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Abstract—FutureGrid (FG) is an experimental, high-
performance testbed that supports HPC, cloud and grid com-
puting experiments for both application and computer scientist.
FutureGrid includes the use of virtualization technology to allow
the support of a wide range of operating systems in order to
include a testbed for various cloud computing infrastructure
as a service frameworks. Therefore, efficient management of a
variety of virtual machine images becomes a key issue. Current
cloud frameworks do not provide a way to manage images for
different IaaS frameworks. They typically provide their own
image repositories, but in general they do not allow us to
store the needed metadata to handle other IaaS images. We
present a generic catalog and image repository to store images of
any type. Our image repository has a convenient interface that
distinguishes image types. Therefore, it is not only useful for
FutureGrid, but also for any application that needs to manage
images.

I. INTRODUCTION

FutureGrid (FG) [1] provides a testbed that makes it pos-
sible for researchers to tackle complex research challenges
in Computer Science related to the use and security of grids
and clouds. These include topics ranging from authentication,
authorization, scheduling, virtualization, middleware design,
interface design and cybersecurity, to the optimization of
grid-enabled and cloud-enabled computational schemes for
researchers in Astronomy, Chemistry, Biology, Engineering,
Atmospheric Science and Epidemiology. FG provides a new
experimental computing grid and cloud test-bed to the re-
search community, together with user support for third-party
researchers conducting experiments on FutureGrid.

One of the goals of the project is to understand the behavior
and utility of cloud computing approaches. In this sense,
FutureGrid provides the ability to compare these frameworks
with each other while considering real scientific applications.
Hence, researchers will be able to measure the overhead of
cloud technology by requesting linked experiments on both
virtual and bare-metal systems.

Since we are not only interested in offering pre-installed
frameworks exposed through endpoints, we must provide
additional functionality to instantiate and deploy them on-
demand. Therefore, we need to offer dynamic provisioning
within FutureGrid not only within an IaaS framework but
allow the provisioning of such frameworks themselves. In this
project, we use the term “raining” instead of just dynamic

provisioning to indicate that we strive to dynamically provision
even the IaaS framework or the PaaS framework [2].

Most of the cloud technologies are based on the virtualiza-
tion of both resources and software, which makes the image
management a key component for them. In fact, each IaaS
framework provides its own local image repository specifically
designed to interact with such framework. This creates a
problem, from the perspective of managing multiple environ-
ments as done by FG, because these image repositories are
not designed to interact with each other. Tools and services
offered by the IaaS frameworks have different requirements
and implementations to retrieve or store images. Hence, we
present in FG the ability to catalog and store images in a
unified repository. This image repository offers a common
interface that can distinguish image types for different IaaS
frameworks like Nimbus [3], Eucalyptus [4], but also bare
metal images that we term distributed raw appliances in
support of HPC. This allows us in FG to include a diverse
image set not only contributed by the FG development team,
but also by the user community that generates such images
and wishes to share them. The images can be described
with information about the software stack that is installed
on them including versions, libraries, and available services.
This information is maintained in the catalog and can be
searched by users and/or other FutureGrid services. Users
looking for a specific image can discover available images
fitting their needs, and find their location in the repository
using the catalog interface. In addition, users can also register
customized images, share them among other users, and choose
any of them for the provisioning subsystem [2]. Through this
mechanism we expect our image repository to grow through
community contributed images.

One of the most important features in our design is that we
are not simply storing an image but rather focus on the way
an image is created through templating. Thus it is possible
at any time to regenerate an image based on the template
that is used to install the software stack onto a bare operating
system. In this way, the development of a customized image
repository not only provides functional advantages, but it
also provides structural advantages aimed to increase efficient
use of the storage resources. Furthermore, we can maintain
specific data that assist in measuring usage and performance.
This usage data can be used to purge rarely used images,
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while they still can be recreated with the use of templating.
This will obviously lead to a significant amount of space
saving. Moreover, the use of image templating will allow
us to automatically generate images for diverse environments
including a variety of hypervisors and hardware platforms. In
this process, we will include mechanisms to verify that these
requirements are reasonable like for example if the required
IaaS is compatible with the requested hypervisor. In general,
we can employ simple rules such as (a) if we find the image,
we just provide it to the user (b)If not, we generate a new
image to provide that to the user and store it in the image
repository (c) if an image is rarely used it may get purged and
we only keep the image generation template.

The rest of the paper is organized as follows. In Section
II, we present an overview of image repositories provided by
different cloud frameworks and storage systems. In Section
III, we present the FG Image Repository by focusing on its
requirements, design and implementation details. Section IV
describes the tests performed to compare the different storage
systems supported by the image repository and Section V
collects the results of these tests. Finally, we present the
conclusions in Section VI and future directions in Section VII.

II. BACKGROUND

As previously commented, the images are a key component
in cloud technologies. Therefore, any cloud framework provid-
ing IaaS or PaaS has to manage them. Due to the particularities
of each framework, each one has developed its own image
repository adapted and optimized to its particular software. In
general, IaaS frameworks provide the possibility to interact
with the image repository, while PaaS frameworks hide all
these details to the users. Next, we present an overview of
the image repositories implemented by the most important
frameworks to manage their images.

Nimbus [3], [5] is a set of open source tools that together
provide an Infrastructure as a Service (IaaS) cloud computing
solution. Since version 2.5, Nimbus introduced a storage
cloud implementation called Cumulus [6] as part of its image
repository solution. Cumulus is compatible with the Amazon
Web Service S3 REST API [7] and can be used standalone as
cloud storage. Currently, it is implemented using the POSIX
file system as storage back-end, but the plan to provide access
to distributed file systems.

Eucalyptus [4], [8] is open source software to deploy IaaS
private and hybrid clouds. Eucalyptus provides a distributed
storage system called Walrus which implements Amazon’s
S3-compatible SOAP and REST interface. It is designed to
be modular such that the authentication, streaming and back-
end storage subsystems can be customized. Walrus is used as
storage for user data and images.

OpenNebula [9]–[11] is an open source toolkit which allows
to transform existing infrastructure into an IaaS cloud with
cloud-like interfaces. OpenNebula implements an image repo-
sitory with catalog and functionality for image management.
The image repository relies in the POSIX file system to store
the images, and includes compatibility with Network File
System (NFS) and Logical Volume Manager(LVM).

Amazon Web Services (AWS) [12] is a commercial platform
to provide infrastructure web services in the cloud. Amazon
maintains an abundant number of images covering popular
OSs and architectures. In addition, users can generate and
store their own customized images which then can be used by
themselves or shared with others. Amazon’s image repository
uses its storage systems called S3 (Simple Storage Service)
and EBS (Elastic Block Storage).

OpenStack [13] is a collection of open source technologies
to deliver public and private clouds. These technologies are
OpenStack Compute (called Nova), OpenStack Object Storage
(called Swift), and the recently presented OpenStack Imaging
Service (called Glance). The last one, Glance, is a lookup
and retrieval system for virtual machine images. It supports
different back-end configurations: using OpenStack Object
Store, using Amazon S3 or using Amazon S3 with OpenStack
Object Store as intermediate.

Windows Azure [14] provides developers with cloud capa-
bilities through Microsoft datacenters. Since Windows Azure
is a platform as a service (PaaS), it keeps the image repository
hidden behind the scene and invisible to end users. However,
they introduced the possibility to manage an image repository
through Azure applications and the virtual machine (VM) role,
recently. The main difference between both repositories is that
in the first one, Microsoft patch and update the operating
system for you, but with the VM role it is up to you.

Abiquo [15] is an open source infrastructure software for
the creation and integral management of clouds based on
heterogeneous environments. It maintains a public repository
where users can download images. It also provides appliance
repositories that can be defined by users. This repository is a
simple NFS shared folder that is mounted by the Abiquo plat-
form and all the nodes that compose the cloud infrastructure.

On the other hand, a very important detail to consider
in the development of an image repository is the storage
system because it is essential to provide scalable and fault
tolerant applications. Some of the previous frameworks pro-
vide interesting storage systems like Cumulus [3], Walrus [4]
or Swift [13]. However, there are other tools that can also
be used to store information in distributed systems. In this
sense, we have Google File System (GFS) [16] that was
the first storage system to operate at cloud-scale. This is
an scalable distributed file system for large distributed data-
intensive applications. It provides fault tolerance and delivers
high aggregate performance to a large number of clients. GFS
started a new technology trend that was quite well accepted
by the community. In fact, Hadoop Distributed File system
(HDFS) [17], [18] is popular open source distributed file
system inspired in GFS. HDFS is highly fault-tolerant and
provides high throughput access to application data and is
suitable for applications that have large data sets.

We can also consider, as storage systems, various NoSQL
databases [19]. These databases that may not require fixed
table schemas, typically scale horizontally and are designed to
manage huge amounts of data. In [19] we can find a list of the
most important NoSQL databases ordered by type. While this
databases are oriented to data mining in cloud, some of them
also allow to store BLOBS (Binay Large Objects). The most



3

active projects are MongoDB [20], CouchDB [21] and Riak
[22]. MongoDB is a document-oriented database that manages
collections of JSON-like documents [23]. MongoDB includes
an special component, called GridFS, designed to store files of
any size in BSON format [24]. CouchDB is another document-
oriented database that store the information in JSON and the
large files are managed as attachments encoded in base64. On
the other hand, Riak is a Dynamo-inspired key/value store
[25]. It can manage large files using Luwak, an application
built on top of Riak, which is bundle with Riak but disabled
by default.

Finally, we would like to mention more traditional ap-
proaches used to provide networked and distributed file sys-
tems. Here, early examples are NFS [26] and AFS [27]
with centralized client-server design. More recent approaches
focused on HPC are LUSTRE [28] and PVFS (Parallel Virtual
File System) [29], [30]. Both are parallel distributed file
system, generally used for large scale cluster computing.

III. FUTUREGRID IMAGE REPOSITORY

The image repository is one of two important services
within our image management. The other component is our
image generation tool [2] which deals with the generation
of template images that can be rained onto FG. We have
applied the typical development life cycle to the FG image
repository. Thus, in the following subsections we will talk
about the different phases namely requirements, design and
implementation.

A. Requirements

To specify our requirements for the image repository we
have considered mostly the following four user groups:

• A single user. Users create images that are part of experi-
ments they conduct on FG [2]. An image repository helps
to manage their images, to share them or to create new
images from existing ones adding additional packages
configurations through scripts as part of the experiment
environment.

• A group of users. An additional typical use case includes
a group of scientific collaborators that work together in
the same project and images are shared within the group
instead of each collaborator creating an identical image.

• System administrators. They maintain the image reposi-
tory ensuring backups and preserving space. They also
may use it for the distribution of the HPC image that is
accessible by default.

• FG services and subsystems [2]. Different FG services
and subsystems like our rain framework will make use of
the image repository to integrate access and deployment
of the images as part of the rain workflow.

Based on our consideration for the target audience we have
identified a number of essential requirements that we need to
consider in our design:

• Diverse access. The image repository must be accessi-
ble through a variety of access mechanisms such as a
command line, a portal, an API, and a REST service.

• Simple. The image repository must be simple and intuitive
to use by users that are not experts in virtualization
technologies and distributed systems.

• Unifying and integrated. We must provide a unifying
interface to manage various types of image for different
systems. These systems may have their own repositories
and we must be able to integrate with them in some
fashion.

• Extensible. The image repository subsystem must be
extensible. One aspect is to be able to include different
back-end storage systems. Another aspect is to provide an
API to offer the image repository to those cloud frame-
works which allow the use of external image repositories.

• Informative. We must provide easy and meaningful access
of information managed through the repository. Users
should be able to query and report the status and attributes
of the stored images.

• Accountable. We need to keep track of the usage of the
images in order to optimize the space needed by removing
unused images.

• Secure. The image repository security must be integrated
in the FG security architecture. Moreover, in case a secu-
rity issue is detected in an image, all cloned images from
this one can be easily identified. Information associated
with the repository and its images are protected through
authorized access.

• Fault tolerant. The storage mechanism should be dis-
tributed to avoid single point of failures and performance
bottlenecks.

B. Design

The FutureGrid image repository provides a service to
query, store, and update images through a unique and common
interface. In Figure 1 we present its architecture.

Fig. 1. FutureGrid Image Repository Architecture.

To address extensibility in a flexible and modular way,
we have integrated a framework independent Storage Access
layer. This layer defines an interface to create transparent
plugins in support of different storage systems. Hence, a
bridge between the storage systems and the image repository
core functionality is provided. The Image Repository Core
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contains the solutions to accounting including usage and quota
management, image management and metadata management.
The image management is focused on managing the image
files and the associated information (metadata) in order to
provide a consistent, meaningful and up to date image catalog.
The separation of this information is done on purpose in order
to support a variety of different storage systems that may
be chosen by the site administrator due to functionality or
integration requirements. Important to note is that the core
also registers the image usage and access. This allows the
repository to record information such as how many times
an image was accessed and by whom. Internally this data
may be used by a trigger service that cleanses the repository
from faulty or less frequently used images. It also allows
us to generate images from templates in case an image is
requested with certain functionality that does not yet exist.
Thus, instead of having a passive image repository, we move
towards an active image repository that can be augmented with
a number of triggers that get invoked dependent on the data
that is collected within the repository. In this way, we can
trigger events such as enforcing quota, automatically updating,
or even distributing images based on advanced reservation
events forwarded to us by the rain service. To access this
functionality, we provide a variety of service interfaces such
as an API, a command line interface, and REST services.
These interfaces are part of the Image Repository Service
Interface layer. Through these interfaces we can easily create
higher-level image repository clients. In particular, we are
immediately interested in provide access through the FG portal
and the FG command line tool. Through the FG command
line tool we can also integrate the repository commands as
workflow scripts. The integration with a Web portal will be
facilitated through REST services. An API library is available
in python, and we intend to provide an API for PHP via the
rest services. We are also designing plugins to allow other
FG services to use the image repository and expose its use
through such integration efforts to authorized users as part of
raining images, IaaS, and PaaS onto the FG resources. Other
cloud frameworks could integrate with this image repository
by accessing it through an standard API such as S3 or the
development of a back-end interface that directly accesses the
images within our repository without knowledge to the users
of these frameworks.

Finally, the security aspect is an essential component to
be considered in the design. Thus, the image repository will
provide the security functionality needed to integrate the
authentication and authorization with the FG ones (based
on LDAP). Using this approach we reach two important
objectives. On the one hand, we increase the security, because
the FG security is being developed by a group of experts in
the field. On the other hand, we contribute to maintain a single
sign on system for FG, avoiding the duplication of services
and user databases.

C. Implementation

We are gradually implementing the features that are outlined
in our design. The implementation is based on a client-server

architecture like the one shown in Figure 2. This implementa-
tion targets a variety of different user communities including
end users, developers, administrators via web interfaces, APIs,
and command line tools. In addition, the functionality of the
repository is exposed through a REST interface, which enables
the integration with Web-based services such as the FutureGrid
portal.

Fig. 2. Image Repository Client-Server Architecture.

Currently, our repository includes several plugins to support
up to four different storage systems including (a) MySQL
where the image files are stored directly in the POSIX file
system, (b) MongoDB where both data and files are stored
in the NoSQL database [20], (c) the OpenStack Object Store
(Swift) [13] and (d) Cumulus [6] from the Nimbus project
[3]. For (c) and (d) the data can be stored in either MySQL
or in MongoDB. These storage plugins not only increase the
interoperability of the image repository, but they can also
be used by the community as templates to create their own
plugins to support other storage systems.

We have already created a Command Line Interface (CLI)
to manage the image repository. Next, we illustrate the image
repository functionality.

a) User Management and Authentication: First, users
will have to authenticate to access the image repository. This
is not completed yet, but the access is going to be based on
roles and project/group memberships. Since FG provides much
of this information as part of an integrated portal and LDAP
server, we can utilize it to provide authorization to access
the repository while querying the FG account management
services for the needed metadata on project memberships and
roles.

As part of the user management, we currently maintain
information related with users such as the quota determining
the amount of disk space available for a particular user, the
user status (pending, activated, deactivated) and the user role
(admin or user). Repository administrators are the only ones
with the ability to add, remove and list users as well as
update the user’s quota, role and status. Thus, we have detailed
user-based and role-based access control to implement the
previously mentioned authentication mechanism.

b) Image Management: To manage the images we main-
tain a rich set of information associated with each image
(metadata). This includes the operating system, architecture, or
image type. The current set of metadata information is shown
in Table I including predefined values where applicable. It also
shows which fields can be modified by users.
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TABLE I
INFORMATION ASSOCIATED TO THE IMAGES (METADATA).

Field Name Type Predefined Values Description Access

imgId string Unique identifier Read-Only
owner string Image’s owner Read-Only
os string Operating system Read-Write
description string Description of the image Read-Write
tag string list Image’s keywords Read-Write
vmType string none, xen, kvm, virtualbox, Virtual machine type Read-Write

vmware
imgType string machine, kernel, eucalyptus, Aim of the image Read-Write

nimbus, opennebula, openstack
permission string public, private Access permission to the image Read-Write
imgStatus string available, locked Status of the image Read-Write
imgURI string Image location Read-Only
createdDate date Upload date Read-Only
lastAccess date Last time the image was accessed Read-Only
accessCount long # times the image has been accessed Read-Only
ttl date Date when the image will be deleted Read-Write
ttg date Date when the image will be replaced

by its generation description
size long Size of the image Read-Only

We provide the ability to upload an image by specifying
its location and its associated metadata. Defaults are provided
in case some metadata values are not defined. The metadata
includes also information about access permissions by users.
In this way, we can define if an image is private to the user
uploading the image, or shared with the public. Additionally,
we are going to implement the ability to share an image with a
selected number of users or a group/project as defined through
the FutureGrid portal.

Modifications to the metadata can be accomplished by
the owner of an image. However, some metadata cannot
be changed, such as the last time an image was accessed,
modified, or used.

We can retrieve images from the repository by name or by
Uniform Resource Identifier (URI). Nevertheless, as some of
our back-ends may not support URI’s, such as MongoDB [20],
the URI based access is not supported uniformly.

To remove images from the repository, users must own such
images. Admin users can remove any image, though.

Users can also query the image repository. It uses SQL
style queries to retrieve a list of images matching the query.
Currently, we provide a very simple interface that allows
us to conduct searches on the user exposed metadata using
regular expressions. For example, to retrieve a list of ima-
ges that match the OS to be Redhat and it is tagged with
hadoop, we can use the query string * where os=redhat,
tag=hadoop. Additionally, we can restrict the attributes of the
returned metadata by using queries such as field1,field2 where
field3=value, which returns only field1 and field2 of all images
where field3 equals to the value. To return all information,
users can simply pass a *, which is also the default in case
no search string is provided. The use of this query language

allows us to abstract the back-end system delivering a uniform
search query across the different systems.

One additional very important property is the ability to sup-
port an accounting services while monitoring image repository
usage. Important information provide by this service relates
to the number of times that an image has been requested,
the last time that an image was accessed, number of images
registered by each user, disk space used by each user. Using
this information we are going to implement automatic triggers
that react upon certain conditions associated with the metadata.
This includes the time to live (ttl) and the time to re-
generate (ttg). The ttl specifies a time that allows users to
automatically remove the image from the repository entirely.
The ttg specifies when the image should be removed, but the
metadata and the way the image is generated is preserved in
the repository so that it can be recreated upon request. This
feature will be helpful to manage many images by lots of
users.

c) Command Shell: We have also developed a command
shell for FutureGrid to unify the various commands and to pro-
vide a structured mechanism to group FG related commands
into a single shell. Shells are very important as part of the
scientific program development and have been popular with
tools such as R, matlab, and mathematica. Hence, in addition
to just exposing a single command line tool, we also provide a
shell. The shell provides the advantage of defining more easily
an script with a set of commands that need to be invoked to
manage images and other FG related activities. It also provides
the ability to log experiments conducted within the shell for
replication. Thus, users will obtain a convenient mechanism to
manage their own experiments and share them with other users
through the FutureGrid shell. As scripts, pipes and command
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line arguments can be used to pass commands into the shell, it
provides a very convenient way to organize simple workflows
as part of experiments within FutureGrid.

IV. METHODOLOGY

Since the image repository supports different storage sys-
tems, we need to know the expected performance of each sys-
tem while working with the image repository. Therefore, we
have conducted several performance tests to evaluate all these
storage back-ends for the image repository. The back-ends
include MongoDB, Swift, Cumulus, MySQL and an ext4 file
system. To distinguish the setup in our Results’ Section, each
configuration is labeled as image storage+metadata storage.
With this convention we have seven configurations: Cumu-
lus+MongoDB (Cumu+Mo), Cumulus+MySQL (Cumu+My),
Filesystem+MySQL (Fs+My), MongoDB with Replication
(Mo+Mo), MongoDB with No Replication (MoNR+MoNR),
Swift+MongoDB (Swi+Mo) and Swift+MySQL (Swi+My).

Figure 3 shows how we have deployed the image repository
(IR) and the storage systems for our experiments. Within the
experiments we have used 16 machines that are equipped with
the image repository client tools. The image repository has
been configured on a separate machine containing services
such as the IR server, the Swift proxy, MySQL server and
the MongoDB scheduler and configuration services (only used
by MongoDB with replication). We have also used three
additional machines to store the images and to create a
replication mechanism. However, only Swift and MongoDB
made use of the three machines, because they are the only
ones that support replica service. In the case of Cumulus and
the normal file system, we have only used one machine to
store the images. Moreover, to allow comparison, we have
also deployed MongoDB using a single machine without
the replication service and therefore without the scheduler
and configuration services. This deployment is labeled with
MoNR+MoNR. However, in the case of Swift we could not
avoid the use of replication since it needs a minimum of three
replicas.

Fig. 3. Test deployment Infrastructure. Each gray box is a different machine.

We have considered five different image sizes: 50MB,
300MB, 500MB, 1GB and 2GB in order to covers realistic
image sizes in use by FutureGrid users. We have compared
both read and write performance for each storage system
by uploading and retrieving images using a single client. In
addition, we have tested a distributed scenario that involves 16
clients retrieving images concurrently. We have measured the
average time that the clients need to retrieve or upload their
images while running the test five times.

Tests have been carried out on FutureGrid while using the
FG Sierra supercomputer at UCSD (University of California,
San Diego). This cluster is composed by 84 machines with
quad-core Intel Xeon processors and 32GB of memory. The
cluster is connected using Infiniband DDR and 1 Gb Ethernet
networks. The operating system is RHEL 6 and the file system
format is ext4. The software used is Cumulus from Nimbus
2.7, Swift 1.4.0 (OpenStack Object Storage), MongoDB 1.8.1,
and MySQL 5.1.47. Since the image repository is written in
python, we use the corresponding python APIs to access to the
storage systems. Thus, we use Boto 2.0b4 to access Cumulus
[31], Rackspace cloudfiles 1.7.9.2 for Swift [32], Pymongo
1.10.1 for MongoDB [33], and pymysql 0.4 to access MySQL
[34].

V. RESULTS

First, we uploaded images to the repository to study the
write performance of each storage system. The results are
shown in Figure 4. We observe that the Cumulus configura-
tions offer the best performance, which is up to 4.5% and 54%
better than MongoDB with no replication (MoNR+MoNR) and
Swift, respectively. Unfortunately, Cumulus does not provide
any data-scalability and fault tolerance mechanism, which was
in our experiments not a notable drawback. On the other
hand, if we use MongoDB with replication (Mo+Mo), its
performance degrades significantly resulting in a 70% worse
performance for the 2GB case. This is due to two main factors,
(a) the needed to send the same file to several machines and (b)
the large amount of memory that this software requires. In fact,
doing the same tests in machines with only 8GB of memory,
the performance started to decrease even in the 300MB case.
The reason of this performance degradation is that the memory
usage is that MongoDB uses memory-mapped files to access
data and is naturally memory bound. Once we hit the memory
limitation, performance drastically declines. Finally, we had
many problems with Swift due to errors when trying to upload
larger files. Indeed, starting with the 600Mb case, the failure
rate was more than 50% and for the 2GB case we were not
able to upload a single image using the Python API. For this
reason, we performed the last two tests by calling directly the
command line tool included in Swift called st. It demonstrated
that the documentation of the API is not yet sufficient and that
the utilization of the provided command line tools is at this
time a preferred choice for us.

Next, we study the performance of the different storage
systems retrieving images. Since this is the most frequent use
case for our image repository, we have performed two set of
tests involving one or multiple clients.
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Fig. 4. Upload Images to the Repository. Asterisks mean that those tests
were done using the command line tool instead of the Python API.

Figure 5 shows the results of requesting images from a
single client. We observe that Cumulus provides us with the
best performance. It is up to 13% better than MongoDB with
no replication (MoNR+MoNR). Once again, by introducing
replication to MongoDB (Mo+Mo), its performance degrades
around a 30% due to the higher complexity of the deployed
infrastructure. Finally, we can see that Swift performs quite
well considering that it has to manage a more complex
infrastructure involving replication and it is only 15% worse
than Cumulus.

Fig. 5. Retrieve Images from the Repository.

The last set of tests shows the average time that each of the
16 clients spent to retrieve an image from the repository, see
Figure 6. In this case, the Fs+My configuration has the best
performance which is up to 53% better than any of the others.
This is because Fs+My, unlike the other implementations,
does not suffer form any performance degradation due to the
overhead introduced by the software itself. We observe that the
performance of Cumulus degrades when requesting the largest
files. Hence, Swift provides a better performance in this case.
However, Swift experienced significant reliability problems
resulting in 31% and 43% of the clients not to receive
their images. With respect to MongoDB, both configuration
(MoNR+MoNR and Mo+Mo) had problems to manage the
workload and in the 2GB case any client got the requested
image due to connection errors. Therefore, only Cumulus and
the Filesystem+MySQL configurations were able to handle the
workload properly.

Fig. 6. Retrieve Images from the Repository using 16 client concurrently.

A. Discussion about the implemented Storage Back-ends

We have implemented four different storage systems based
on MySQL, MongoDB, Cumulus and Swift, respectively and
we discuss the advantages and disadvantages of each approach
next.

d) Filesystem+MySQL approach.: MySQL is mature
database and provides good security, scalability and reliability.
The problem of relational databases is that they offer a rigid
data model and we cannot provide solutions where each
register has a different number of parameters. Moreover, since
this approach uses the file system to store the images, it
requires additional effort to explicitly provide mechanisms that
ensure replication and fault tolerance. However, using the file
system as storage back-end, we can potentially obtain good
scalability and performance as we could use one of the HPC
storage solution mentioned in Section II.

e) MongoDB approach.: MongoDB has implemented a
sharing feature that distributes the database among different
machines while maintain replicas in other machines. Through
this mechanism, it provides good horizontal storage scalability
and fault tolerance, although, in our tests, it degraded the
performance due to resource starvation when reaching mem-
ory limitations. In addition, since MongoDB is a document-
oriented database, it allows us to store documents containing
different number of fields. Thus, we could offer users the
possibility to enhance the metadata by including their own
fields. Another advantage of MongoDB is that we can use
a single framework to store both metadata and image files.
Nevertheless, MongoDB has some drawbacks. It stores binary
files in BSON format and therefore the serialization procedure
could be one of the responsible of the low performance
offered in some cases. Finally, as we commented in Section
V, MongoDB uses large amounts of memory which strongly
determines its performance when replication is used.

f) Swift approach.: Swift is a new framework as part of
the OpenStack project designed to be highly scalable and fault
tolerant. Its design is specifically aimed to object storage in
the cloud. However, we observed that the Python API needs to
be improved to get a better reliability. Additionally, we need
to use an external database to store the metadata associated to
the images, because Swift does not allow to store it.

g) Cumulus approach.: The Nimbus Cumulus cloud
storage system is a recent development. As we commented
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previously, it showed a good performance for our tests. The
main problem is that the current version does not yet provide
mechanisms to address good scalability and fault tolerance.
For this reason, the Nimbus team is working to provide
compatibility with other storage systems that will bring these
features to Cumulus. Moreover, plans of developing a cloud
database to allow data storage are underway. If these features
are made available to us the need to use an external databases
to store the metadata associated to the images would be
eliminated.

VI. CONCLUSIONS

In this paper we have introduced the FutureGrid Image
Repository. We focused on the requirements and design to
establish the important features that we have to support. We
present a functional prototype that implements most of the
designed features. We consider that a key aspect of this image
repository is the ability to provide a unique and common
interface to manage any kind of image. Its design is flexible
enough to be easily integrated not only with FutureGrid but
also with other frameworks. The Image Repository features
are enclosed and offered through a command line interface to
provide an easy access to them. Furthermore, we provide an
API to develop applications on top of the image repository.

We have studied the performance of the different storage
back-ends supported by the image repository to determine
which one is the best for our users in FutureGrid. Although
none of them was a perfect match because of performance
problems and high memory usage in the case of MongoDB,
too many errors in Swift or missing fault tolerance/scalability
like in Cumulus. Despite of the previous problems, we think
that the candidates to be our default storage system are
Cumulus because is still quite fast and reliable and Swift
because has a good architecture to provide fault tolerance and
scalability. Furthermore, we have an intense relationship with
the Cumulus group as they are funded in part by FutureGrid
and we can work with them to improve their software. We
will have to monitor the development of swift closely due to
the rapid evolution of OpenStack as part of a very large open
source community. Our work also shows that we have the abil-
ity to select different systems based on future developments if
needed.

VII. ONGOING WORK

We are presently developing a REST API to the image
repository and are integrating the automatic image generation.
We would also like to provide compatibility with the Open
Virtualization Format (OVF) to describe the images using this
format.
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