An Interactive Parallel Programming
Environment Applied in Atmospheric Scierice

Gregor von Laszewski
Mathematics and Computer Science Division, Argonne National Laboratory
gregor@mcs.anl.gov

Proceedings of the Seventh ECMWF Workshop on the Use of Parallel Processors in
Meterology, Reading, UK, Nov. 2—6, 1996, pages 311-325. Bookchapter in: Making its Mark,
Editors Geerd-R Hoffman and Norbert Kreitz, World Scientific, 1997.

Abstract

This article introduces ainteractive parallel programming environmegitPPE)
that simplifies the generation and execution of parallel programs. One of the tasks
of the environment is to generate message-passing parallel programs for homoge-
neous and heterogeneous computing platforms. The parallel programs are repre-
sented by using visual objects. This is accomplished with the help of a graphical
programming editor that is implemented in Java and enables portability to a wide
variety of computer platforms. In contrast to other graphical programming sys-
tems, reusable parts of the programs can be stored in a program library to support
rapid prototyping. In addition, runtime performance data on different computing
platforms is collected in a database. A selection process determines dynamically
the software and the hardware platform to be used to solve the problem in minimal
wall-clock time. The environment is currently being tested on a Grand Challenge
problem, the NASAour-dimensional data assimilaticsystem.

Keywords:Graphical program design, visual programming, metacomputing, Java, data
assimilation.

1 Introduction

During the development of programs to solve Grand Challenge problems, many diverse
computing environments usually are used [13,15]. These environments include differ-
ent hardware platforms and software packages and are used to solve various smaller
subproblems in order to derive a solution for the overall problem.

*This material is based upon work conducted at Northeast Parallel Architectures Center at Syracuse Uni-
versity, supported by the National Aeronautics and Space Administration under Cooperative Agreement No.
NCCW-0027. This work was continued under support by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Computational and Technology Research, U.S. Department
of Energy, under Contract W-31-109-Eng-38.

Because of frequent changes in hardware and software, high overhead costs arise
in the program design, maintenance, and execution on the ever-increasing number of
computing platforms. Unfortunately, only limited time is available for scientific re-
searchers to obtain detailed knowledge of the diverse software environments and hard-
ware platforms. Therefore, in order to simplify the programming task and to reduce
the development costs for the design of parallel programs, a graphical programming
environment has been developed. The environment, calledtgractive parallel pro-
gramming environmenfiPPE), allows scientists to embed their favorite software li-
brary while providing enough structural guidance to support parallel programming on
the basis of a task-parallel approach.

This article describes some design issues of IPPE and its application on the Grand
Challenge problem dour-dimensional data assimilatiofFDDA) system used in at-
mospheric science studies.

The next section describes the requirements placed on the design of the environ-
ment for parallelizing scientific codes. Section 3 describes the environment developed
to fulfill these requirements. Then, the usefulness of the environment is shown while
applying it to the Grand Challenge FDDA problem (Sections 4-6). Section 7 points out
similar research efforts, and Section 8 summarizes the conclusions and outlines future
research directions.

2 Motivating Analysis

Many different approaches for parallelizing sequential programs exist. For example,
during the parallelization of the FDDA, a top-down approach is used. A typical top-
down approach includes the determination of major program blocks and the decision
about which parallel programming paradigm is best suited for the parallelization of the
problem.

In this article, a task-parallel programming paradigm is used. Several steps are
necessary when converting a sequential program to a task-parallel program:

1. Determine the structure of the sequential program, and divide the program in
smaller subproblems.

2. Based on the structure analysis, transfer the program into a task graph and in-
clude data dependencies.

3. Maximize the parallelism of the task graph.

4. Determine the tasks that are sequential, and reuse as much of the original se-
quential code as possible.

5. Determine and rewrite the parts of the task graph that are concurrent.

6. Generate a mapping from the task graph onto a virtual computing platform,
which will be mapped onto a real hardware platform.

7. Execute the parallel program, and observe the performance.

To reduce the amount of effort needed to parallelize the serial code, the IPPE sup-
ports all steps of the parallel program design. Although the software developer still has
to determine which parts should be parallelized, the IPPE supports the visualization of
the task graph, its mapping onto a real machine, and the animation of the execution
of the final parallel program. During use of the visual representation of the program
(a task graph), the final parallel program is augmented automatically with the neces-
sary parallel language constructs. Depending on the available hardware and software,
these can be message-passing library calls (e.g., MPI or PVM) or additional language
constructs (Fortran M, CC++, etc.).

Besides simplifying the coding effort, the IPPE programming environment takes
care of the resource management. Therefore, the scientist can concentrate on the prob-
lem to be solved, rather than having to decide what resources are available and on
which machine the program should be executed. Resources are selected in such a way
that the wall-clock time for solving the problem is minimized, as it is necessary for
many Grand Challenge problems. The next section summarizes some of the require-
ments arising from a particular application analysis that have influenced the design of
the interactive parallel programming environment.

3 Application Analysis

The well-known method adptimal interpolation(0l) serves as a test application through-
out this article. The Ol algorithm, as used in four-dimensional data assimilation, inter-
polates from irregularly distributed observations into a three-dimensional grid. Later,
this grid is used as input for a climate model. A detailed description of the sample
application and its parallelization is beyond the scope of this article. More informa-
tion about the scientific problem can be found in the literature. The parallelization of
different versions of the optimal interpolation algorithm is described elsewhere[15-17].

Of major importance are the properties of the code, as shown in Table 1, which
directly influence the design of the parallel software environment. This code analysis
is typical for many scientific codes.

The sequential 0l code was developed by many programmers over the past decade.
It has been transferred from very early computers to state-of-the-art vector supercom-
puters. Unfortunately, the documentation and code quality has suffered during this
process. Because of the size of the program and its structural complexity, however, a
complete redesign of the program is too expensive. Thus, any attempt at parallelizing
the code should reuse as many parts of the original program as possible. This restric-
tion also implies that, since the original program was written in Fortran, the core of the
program should be kept in this language. Doing so facilitates maintenance by current
and future atmospheric scientists who are most likely to know Fortran. Keeping the
program in Fortran also provides portability of the code to other machines. Using the
IPPE parallel programming environment improves the program documentation and the
overall structure of the program because supporting features for both are embedded in
the design of the environment. The environment is able to generate a message-passing
parallel code that runs on a wide variety of parallel computing platforms, including
heterogeneous computing platforms. The generated programs are executable in batch

mode for MIMD supercomputers, as well as interactively on distributed computing
platforms performing in time-sharing mode. Currently, scientists are developing sev-
eral other modules that are similar in functionality to the optimal interpolation algo-
rithm. With the help of the IPPE parallel computing environment, these modules can
be easily incorporated in the overall structure of the data assimilation system. After
inclusion of the programs in a module library, an atmospheric scientist can use the
module best suited for her/his individual goal (i.e., minimal wall-clock time and/or in-
creased accuracy of the calculation). Use of IPPE and its expansion with user-defined
modules will ultimately lead to a wide variety of predefined computational modules.
The availability of these predefined modules will dramatically reduce the program-
ming effort for building new programs. Moreover, the modules can be reused in other
projects, thus enabling rapid prototyping.

Many of the decisions dealing with the resource management of the program will
be hidden from the user and taken care of by the IPPE. The next section describes part
of the actual metacomputing environment in more detail.

4 Parallel Programming Environment

The following list summarizes the principal requirements for the parallel programming
environment. The environment should

e be easy to use for experts and nonexperts in the field of parallel programming;
o simplify the parallel program design;

e regulate the software development while providing support for documentation
and structure;

e regulate and supervise the program execution;

e be expandable;

e have native language support for Fortran and other high-level languages;
e support heterogeneous computing environments; and

e be expandable to include WWW resources in the environment.

To fulfill some of these requirements, the IPPE environment follows a dataflow
programming concept used by other similar approaches.3 To provide portability and to
enable program execution on many MIMD machines, the message-passing paradigm
is used to translate the visual program specification of the task graph into a program by
using message-passing routines. After the generation of the message-passing program,
the executable is executed on a statically or dynamically selected set of computers or
processors.

Figure 1 shows the multiple functionality of the IPPE. The IPPE is used to simplify
generating parallel programs or transferring a sequential program into a parallel pro-
gram. Additionally, it can be used to supervise the execution of a sequential as well as
a parallel program.

Internally, the IPPE comprises two main layers. First m@ssage-passing inter-
face intended to enable support of different computing platforms. Currently, the IPPE
provides an interface to MPI. On top of this communication libramyaaallel sup-
port library provides the necessary functionality to simplify parallel programming. An
example is a set of parallel vector routines necessary for the optimal interpolation al-
gorithm or other scientific codes.5 Code generated with the help of the programming
environment can be added to the pool of available modules.

Computationally intensive and time-critical applications are supported, while inte-
grating high-level programming languages often used in scientific programming, for
example, Fortran 77, Fortran 90, C, and C++.

While the original prototype of the parallel computing environment was developed
in Tcl/Tk, Pen, CGI and Python, the current implementation of the interface is based
on Java. This simplifies expansion toward the WWW-driven usage of the interface as
suggested in the MetaWeb project [6]. Using Java also reduces the number of software
packages involved in the core implementation of the computing environment.

5 Practical Application

After this relatively abstract introduction of the environment, some snapshots will il-
lustrate the usefulness of the parallel programming environment. In Figures 2- 7, snap-
shots of the software environment are displayed as used during the parallelization and
execution of the 0l algorithm.

Figure 2 shows the logical division of the sequential program. Data is generally
shown in rectangles, while processes working on data are displayed in circles. Depen-
dencies between data and tasks/processes are displayed with the help of directed edges.
For better visualization, colors are used in addition to the obvious form distinction.

Once the processes with concurrent nature are defined, they are introduced into
the process graph as shown in Figure 3. A parallel process is visualized with multiple
circles, while distributed data is visualized with multiple rectangles. An example for
such distributed data is the block distribution as known from HPF.

Data objectslowing between process objects are defined via a simple interface.
For example, in the optimal interpolation algorithm, a simplified data structure for the
observations and their location is used (Figure 4). The definition of data objects is sim-
ilar to a record, as known from several Fortran 77 extensions and Fortran 90, and the
struct command in C. The definition of the data type generates the necessary message-
passing routines, allowing communication between the data objects and the process
objects. Figure 5 shows the use of a data flow object in a procedure definition. The
indirection of the data flow is marked with the special keywords IN DATA and OUT
DATA. Thus, with only a very limited extension to the original sequential program-
ming language (in this case Fortran), task-parallel programs can be defined easily and
naturally. More interesting problems can be considered while sending dynamic data
structures, as found in irregular problems. For future research, we point out that the
extension of the data flow concept, with actual programs as data, will enable the distri-
bution of programs similarly to the distribution of data. Special care has to be taken,
however, in order to solve security issues. After the processes and the data objects

are defined, they have to be mapped onto a real computer to be executed (Figure 6).
Restrictions during the code development (e.g., the code can be compiled only on one
machine and is not portable) may limit the number of choices for the mapping. To min-
imize the overall wall-clock time of the program execution, dynamic load balancing is
used to map the problem on the different processors and/or computers, based on their
current load.

To support this strategy, a process monitor keeps track of the status and use of the
machines. Figure 7 shows an example of some system variables (here CPU load, load
average, and swap load) monitored to support the mapping strategy.

The load monitor helps to display performance bottlenecks of the parallel program
during its execution on the machines, while collecting a time-space diagram.

In the example depicted, all processes are mapped to an IBM SP2, and the graphical
display is viewed on a SPARC workstation. If the processes are written in a portable
way, mapping onto other machines is possible too. Hence, one can execute a parallel
program in a heterogeneous (super)computing environment.

6 Dynamic Selection of Software and Compute Resources

The dynamic execution of a program is driven by two factors. These are the software
modules and the available computational nodes (hardware). Figure 8 illustrates the pro-
cess responsible for making the selection of the hardware and software used to solve a
problem. Often, a scientific problem is solved many times for similar instances of data.
If the runtime is not significantly different between the instances, it can be used for
performance prediction. In other cases, a performance prediction function can be used.
Once the suspected execution time for a particular machine configuration is stored in
the database, the information about the current utilization of the machine is used to
predict the real-time performance of the program. If several choices of software and
hardware mappings are available, the one with the shortest execution time is chosen.
Hence, the selection not only includes a hardware mapping but also can include the
usage of completely different algorithms that are best suited for the selected computer
to solve the (meta)problem.

7 Related Research

Considerable research has been done in the field of visual programming in respect to
parallel computing. The environment described in this article uses an approach similar
to that introduced in HeNCE and CODE. A more detailed description of visual pro-
gramming and their applications in parallel computing can be found in the literature.34
Unlike these other systems, however, the IPPE extends the usage toward a realistic
metacomputer while providing a database of performance predictions that guides the
selection and mapping of programming tasks to selectable resources.

8 Conclusion and Future Research

This article describes an interactive parallel programming environment. The environ-
ment makes it possible to view the available resources as a metacomputer and to reduce
the development time for parallel programs. Dynamic process assignment is used to
assist the execution of the parallel programs on diverse computing resources. This
includes not only the selection of the best suited hardware platform but also the ap-
propriate software for solving the problem.6 Many extensions are planned. One of the
most striking will be the inclusion of a message-passing layer for the WWW. This will
allow access to resources available via the WWW. Integration of a Fortran interpreter or
language tools to simplify the distribution of programs is desirable. For mathematical
problems, scripting languages like Matlab, Scilab, or Mathematica could be a viable
alternative to interpreted Fortran or Java.

9 Acknowledgments

| thank Geoffrey C. Fox and Miloje Macivic for their support an valuable comments. |
am grateful to the research team at the Data Assimilation Office, Goddard Space Flight
Center, Greenbelt, MD, for they support during the project. | especially thank Peter
Lyster, David Lamich, Jim Stobie, and Mike Seablom for their discussions in helping
to understand the dark secrets of Ol code. | also thank Richard B. Rood for his support
and hospitality during several visits at NASA Goddard Space Flight Center as part of
the Universities Space Research Association (USRA). Finally, | thank Gail Pieper and
Warren Smith from Argonne National Laboratory for their comments on improving the
paper.

References

1. MPI: A Message Passing Interface. Technical report, University of Tennessee,
Knoxville, TN, 1994.

2. A. Beguelin, J. Dongarra, A. Geist, R. Manchek, K. Moore, and V. Sunderam.
PVM and HeNCE: Tools for heterogeneous network computing. In J. S. Kowalik
and L. Grandinetti, editors, Software for Parallel Computation: Proceedings of
the NATO Advanced Workshop on Software for Parallel Computation, held at
Cetraro, Cosenza, ltaly, June 2226, 1992, volume 106 of NATO ASI Series F,
pages ix + 363, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,
1993. Springer-Verlag.

3. James C. Browne, Jack Dongarra, Syed |. Hyder, Keith Moore, and Peter New-
ton. Visual Programming and Parallel Computing. Technical report, University
of Texas Austin and University of Tennessee at Knoxville, 1996.

4. James C. Browne, Syed |. Hyder, Jack Dongarra, Keith Moore, and Peter New-
ton. Visual programming and debugging for parallel computing. |IEEE parallel
and distributed technology: systems and applications, 3(1):75ff, 1995.

10.

11.

12.

13.

14.

15.

16.

. Roger Daley. Atmospheric Data Analysis. Cambridge Atmospheric and Space

Science Series, Cambridge University Press, 1991.

. Geoffrey C. Fox, Wojtek Furmanski, Marina Chen, Claudio Rebbi, and James

H. Cowie. Web-Work: Integrated Programming Environment Tools for National
and Grand Challenges. Joint Boston-CSC-NPAC Project Plan to Develop Web-
Work, Northeast Parallel Architectures Center at Syracuse University, Syracuse,
NY, 1996.

. Geoffry C. Fox and Wojtek Furmanski. Neat Tools Overview. Technical Re-

port unpublished, Northeast Parallel Architectures Center at Syracuse University,
Syracuse, NY, 1996.

. A. A. Khokhar, V. K. Prasanna, and M. E. Shaaban. Heterogenous Computing:

Challenges and Opportunities. IEEE Computer, pages ppl8-27, 1993.

. Andrew Lumsdaine, Jeffrey M Squyres, and Brian C. McCandless. Object Ori-

ented MPI (OOMPI): A C++ Class Library for MPI. Technical report, Depart-
ment of Computer Science and Engeneering, University of Notre Dame, Notre
Dame, IN, 1996. http://www.cse.nd.edu/ Isc/research/oompi.

James Pfaendtner, Stephen Bloom, David Lamich, Michael Seablom, Meta Sienkiewicz,

James Stobie, and Arlindo da Silva. Documentation of the Goddard Earth Ob-
serving System (GEOS), Data Assimilation System - Version 1. NASA Techni-
cal Memorandum 104606, Vol.4, NASA GSFC Data Assimilation Office, Green-
belt, Maryland, Jan. 1995.

Adrian Simmons. High Performance Computing Requirements for Medium
Weather Forecasting. ECMWF Newsletter, Reading, UK, (69):814, Spring 1995.

Lawrence L. Takacs, Andrea Molod, and Tina Wang. Documentation of the God-
dard Earth Observing System (GEOS), General Circulation Model - Version 1.
NASA Technical Memorandum 104606, Vol.1, NASA GSFC Data Assimilation
Office, Greenbelt, Maryland, Sep. 1994.

Gregor von Laszewski. The Parallelization of a Weather Prediction Model. Tech-
nical Report SCCS 533, Northeast Parallel Architectures Center at Syracuse Uni-
versity, July 1993.

Gregor von Laszewski. Minimal Requirements for a Graphical User Interface
for Parallel Computing Applications. Technical Report SCCS 602, Northeast
Parallel Architectures Center at Syracuse University, February 1994.

Gregor von Laszewski. Preliminary Performance of a Parallel Interpolation Al-
gorithm. Technical Report SCCS 713, Northeast Parallel Architectures Center at
Syracuse University, December 1995. first edition in June 1995.

Gregor von Laszewski. A Parallel Data Assimilation System and its Implications
on a Metacomputing Environment. PhD thesis, Syracuse University, December
1996.

17. Gregor von Laszewski and et al. Design Issues for the Parallelization of an Op-
timal Interpolation Algorithm. In G-R. Hoffman and N. Kreitz, editors, Coming
of Age: Proceedings of the 4th Workshop on the Use of Parallel Processing in
Atmospheric Science, European Centre for Medium Weather Forecast, Reading,
UK, pages 290-302. World Scientific, November 1994.

Sequential Program Program Execution

Sequential Program Invocatio

Interactive
Parallel Programming
Environment

n

Parallel Support Library

FORTRAN| C/C++ Java

Message Passing Interface

Parallel Program Generatio
Parallel Program Invocation

MPI

PVM others [WEB

Parallel Program

Figure 1: The multiple purpose of the parallel programming environment while creat-
ing and executing parallel programs.

r i i
.H_Ii

File Edit Wiew Helpg

v ? d
2

~ obsarvations

Ol e e ()

init SLP Analsis ils Anslusis HOL analysis

todel Grid (shared) Dafe Qufput

[]

oytput

=0

1=
.

Figure 2: The window shows the building blocks used in the global program structure
(tightly coupled metacomputing program).

10

File Edit Wiew Help
]
observations
init SLP Analwsis bl snalysis HUL &nalwsis
Date Output
Model Grid (shapedy o TP
. output
o O =
]
+ L =

Figure 3: The window shows how the program is represented after the parallel program
blocks have been introduced.

11

DATA OBJECT OBSERVATIONS
INTEGER NoOfObservations;
REAL x(NoOfObservations);
REAL y(NoOfObservations);

REAL temp(NoOfObservations);
REAL pressure(NoOfObservations);
END DATA OBJECT

Figure 4: Definition of data able to flow between process objects. The data object is a
simplified data object as used in the NASA project.

PROCESS huv (IN_DATA OBSERVATIONS,
IN_DATA MODEL_in,
OUT_ DATA MODEL_out)

I-- Quality Control

do i=1,NoOfObservations
call buddy_check
call gross_check

end do

I-- Matrix Solve

do i=1,NoOfGridpoints
call set_up_the_matrix
call solve_the_equations

end do

END PROCESS huv

Figure 5: Definition of a process object using data objects on its inputs.

12

File Edit Miew Help

Obserations

O © © ©

init SLP Analvsis Wile Analvsis HULW Analvsis

9,

odel Grid tsharedy D Ut
T output
v
v
)
o I
-r-
| =] 1=

Figure 6: The window shows the selection of the machines participating in the execu-
tion of the program.

13

0.1
B 0.0%
=

]

T
= -0.05
o
-0.1
200 — —
- 1ED -
-..'EI -
o 1004
_I -
0 -
00—
o
m -
it
B0
o
o
& _
n-

[[I I [[[I I [| [I]
™ o o -+ u w - o (=1} = ™ o~d
5435 5333333+
4 4 A A A4 A A A A - . .
o4 o4 ooy ooy H o4 H A
2 ofozo2ororororoyoyoy

S £ S
Hachine

Figure 7: The window shows the load meter to control dynamic load balancing while
executing the code.

14

Software Hardware

Programs Machines

Performance Measurement|

-

Performance
Database

_ =

Predicted
Performance

|

\

Utilization

Selected Selected

Software Machine

Figure 8: Dynamical selection process during program execution

15

