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Abstract. Grids comprise an infrastructure that enables scientists to use a di-
verse set of distributed remote services and resources as part of complex scien-
tific problem-solving processes. We analyze some of the challenges involved in
deploying software and components transparently in Grids. We report on three
practical solutions used by the Globus Project. Lessons learned from this expe-
rience lead us to believe that it is necessary to support a variety of software and
component deployment strategies. These strategies are based on the hosting en-
vironment.

1 Introduction

Grids comprise an infrastructure enabling scientists to use a diverse set of distributed
software, services, and components that access a variety of dispersed resources as part
of complex scientific problem-solving. This infrastructure includes the use of compute
resources such as personal computers, workstations, and supercomputers; access to in-
formation resources such as directory services and large-scale data bases; and access
to knowledge resources such as collaboration with colleagues. A central role in defin-
ing Grids is the creation of virtual organizations that define sharing and trust relations
between the diversified set of resources. Deployment of software, components, and ser-
vices must be governed by the appropriate definition of rules and policies. Such sharing
rules may be rather simple, as demonstrated by the SETI@home project [10] to allow
the creation of commodity compute resources pools. The resources are contributed by
a large number of individuals. It is important to recognize that providing an easy de-
ployment strategy with easy-to-understand rules of engagement results in integration of
resources that can be provided by nonexperts. More complex rules are defined as part of
virtual organizations spanning resources among traditional compute centers. They en-
able access to high-end resources (such as supercomputers) and advanced instruments
(such as a particle collider). Examples are the DOE Science Grid [2], the NASA In-
formation Power Grid (IPG), and the Alliance Virtual Machine Room (VMR) [14, 1].
Sharing rules govern the privileged use of resources contributed by the centers. The de-
ployment of software, services, and components in such production Grids is performed
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by experts and well-trained administrative staff following guidelines set within and be-
tween such compute centers. In each case it is important to develop proper deployment
strategies as part of every Grid-enabled infrastructure.

In the rest of the paper we first present a simple example that introduces several
issues that must be addressed while deploying software, components, and services in
Grids. Based on our requirements analysis, we have identified three scenarios that allow
us to deploy components in a Grid-based infrastructure. We compare these scenarios
and present our conclusions.

2 Example

We present a simple example illustrating a small set of requirements that we must deal
with. In Figure 1 a group of scientists needs to deploy a problem-solving environment
on various resources in the Grid to conduct a large matrix factorization as part of the
structure determination of a molecule in three-dimensional space.

1. Collaborate with colleagues to derive 
a problem solving strategy 

2. The problem solving environment 
selects
high level components used in the
problem solving process

3. Based on the tasks to be solved Grid 
resources and components using 
these
resources are selected.

4. A component is created solving the 
problem

5. The component is executed as a 
Grid service using the Grid 
Resources

6. The output is feed back to the 
scientists

Grid

Fig. 1. Component deployment and assembly to support the scientific problem-solving process in
Grids.

Initially, we need to identify a set of suitable resources to perform our task. Often
we will identify resources that have the potential to perform a given task but may not
have the necessary software deployed on them. We can proceed in one of two ways:
eliminating the resource because its software environment is insufficient for the task,
or installing the appropriate software to provide the appropriate functionality. Once our
environment is present, we access a set of Grid services allowing the composition of
a Grid-enabled application based on Grid services and components. For the resources
of choice we determine appropriate components suitable for performing our requested
task. These components are assembled and executed in order to deliver feedback to the
scientists. We emphasize that the scientists do not have to know the algorithmic details
of the solving process, as they are hidden in the components. These details include on
which Grid resources the factorization is performed or which algorithm is used . Thus,
the Grid is used as a utility that returns the information requested as part of the complex
problem solving process.



To make such a Grid-enabled environment possible, we must integrate several lo-
cally maintained code repositories into a virtual code repository. From it we must dis-
cover, select, and assemble the components best suited for the task. The selection of
components is determined by the functional properties, performance, licensing issues,
and cost. We must address the issue of whether the components can be trusted to be ex-
ecuted on a resource. We must ensure that the interfaces between components provide
functional compatibility and,in some cases, version compatibility in order to engage in
the creation of reproducible results. Version control must be strictly enforced not only
on the delivery of components but also potentially while using statically or dynamically
linked libraries. A discovery process must be designed in such a way that only authen-
ticated users may know the existence or the properties of the components. Moreover,
prior to the use of the component, the user must be able to judge its functionality and
approve it for inclusion within other components. Smart components acting in behalf of
users themselves must be able to perform similar component assembly strategies. This
may mean that the same query and assembly of a component for user A could result in
a completely different implementation for user B, who may have different access rights
to resources within the Grid.

3 Deployment Cycle

As part of our previous example we identified three basic user communities that must be
integral part of every deployment strategy: programmers and designers that are devel-
oping software, components, and services in a collaborative fashion to be deployed in
the Grid; administrators that deploy them; and application users that access deployed
software, component, and services. Thus, in order to address the complex issues related
to deployment, the software engineering cycle must reflect dealing with this issue in
each stage, while at the same time forcing and supporting interactions between design-
ers, administrators, and users.
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Packaging
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Typical involvement of Grid users in the component life cycle
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Fig. 2. Deploying and maintaining software, components, and services in Grids is a resource-
intensive task that requires an iterative interaction between designers, administrators, and users



A blueprint for managing deployment of Grid software, services, and components
is depicted in Figure 2. It supports the packaging, deployment, and iterative process of
improving the infrastructure. The goal of this rigorous software process is to reduce
the effort to deploy and maintain the infrastructure that enables the effective use of
the complex environment by the application users or scientists, and also by other Grid
architects developing new Grid services.

So far we have not distinguished between what we understand under software, com-
ponents, and services because we believe that our observations are applicable to each
one of these categories. In order to deploy components and services in Grids, we need to
prepare what the Grid community sometimes calls a hosting environment. Such hosting
environments provide the necessary software infrastructure for executing Grid-related
services and components. The the Java Virtual machine, J2EE, .NET, a prepackaged
Grid hosting environment [1], or simply a particular version of an operating system are
examples. In order to prepare such a hosting environment, we can obviously benefit
from software engineering practices that deal with software deployment as it “defines
the assembly and maintenance of the resources necessary to use a version of a sys-
tem at a particular site” [15]. Once we have established a hosting environments, we
can develop services [9] that are based on the hosting environment and components
that uses the services as part of a component framework. The problems associated with
deployment are manifold and not unique to Grids. Nevertheless, common commercial
distributed environments such as CORBA [13] provide insufficient support for the de-
ployment in Grids: whereas these technologies usually target a single administrative
domain, Grids encompass multiple domains while keeping them autonomous. One of
the key issues in a Grid environment must be a security infrastructure that simplifies
deployment and use of services and components. A convenient Grid Security Infras-
tructure (GSI) including single-signon capability has been developed by the Globus
Project, which we can use to support the deployment cycle [3].

4 Deployment Scenarios

Deployment of Grid software, components, and services imposes numerous require-
ments. Hence we cannot assume that a single strategy fulfills all of these requirements.
Instead, we concentrate on three common scenarios that we have identified within our
example and provide a deployment strategy solution for each of them. We have termed
them thick, thin, and slender in analogy to terminology used in the Internet community.

Thick Deployment: A Grid designer develops software enabling services that are
installed locally on a computer by an administrator. Such component and services are
typically written in C and may be run with root access on the machine. They usually
are tightly integrated with an operating system.

Thin Deployment: A scientist is using a Web browser to access Grid Services in a
transparent fashion. The communication is performed only through a browser interface
and does not allow installation of any software on the client machine on which the
browser runs. A thin Grid service may allow the scientist to interface with a thick Grid
service.



Slender Deployment: A slender client allows a platform-neutral deployment under
the assumption that an appropriate hosting environment is already present (through, for
example, the use of a thick service). A good example of such a slender deployment
service is the use of Webstart within a JVM hosting environment. It allows the browser
to cache components locally, as well as integrate specialized local available applications
within the Web interface.

In the next sections, we describe a deployment strategy for each of the scenarios in
the Grid.

5 Thick Deployment

Discussed in [4] is a subset of deployment issues for Grid services and components
based on traditional programming languages such as C and FORTRAN and applied to
the Globus Toolkit. As an initial solution, the Globus Project, together with NCSA, has
developed a Grid Packaging Tool (GPT) that simplifies creation and the deployment of
precompiled software. The code is prepared with auto configuration tools and is also
available as source code. The GPT separates machine architecture probing from the
tests done for a single site or machine deployment. This approach allows a component
to be precompiled for a certain architecture and then deployed during installation by
means of a setup script. Hence, the only probing needed is a dependency check that
makes sure the required dependent packages are available.

Issues that are intended to be addressed with this tool are as follows:

– An intercomponent dependency checker that can track dependencies at compile,
link, and runtime.

– A versioning system that identifies compatibility between different versions of
components based on a variation of the libtool versioning.

– Distribution of binaries with compile time flavors, such as the numerical resolution.
– Distribution of relocatable binaries that are independent of any absolute path within

the distribution.
– Integration of dependencies to external programs and libraries not distributed with

the current component.
– Support for runtime configuration files that allows the custom configuration of com-

ponents that are installed with statically based runtime managers, for example, the
modification of runtime parameters after the package has been installed in the des-
tination path.

– Support for source code distribution of the components.
– Inclusion of metainformation in the description of the components to assist in the

preservation of the components.
– A packaging manager that helps during the installation, upgrade, and uninstallation

of components that is compatible to existing packaging managers such as RedHat
packing manager (RPM).

The packaging toolkit has been tested on the 2.0 beta version of the Globus Toolkit.
As part of this test, various packages have been released that are targeted toward dif-
ferent platforms but also include various sets of components. In future versions it is



expected that administrators may choose a particular set of components and the plat-
form and may get a custom-assembled package in return. The automatic generation of
metadata related to this package is integrated into the Grid Information Infrastructure
that is implemented as part of MDS. Thus, it will be possible to query for installations
of the Globus Toolkit and the supported features on various domains. The benefit of
using a native C implementation of Grid components is based on their speed.
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Fig. 3. Structure of the ASC application server
showing the various components.
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Fig. 4. The slender client environment allowing
to significantly simplifying the deployment and
maintenance of clients accessing Grid function-
ality.

6 Thin Deployment

Although the packaging mechanism for the Globus Toolkit allows software architects
to develop software, services, and components that can be installed and configured by
system administrators and Grid component designers, it is still quite complex because
of the requirement to support sharing, persistence, and updates. To simplify the task
of deployment on a client side, many projects suggest developing thin clients that ex-
pose the scientific problem-solving process through convenient Web-based interfaces.
A good example for such a Grid-based application is the astrophysical computing portal
(see Figure 3) [19] allowing scientists to access supercomputing resources and interact
as required by the astrophysical community.

This application contains two different aspects making it interesting for the deploy-
ment of components in computational Grids. First, the thin clients enable application
users to easily interact with the system without updating their local software, as all
communication is performed through a Web-based portal using HTML and DHTML
technologies. If state-of-the-art Web browsers are available on the application users’
clients, no additional installation task is required. Naturally, the designer of the soft-
ware must put special care into fulfilling the application users’ needs and must provide
sufficient guidance for administrators to install such a portal. Customization for users is
provided by saving the state of the last interaction with the portal. Second, the portal is
used to develop reusable components as part of the Cactus framework.



The portal provides access to familiar tools such as a GSI-enhanced CVS. Other
users are able to access components from a shared component repository. The Globus
Toolkit provides the necessary security infrastructure. Additional administrative over-
head is needed to maintain such a portal and to determine policies for access to the
software repository, for the software configuration, and for automatic software deploy-
ment.

7 Slender Deployment

Practical experience with slender Grid services has shown that the user interface pro-
vided by the current generation of browsers is too limited or requires in many cases
unreasonably long startup cost. At SC2001 in Denver we demonstrated how the use of
slender services and components can support component development and deployment
in computational Grids (see Figure 4). Slender clients are developed in an advanced pro-
gramming language and can be installed through a Web-based portal on the local client.
This approach allows the creation of advanced portals and the integration of locally
available executables as part of the problem-solving process. Furthermore, it enables
the integration of sophisticated collaborative tools provided by a third party.

Although the creation of slender clients can be performed in any programming lan-
guage, we have chosen in our prototype to use the Java programming language. We
rely on the Java CoG Kit [17] for the interface to Grid resources that can be accessed
through the slender clients. For our demonstration we developed two popularly used
components and deployed them through the Java Web Start technology. Java Web Start
provides a deployment framework that allows client users with access to a local re-
source to install Java components that can be accessed from the cache of the local
browsers. Thus it reduces the installation time if the component is used more than once.
Additionally, it provides an automatic framework for updating the component if a new
one is placed on the Web server. Using the protocols defined by the Globus Project,
we achieved interoperability between the Globus Toolkit and our Web-enabled slender
clients. Tests confirmed the usability of our approach as part of the deployment strat-
egy for Grid computing. Indeed, users not familiar with the Web Start technology were
able to deploy the components in just two minutes on their clients. This is in dramatic
contrast to other similar Grid software that is sufficiently complex so that users typi-
cally must attend a training session to learn about the installation process. Although the
packaging toolkit described earlier is aimed to improve this situation, the developers
must maintain a significant variety of binary releases that are to be installed with an
installshield-like capability on Linux/Unix and Windows platforms. While using Java
for this task, we cover a significant portion of the target machines and are even able
to support the Macintosh platform, so far not explored by the packaging effort. Dur-
ing SC2001, we also demonstrated the integration of programs natively installed on the
client in a Grid components framework. Specifically, we obtained data via a secure con-
nection to a Globus Toolkit-enabled information resource and displayed it with the help
of a natively compiled molecular viewer (rasmol). This easy deployment methodology
enables the inclusion of new resources and services within the computational Grids.



Furthermore, we are able to integrate certificates in components that can be used to
guarantee authenticity and portability between deployed components.

8 Comparison of the Scenarios

Experiments with the various deployment scenarios in Grid settings revealed a number
of advantages and disadvantages of each approach. In Table 1 we summarize our re-
sults. Each of the approaches can access native components in C or FORTRAN, with
relatively low overhead. Nevertheless, using a native compiler will have performance
advantages while accessing libraries written in C and Fortran. Such advantages, how-
ever, come at a price, since no uniformly accepted component framework exists. In con-
trast, significant benefits can be achieved by using Java as the component integration
language [8]. The benefits include implicit integration of documentation and metainfor-
mation as part of the Java packaging. These packages can be signed with the standard
Java keytool to generate signatures for improving the authenticity of the packages be-
fore download. Component repositories can thus be implemented as part of existing
Web services, enabling others to share their components with the community easily.
Moreover, as pointed out before, the Java Web Start technology provides a usable mech-
anism for installing such signed components on local clients. Other advantages are the
availability of a sophisticated user interface development environment that interfaces
with the desktop and can so far not be replicated with HTML/XML technologies.

Java does, however, have potential disadvantages. In the slender scenario, portability
is defined by the availability of a JVM for the targeted Grid resource. Since some Grid
resources lack sufficient support for Java, these resources must be interfaced through
native libraries. Another disadvantage may be the restrictions in the address space or
the speed numerical calculations are performed (though studies show that the Java per-
formance can be dramatically improved [12]). In our experience many application users
and designers are initially pleased with an HTML-based interface but quickly experi-
ence frustration because the Interface does not provide for enough flexibility and speed
during a continuous period of use. An example of such an application is given by the
use of our Java-based MDS browser [18], which has thousands of users (in contrast to
its original CGI counterpart, which was simply too slow in continuous use). The ability
to sandbox client-side applications is a further advantage of the slender client and en-
ables one to create sophisticated high-throughput compute resources similar in spirit to
SETI@home [10], Condor.

9 Related Work in the Grid Community

Work on component assembly and deployment was being performed in Grid-related
activities even before the term Grid was coined [16]. More recently, the Globus Project
has defined a schema for a metacomputing directory service [6] that allows one to store
metainformation about components that are installed on remote resources. Moreover,
with the input of the Globus Project team, University of Tennessee researchers have



Table 1. Comparison between the various scenarios

Feature Thick Slender Thin
1 Primary interface to C/FORTRAN native JNI Third tier

fast medium slow
2 Primary language C/Fortran, Java Java HTML
3 Possible Java programs application applets applications applets
4 Component versioning libtool tag N/A
5 Component interoperability through signature no yes N/A
6 Component metainformation libtool, rpm certificates HTML tag
7 Component repository Web-server, cvs Web-server Gsi-cvs
8 Source repository Web-server, cvs Web-server N/A
9 Portable GUI Tcl/Tk, Qt Swing HTML

10 Sophistication of the GUI high high low
11 Interactivity not limited to browser [20] yes yes no
12 Speed of interface interaction high high low
13 First-time activation cost high low none
14 Cost for subsequent use low low high
15 Support for power users yes yes no
16 Incremental component update difficult easy N/A
17 Integration of client-side programs yes yes no
18 Access restriction to client by sophisticated policies no yes no
19 Standard Component Framework no Beans/EJB [16] none
20 Sandboxing difficult yes no
21 Desktop integration no yes no
22 Offline operation yes yes no
23 Automatic installation of supporting components no yes no
24 Deployment in Grids distributed distributed replicated
25 Deployment protocol To be defined JNLP none

completed a schema proposal to the Grid Forum [11]. Such developments will be care-
fully watched by new efforts such as the European GridLab project and the DOE Sci-
ence Grid projects, which will need to address the deployment issue of Grid components
and services. The research conducted in this paper will be beneficial for this work. Other
relevant efforts are, for example, [7, 5]

10 Summary

In this paper we have outlined three scenarios that significantly affect the deployment
strategy of components within Grids. Although none of the deployment strategies is all
encompassing, together they solve many aspects of component deployment in Grids.
We found the strategy of signed slender clients to be significantly superior to the thin-
client approach supported by other communities. In fact, we found that often artifi-
cial requirements were put in place to prevent developers from considering slender
client deployment strategies, even when such strategies allow integrating previously
written client software. Additionally, we have shown that with the availability of Java
we were able to deploy components with ease on Java-enabled platforms including So-
laris, Linux, Windows, and Macintosh. We view our continuing research in this field as
essential for the acceptance and the success of Grids.
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