
incoming virtual machine requests arrive at the cluster and are
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Fig. 3. Working scenario of a DVFS-enabled cluster scheduling

sorted in a queue. Algorithm 1 shows the scheduling algorithm
for virtual machines in a DVFS-enabled cluster. A scheduling
algorithm runs as a daemon in a cluster with a predefined
schedule interval, INTERVAL. During the period of scheduling
interval, incoming virtual machines arrive at the scheduler and
will be scheduled at the next schedule round.Fj , 1 ≤ j ≤ J is
a set of PEs that run in the operating point of opj . Firstly the
Algorithm 1 sets F1, F2, ..., FJ with empty sets (line 1). The
wall clock time, t, is initialized with 0. Algorithm 1 initializes
all PEs as follows (line 2 – 6):

• set all PEs running to the lowest voltage and processor
speed, smin;

• pek.s
a is defined as the available processor speed if

the processor does not change its operating point. Since
no virtual machine are initially scheduled, pek.s

a is
initialized with smin;

• pek.∇s is the available PE processor speed when pek is
operated to a highest level voltage from current voltage
level. pek.∇s is initialized with smax.

The scheduler iterates (line 8) with a predefined interval
value, INTERVAL, from starting time 0; In each scheduling
round, the scheduler firstly levels down power profiles of PEs.
The reason is that some virtual machines might finish its exe-
cution during the last scheduling round and some PEs are no
longer needed to be operated in high voltages. Then the power
profiles of some PEs are leveled down. Then the scheduler
places incoming virtual machines in the queue to PEs while
minimizing the power consumption with Algorithm 2. The
scheduler sleeps during the schedule period, INTERVAL.

Algorithm 2 is used to schedule incoming virtual machine
requests in a certain schedule round. The Algorithm 2 sorts
the incoming virtual machine requests in decreasing order of
required processing frequency, vmi.s

r, (line 1). Virtual ma-
chines with more resource requirement, vmi.s

r, are scheduled
in higher priorities. If there are unscheduled virtual machines
in the last schedule round, they are set in the highest priorities.

Lines 2 – 27 of Algorithm 2 describe the process to schedule
all the incoming virtual machine requests. For each virtual
machine vmi (line 2), the Algorithm 2 checks the PE operating

Algorithm 2 Scheduling VMs in an interval of Algorithm 1

1: Sort vmi ∈ VM in a decreasing order of their required
processor speed, vmi.s

r.
If there are some unscheduled virtual machines in the last
schedule round, put them in front of the virtual machine set
VM .

2: FOR i = 1 TO i ≤ I DO

3: FOR j = 1 TO j ≤ J DO
4: find pen ∈ Fj which has the max pen.s

a

5: IF pen.s
a ≥ vmi.s

r THEN
6: schedule vmi on pen
7: pen.s

a = pen.s
a − vmi.s

r

8: pen.∇s = pen.∇s− vmr
i

9: go to schedule vmi+1

10: END IF
11: END FOR

12: IF vmi is not scheduled THEN
13: find pen, which has the max pen.∇s
14: IF pen.∇s ≥ vmi.s

r THEN
15: j = pen.op

pe

16: move pen from Fj to Fk, opk is the lowest possible
voltage level that can schedule vmi, j < k ≤ J .
17: pen.s

pe = opk.s
op

18: pen.v
pe = opk.v

op

19: pen.op
pe = k

20: schedule vmi on pen
21: pen.s

a = pen.s
a + (opk.s

op − opj .s
op)− vmi.s

r

22: pen.∇s = pen.s
a + (smax − opk.s

op)− vmi.s
r

23: ELSE
24: vmi cannot be scheduled now;

it will be rescheduled at next turn.
25: END IF
26: END IF
27: END FOR

point set, OP , from low voltage level to high voltage level
(line 3). In the PE set with lowest possible voltage level, it
finds the PE with the maximum available processor speed,
pen.s

a. If this PE can fulfill the virtual machine requirement
, vmi.s

r, which is pen.s
a > vmi.s

r in line 5, vmi can be
scheduled on this PE, pen. This means current voltage profile
can schedule the incoming virtual machine vmi and no PE is
required to updated to a higher voltage.

If no PE can schedule the virtual machine vmi (line 12),
certain PE should be operated with higher voltage. The Algo-
rithm 2 selects the PE with the maximum potential processor
speed pen.∇s (line 13). If this PE can fulfill the requirement
of vmi (pen.∇s ≥ vmi.s

r), the Algorithm 2 then operates
this PE in a higher voltage level and schedules vmi on this
PE. In detail, the Algorithm 2 locates the lowest possible
voltage level k, which is higher than current voltage level j,
j < k ≤ J , and can provide enough processor speed for
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scheduling virtual machine vmi (line 14). Then Algorithm 2
schedules the virtual machine vmi on this PE pen and update
related information (line 14 – 23). If no PE can schedule the
virtual machine vmi even all PEs are operated in the highest
voltage level, the Algorithm 2 returns information that vmi

cannot be scheduled at current scheduling round.

Algorithm 3 Level down VM voltage profiles in a scheduling
round

1: FOR i = 1 to I DO
2: IF t− vmi.t

r ≥ vmi.∆t THEN
3: set vmi finished its execution on pen ∈ Fj

4: pen.s
a = pen.s

a + vmi.s
r

5: pen.∇s = pen.∇s + vmi.s
r

6: ENDIF

7: FOR j = J TO 2 DO
8: FOR pen ∈ Fj DO
9: level down pen to the operating point set Fk with
lowest possible voltage, 1 ≤ k < j, if opk.sop can support all
current virtual machines on pen
10: ENDFOR

After one schedule interval passes, some virtual machines
may have finished their execution. Therefore we have defined
Algorithm 3 to reduce a number of PE’s supply voltages if they
are not fully utilized. Algorithm 3 first checks whether virtual
machines have finished their execution (line 2). For those
PEs whose virtual machines have finished, the PE information
such as available processor speed, pen.sa, and and maximum
potential processor speed, pen.∇s, are updated (line 4, 5).
Then Algorithm 3 checks all PEs that run on high voltages,
and try to level down their operating points without affecting
virtual machines that run on them (line 9).

VI. PERFORMANCE EVALUATION IN A MULTICORE
CLUSTER

In order to validate our model and scheduling algorithm,
it is important to investigate the feasibility within a real
virtual machine cluster environment. This section discusses the
implementation of our scheduling algorithm as it is applied to
the OpenNebula project in a multi-core cluster. The following
experiments in this section help derive the parameters for our
simulation later in Section VII.

A. Implementation in OpenNebula

OpenNebula [31] is an open source distributed virtual
machine manager for dynamic allocation of virtual machines
in a resource pool, such as a compute cluster. Figure 4 shows
the software architecture of OpenNebula. The OpenNebula
core components accept user requirements via the OpenNebula
interface, and then place virtual machines in compute nodes
within the cluster.

From Figure 4 we see the OpenNebula scheduler is an inde-
pendent component that provides policies for virtual machine
placement. We choose the OpenNebula project because of this

Cluster 

Xen/KVM Plugins 

Scheduler 
OpenNebula 

core 

OpenNebula Interface 

Fig. 4. OpenNebula Software Architecture

compartmentalized design as it allows us to easily integrate our
custom scheduling algorithm. The default scheduler provides
a rank scheduling policy, which allocates compute resources
for virtual machines based on resource ranks. Scheduling
algorithms 1 - 3 are implemented by modifying the Open-
Nebula scheduler to reflect the desired results in Section V. As
such, we implement a loose interpretation of the algorithms to
provide a power-aware scheduling system for the OpenNebula
platform.

In order to accomplish this task, we must take advantage
of power management techniques at they hypervisor level.
For our implementation, we do this through the use of the
Xen Hypervisor. Xen, in specific version 3.3.4, allows for the
frequency to be adjusted based on available P-states within
the Dom0 Operating System using the xenpm command [32],
[33]. By default, Xen uses a performance governor which
keeps all CPU frequencies at the highest setting. For the
following experiments, we set the governor to userspace to
enable manual control of the frequencies as desired.

In order to test our design, we created a two-node ex-
perimental multi-core cluster consisting of Intel Nehalem
quad-core processors with Hyperthreading (providing 8 virtual
cores). The Nehalem-based CPUs allow for each core to op-
erate on its own independent P-state, thereby maximising the
frequency scaling flexibility. The compute nodes are installed
with Ubuntu Server 8.10 with Xen 3.3.4-unstable. The head
node consists of a Pentium 4 CPU installed with Ubuntu 8.10,
OpenNebula 1.2 and a NFS server to allow compute nodes
access to OpenNebula files and VM images.

B. Experiment and Test Results
For this experiment, we schedule all virtual machines to the

compute nodes and run the nBench [34] Linux Benchmark ver-
sion 2.2.3 to approximate the system performance. The nBench
application is an ideal choice as it is easily compiled in Linux,
combines a number of different mathematical applications to
evaluate performance, and it provides a comparable Integer
and Floating Point Index that can used to evaluate overall
system performance. The operating frequency of each core
can be set to 1.6Hz, 1.86Ghz, 2.13GHz, 2.53GHz, or 2.66Ghz,
giving the processor a frequency range of over 1.0 Ghz.

Figure 5 shows the largest observed power consumption
on a WattsUp power meter [?] during the execution of 2, 4,
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Fig. 5. Power consumption variations for a Intel Nehalem Quad-core
processor

and 8 VMs at each frequency while computing the nBench
Linux Benchmark. Here the benchmark effectively simulates a
CPU-intensive job running within a VM and provides valuable
information on the performance of each VM.

There are a number of things that can be observed from
Figure 5. First, while scheduling more virtual machines on
a node raises power consumption, it seems to consume far
less power than operating two separate nodes. Therefore, it
seems logical for a scheduler to run as many virtual machines
on a node as possible until all available virtual CPUs are
taken. Second, when the frequency is dynamically reduced,
the difference between running nBench on 2 VMs versus
8 VMs at 1.6GHz is only 28.3 Watts. When running the
benchmark at 2.668 GHz (the maximum frequency available),
this difference grows to 65.2 Watts, resulting in a larger VM
power consumption difference and also a larger overall power
consumption of 209 Watts.

It would be desirable to run each core at its lowest voltage
100% of the time to minimise power consumption, however
one must consider the performance impact of doing so. In
Figure 6 the average nBench Integer calculation Index is
illustrated with the number of VMs per node and operating
frequency dynamically varied for each test.

Fig. 6. Performance impact of varying the number of VMs and operating
frequency

Figure 6 illustrates how the performance degradation due

to operating frequency scaling is a linear relationship. This
eliminates any question of unexpected slowdowns in perfor-
mance when running at frequencies lower than the maximum,
such as 1.6GHz. Another interesting observation is the node’s
performance running 8 VMs. Due to Intel’s Hyperthreading
technology, the CPU reports as 8 virtual cores within the host
OS (Dom0) even though there are really only 4 cores per node.
In our case of running nBench on virtual machines, theres
seems to be an overall increased throughput by using 8 VMs
instead of just 4. While the performance of each individual
VM is only approximately 67% as fast when using 8 VMs
instead of 4, there are twice as many VMs to contribute to an
overall performance improvement of 34%, which is consistent
with previous reports [35] of optimal speedups when using
Hyperthreading. Therefore its even more advisable to schedule
as many virtual machines on one physical node because it
maximises not only power consumption per VM, but also
overall system performance.

VII. PERFORMANCE STUDY WITH SIMULATION

While it would be ideal to deploy such a system as described
in Section VI in a real data center, such a task is not feasible at
this time. Instead we create a simulator named DVFS-SIM to
simulate the algorithm in DVFS-enabled clusters by enabling
DVFS functionalities in the processor performance model. The
goal of this simulator is to illustrate the usefulness of our
model and algorithm so as to justify the model’s deployment
on a large-scale cluster system.

A. Implementation of DVFS-SIM

The design of DVFS-SIM consists of the following mod-
ules:

• Job module: The job module is developed to simulate
various jobs to be executed in a cluster. Virtual machines
are modeled as incoming jobs with required processor
speed and execution time as parameters.

• Cluster module: The cluster module is presented to simu-
late a deployed cluster environment in use today, such as
the IKEP cluster. It is represented by a node configuration
and scheduling algorithm implementation. A scheduler
runs as a daemon to accept and handle incoming jobs.

• PE module: The DVFS performance model is imple-
mented in the PE Module. Each PE loops at a defined
interval to simulate a specific processor operating fre-
quency.

We simulate the scheduling algorithm with 10, 20, 30,
40, and 50 compute nodes. Multiple virtual machines are
generated in the job module. We simulate 100, 200, 300,
400 and 500 virtual machines. To satisfy the cluster module
described above, the Virtual machine resource requirements
are randomly generated in the range of 0.1 GHz – 1.0 GHz
and required execution times are randomly generated in the
range of 1.0 time unit – 10.0 time unit.

The ideal simulated processor would be the same Intel
Nehalem based CPU discussed in section VI. However we
use an Intel Pentium M 1.4 GHz processor in this section as
an example. This is done to give validity to our simulator by
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following previous work from [28] as an example and to allow
for the comparison of research results in a meaningful and fair
way.

Table I shows the operating points of the Pentium M 1.4
GHz simulated for this performance study.

TABLE I
OPERATING POINTS FOR THE PENTIUM M 1.4 GHZ PROCESSOR

Frequency (GHz) Supply Voltage (V)
1.4 1.484
1.2 1.436
1.0 1.308
0.8 1.180
0.6 0.956

B. Simulation Results

Figure 7 shows simulation results for DVFS-enabled cluster
scheduling algorithm (Algorithms 1 – 3). The X-axis is the
number of PEs and the Y-axis is the normalized power
consumption. The base for normalization is the power con-
sumption when all PEs are operated in the highest voltage.
Looking at this data, we canmake the following observations:

• Observation 1: The scheduling algorithm can reduce
power consumption in a DVFS-enabled cluster.

• Observation 2: In case that the number of PEs is fixed, the
power consumption increases as the number of incoming
virtual machines increases.

• Observation 3: In case that the number of incoming vir-
tual machine is fixed, the power consumption decreases
as the number of PEs increases.
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Fig. 7. DVFS-enabled cluster scheduling simulation results

We interpret the simulated behavior as follows. For Obser-
vation 1, in the operation of a DVFS-enabled cluster some
PEs operate with lower voltages. Thus, compared with a
fully utilized cluster using the highest voltages, less power
is consumed. Observation 2 can be interpreted as when more
virtual machines arrive in a cluster, the PEs of the cluster
are forced to operate with higher voltages to provide more
processing capacities, thus requiring more power consumption.

On the contrary, when more PEs are available for a fixed
number of incoming virtual machines, the PEs could be
operated with lower voltages since enough PEs are provided
leading to Observation 3 where less power consumption is
observed.
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Fig. 8. Operating point distribution with schedule rounds (VM No. = 200,
PE No. = 40)

Figure 8 shows the distribution of sample PE operating
frequencies when 200 virtual machines are scheduled in a
cluster with 40 PEs. When scheduling first starts in Algorithm
3, the PEs are operated with a low frequency and voltage (0.6
GHz, 0.956V) because enough PEs are available. When more
incoming virtual machine requests arive to be scheduled on
the cluster, PEs are loaded with more virtual machines and in
turn are operated with higher frequencies and voltages. In this
scenario, the number of PEs operated at 1.4 GHz increases and
the number of PEs operated with 0.6 GHz decreases. Figure 9
shows the overall operation point distribution during the whole
scheduling process.
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Fig. 9. Overall operating point distribution (VM No.= 200, PE No.= 40)

C. Discussion

If we examine both the experimental data (Figure 5) and
the simulation data (Figure 7), we notice a few minor discrep-
ancies. In specific, many frequencies, especially the lowest
frequency in the simulation data showed a much lower power
consumption than the experimental data illustrated. This is for
the following reasons:
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• The simulated and experimental CPU architectures are
too different to compare. The Pentium M is a mobile
chipset that is over 4 years old, while the Intel Nehalem
is a multi-core chipset that is is less than 6 months old.

• The simulation did not take into account the overhead
introduced by the OpenNebula project. The differences
could be a manifestation of the scheduling delay, the
image transferring and access through NFS, newtork
latency, all of which could lead to differences in power
consumption.

• The simulation did not take into account a host hypervisor
OS. In the experimental case, this consisted of a Ubuntu
Linux Dom0 installation which could add delays and
increased power consumption.

VIII. CONCLUSION AND FUTURE WORK

As the computing industry continues to consolidate indi-
vidual servers into large data centers using Cloud computing
technologies, the need for efficient algorithms to minimize
wasted server energy becomes increasingly important. As
such, the field of Green computing provides a way to pre-
vent unnecessary CO2 emissions from contributing to Global
Warming and to save large amounts of money on operating
costs.

Future work includes the deployment of the power aware
scheduling algorithm in production clusters, for example IKEP
cluster, the analysis and measuring of virtual machine migra-
tion costs in a cluster, and the development of a temperature-
aware scheduling algorithms for multi-core compute clusters.
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