Gestalt of the Grid

Gregor von Laszewskil*, Gail W. Pieper!, Patrick Wagstrom!+2
1 Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, U.SA.
2 1llinois Institute of Technology, 10 West 31st Street, Chicago, IL 60616

* Correspondence:
gregor@mcs.anl.gov
Phone: 630 252 0472, Fax: 630 252 1997

May 12, 2002

Contents

6 Gestalt of the Grid
Introduction

6.1

6.2
6.3

6.4

6.5

6.1.1
6.1.2

Motivation
Enabling Factors

Definitions
Multi-faceted Grid Architecture

6.3.1
6.3.2

N-Tier Grid Architecture
Role-Based Grid Architecture

6.3.3 Service-Based Grid Architecture
6.3.4 GridChallenges
Grid Management Aspects

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6

Managing Grid Security
Managing Grid Information
ManagingGridData
Managing Grid Execution and Resources
Managing Grid Software
Managing Grid Hardware

Grid Activities.
6.5.1 Grid Activities

6.5.1.1 Global Grid Forum
6.5.1.2 ProductionGrids.

6.5.1.2.1 DOEScienceGrid.
6.5.1.22 TeraGrid
6.5.1.2.3 NASA Information Power Grid
6.5.1.24 EuroGrid
6.5.1.25 DataGrid
6.5.1.2.6 Asia-Pacific

6.6

6.7

6.8

CONTENTS

6.5.2 GridMiddleware 25
6.5.2.1 The GlobusProject 25
6.5.2.1.1 Commodity GridKits 26

6.5.2.1.2 Open Grid Services Architecture . . . 27

6.5.2.2 Legion 28

6.5.2.3 Storage Resource Broker 29

6.5.24 Akenti 29

6.5.2.5 Network Weather Service 30

6.5.3 High-Throughput Computing 30
6531 Condor...................... 30

6.5.32 NetSolve 32

6533 Ninf 33

6.5.34 SETI@Home 33

6.5.35 Nimrod-G 34

Grid Application 35
6.6.1 Astrophysics Simulation Collaboratory 35
6.6.2 Particle PhysicsDataGrid 37
6.6.3 NEESgrid. 37
Portals 38
6.71 HotPage 39
6.7.2 Webflowand Gateway 40
6.7.3 XCAT e 40
6.74 UNICORE 41
6.7.5 JIPANG 42
676 PUNCH 42
6.7.7 AccessGrid. 43
6.7.8 Commercial Grid Activities 43
Future and Conclusion 44

Chapter 6

Gestalt of the Grid

6.1 Introduction

The Grid approach is an important development in the discipline of computer sci-
ence and engineering. Rapid progress is being made on several levels, including
the definition of terminology, the design of an architecture and framework, the
application in the scientific problem solving process, and the creation of physical
instantiations of Grids on a production level. This chapter provides an overview
of important influences, developments, and technologies that are shaping state-of-
the-art Grid computing. In particular, we address the following questions:

e What motivates the Grid approach? (see Section 6.1.1)
e Whatisa Grid? (see Section 6.2)
e What is the architecture of a Grid? (see Section 6.3)
e Which Grid research activities are performed? (see Section 6.5)
e How do researchers use a Grid? (see Section 6.7.7)
e What will the future bring? (see Section 6.8)

Before, we begin our discussion, we would like to start with an observation
that leads us to the title of this chapter. A strong overlap between past, current, and
future research in other disciplines influences this new area and makes answers
to some of the questions complex. Moreover, though we are able to define the
term Grid approach, we need to recognize that similar to the Gestalt approach in
psychology, we face different responses by the community to this evolving field of
research. Based on the Gestalt approach, which hypothesizes that an individual’s
perception of stimuli has an affect on their response, we will see a variety of
stimuli on the Grid approach that influence current and future research directions.

6 CHAPTER 6. GESTALT OF THE GRID

We close this introductory section with a famous picture used
in early psychology experiments. If we examine the drawing in
detail, it will be rather difficult to decide what the different com-
ponents represent in each of the interpretations. Although hat,
feather, and ear are identifiable in the figure, one’s interpretation
(Is it an old woman or a young girl?) is based instead on “per-
ceptual evidence.” This figure should remind us to be open to
individual perceptions about Grids and to be aware of the multi-
faceted aspects that constitute the Gestalt of the Grid.

6.1.1 Motivation

To define the term Grid we first identify what motivates its development. We
provide an example from weather forecasting and modeling that includes a user
community with strong influence in the newest trends of computer science over
the last decades.

L. F. Richardson [70, 74] expressed the first modern vision for numerical
weather prediction in 1922. Within two decades, the first prototype of a prediction
system had been implemented by von Neuman, Charney, and others on the first
generation of computers [72]. With the increased power of computers, numerical
weather prediction became a reality in the 1960s and initiated a revolution in the
field that we are still experiencing. In contrast to these early weather prediction
models, today the scientific community understands that complex chemical pro-
cesses and their interactions with land, sea, and atmosphere have to be considered.

Several factors make this effort challenging. Massive amounts of data must
be gathered worldwide; that data must be incorporated into sophisticated models;
the results must be analyzed; feedback must be provided to the modelers; and
predictions must be supplied to consumers (see Figure 6.1).

Analyzing this process further we observe that the data needed as input to the
models based on observations and measurements of weather and climate variables
are still incomplete and sophisticated sensor networks must be put in place to
improve this situation.

The complexity if these systems have reached a level where it is no longer pos-
sible for a single scientsit to process and manage the entire process; the era of the
lonely scientist working in seclusion is coming to an end. Today, accurate weather
models are derived by the sharing the intellectual property within a community of
interdisciplinary researchers.

This increase in the complexity in the numerical methods and amount of data

6.1. INTRODUCTION

sensors

scientists

i

compute and storage
facilittijes
1)

consumer

)
measure l collaboratel calculate l deliver T
F observations | model prediction
1 —‘
feedback

Figure 6.1: Weather forecasting is a complex process that requires a complex
infrastructure.

required, along with the facet of community access, requires access to massive
amounts of computational and storage resources. Although today’s supercomput-
ers offer enormous power, accurate climate and weather modeling require access
to even larger resources that may be integrated from resources at dispersed loca-
tions.

Therefore, weather prediction promotes more than just the focus on making
compute resources available as part of a networked environment. We have iden-
tified that need for an infrastructure that allows us to create from a dynamic, dis-
persed set of sensor, data, compute, collaboration, and delivery networks. Clearly,
weather forecasting is a complex process that requires flexible, secure, coordi-
nated sharing of a wide variety of resources.

6.1.2 Enabling Factors

When we look at why it is now possible to develop very sophisticated forecast
models we see an increase in understanding, capacity, capability, and accuracy on
all levels of our infrastructure.

Clearly, technology has advanced dramatically. Communication satellites and
the Internet enable remote access to regional and international databases and sen-
sor networks. Collaborative infrastructures (such as the Access Grid [29]) have
moved exchange of information beyond the desktop. These advances have and

8 CHAPTER 6. GESTALT OF THE GRID

will profoundly affect the way scientists work with each other. Compute power
has also steadily increased. Indeed, for more than three decades, computer speed
has doubled every eighteen months (supporting Moore’s law [63]), and this trend
is expected to last for at least the next decade. Furthermore, over the past five
years network bandwidth has increased at a much larger rate, leading experts to
believe that the network speed doubles every nine months. At the same time, the
cost of production for network and computer hardware is decreasing.

We also observe a change in modality of computer operation. The first genera-
tion of supercomputers were high-end mainframes, vector processors, and parallel
computers. Access to this expensive infrastructure was provided and controlled
as part of a single institution within a single administrative domain. With the
advent of network technologies, promoting connectivity between computers, and
the creation of the Internet, promoting connectivity between different organiza-
tions, a new trend arose, leading away from the centralized computing center to
a decentralized environment. As part of this trend, it was natural to collect geo-
graphically dispersed and possibly heterogeneous computer resources, typically
as networks of workstations or supercomputers. The first connections between
high-end computers to solve a problem in parallel on these machines were termed
a metacomputer. (The term is believed to be originated as part of a gigabit testbed
[61].) Much research in this area, some of which will be mentioned in this chapter,
has been influential in shaping what we now term the Grid approach or concept.
Thus, increases in capacity, capability, and modality are enabling a new way of
doing distributed science. Additionally, the technology that was once viewed as
specialized infrastructure is today becoming a commaodity technology making it
possible to resources for example through the use of the Internet [69] more easily.

This requirement and vision, which has become clearer over the last decades,
now applies to many other disciplines that will provide commercial viability in the
near future. It has a profound past, present, and future impact on several scientific
disciplines, including computer science.

6.2 Definitions

In this section we provide the most elementary definition of the term Grid and
its use within the community. As we have seen in the previous section the Grid
approach has been guided by a complex and diverse set of requirements but at the
same time provides us with a vision for an infrastructure that promotes sophisti-
cated international scientific and business-oriented collaborations. Much research

6.2. DEFINITIONS 9

in this area, some of which will be mentioned in this chapter, has been influential
in shaping what we now term the Grid approach:

Definition: Grid approach
The Grid approach promotes a vision for sophisticated international scien-
tific and business-oriented collaborations.

The term “Grid” is an analogy to the electric power grid that allows pervasive
access to electric power. In a similar fashion, computational Grids provide ac-
cess to pervasive collections of compute-related resources and services. As early
as 1965 the designers of the Multics operating system envisioned and named re-
quirements for a computer facility operating “like a power company or water com-
pany” [82], and others envisioned Grid-like scenarios [60]. However, we empha-
size that our current understanding of the Grid approach goes far beyond simply
sharing compute resources in a distributed fashion. Besides supercomputer and
compute pools, Grids include access to information resources (such as large-scale
databases) and access to knowledge resources (such as collaborative interactions
between colleagues). Essential is that these resources may be at geographically
disperse locations and may be controlled by different organizations. Thus, the
following definition for a Grid is appropriate:

Definition: Grid
An infrastructure that allows for flexible, secure, coordinated resource shar-
ing among dynamic collections of individuals, resources, and organizations.

So far we have used the term Grid rather abstract manner. To distinguish the
concept of a Grid from an actual instantiation of a Grid as a real available infra-
structure we use the term production Grid. Such production Grids are typically
shared among a set of users. The analogy in the electrical power grid would be a
power company or agglomerate of companies that maintain their own grid while
providing persistent services to the user community. Thus, the following defini-
tion is introduced:

Definition: Production Grid
An instantiaion of a Grid that manifests itself by including a set of resources
to be accessed by Grid users.

Additionally, we expect that multiple production Grids will exist and be sup-
ported by multiple organizations. Fundamental to the Grid is the idea of sharing.

10 CHAPTER 6. GESTALT OF THE GRID

Naturally, it should be possible to connect such Grids with each other as to share
resources. Thus, it is important to define a set of elementary standards that assist
to provide interoperability between production Grids.

Some production Grids are created based on the need to support a partic-
ular community. Although the resources within such a community are usually
controlled in different administrative domains, they can be accessed as part of a
community production Grid. Examples of production and community production
Grids are introduced in Section 6.5.1.2.

Definition: Community Production Grid
A production Grid in which the creation and maintenance are performed by
a community of users, developers, and administrators.

The management of a community production Grid is usually handled by a
virtual organization [46], which defines the rules that guide membership and use
of resources.

Definition: Virtual Organization
An organization that defines rules that guide membership and use of indi-
viduals, resources, and institutions within a community production Grid.

A typical Grid will contain a number of high end resources such as supercom-
puters or data storage facilities. As these resources can be consumed by users we
term them in analogy to electrical power plants as follows:

Definition: Grid Plant
A high end resource that is integrated in a virtual organization and can be
shared by its users.

The user on the other hand is able to access these resources through a user
specific device such as a computer, handheld device, or a cell phone.

Definition: Grid Appliance
A device that can be integrated into a Grid while providing the user with a
service that uses resources accessible through the Grid.

Grid appliances provide a portal that enables easy access, utilization, and con-
trol of resources available through a Grid by the user. We will define the term Grid
portal in more detail in Section 6.7.

6.3. MULTI-FACETED GRID ARCHITECTURE 11

6.3 Multi-faceted Grid Architecture

A review of the literature about existing Grid research projects shows that three
different architectural representations are commonly used. Each of these archi-
tectural views attempts to present a particular aspect of Grids. Thus, we believe
it is important to recognize that the architecture of the Grid is multifaceted and
an architectural abstraction should be chosen that fits best to describe the given
aspect of the Grid research. Nevertheless, in each case one needs to consider the
distributed nature and the unique security aspects.
Next we will describe in more detail these common architectural views.

6.3.1 N-Tier Grid Architecture

The N-tier application architecture provides a model for Grid developers to create
flexible and reusable Grid applications. Decomposing a Grid application into tiers,
allows developers to modify or add only to a specific layer, rather than to focus
on the reimplementation of all parts of the application. N-tier application archi-
tectures are common within and are most often represented as part of the layer 7
of the OSI model [66]. Many Grid projects provide an N-tier architecture. The
advantage of an ntier architecture is its familiarity and ints aplicability to many
conceptual Grid problems that try to seperate issues between the application and
the physical layer.

System Level User Level

@ Middleware Applications @
Services

Figure 6.2: An n-tier Grid architecture based on an application users point of view.

6.3.2 Role-Based Grid Architecture

The secure access to a collectively controlled set of physical resources reused
by applications motivates a role-based layered architecture [46, 47]. Within this

12 CHAPTER 6. GESTALT OF THE GRID

architecture, it is easy to identify fundamental system components, specify the
purpose and function of these components, and indicate how these components
interact with one another. This architecture classifies protocols, services, appli-
cation programming interfaces, and software development kits according to their
roles in enabling resource sharing. It identifies five layers: fabric, connectivity,
resource, collective, and application layer (see Figure 6.3). Interoperability is pre-
served by using a small standard set of protocols assisting in the secure exchange
of information and data among single resources. These resources are managed by
collective services in order to provide the illusion of a single resource to applica-
tion designers and users.

Distributed Information Services,

Resource and
Connectivity

Physical Devices and
Resources such as

Fabric

Figure 6.3: A role-based layered view of Grid architecture.
The layers within the architecture are defined as follows:

e The fabric layer contains protocols, application interfaces, and toolkits that
allow development of services and components to access locally controlled
resources, such as computers, storage resources, networks, and sensors.

e The connectivity layer includes the necessary Grid-specific core commu-
nication and authentication support to perform secure network transactions

6.3. MULTI-FACETED GRID ARCHITECTURE 13

with the resources within the Grid fabric. This includes protocols and ser-
vices allowing secure message exchange, authentication, and authorization.
It is beneficial to develop a small set of standard protocols and services to
provide the means of interoperability.

e The resource layer contains protocols that enable secure access and moni-
toring by collective operations.

e The collectivelayer is concerned with the coordination of multiple resources
and defines collections of resources that are part of a virtual organization.
Popular examples of such services are directories for resource discovery and
brokers for distributed task and job scheduling.

e The application layer comprises the users’ applications that are used within
a virtual organization.

Each of these layers may contain protocols, application programming inter-
faces, and software development kits to support the development of Grid appli-
cations and services. A benefit of this architecture is the ability to bootstrap a
complex Grid framework while successively refining it on various levels. We
emphasize that this architecture can be supported with an immensely rich set of
already defined application interfaces, protocols, toolkits, and services provided
through commodity technologies and developments within high end computing.
Reuse and extension of these standards, based on Grid specific requirements, will
support the development of Grids.

6.3.3 Service-Based Grid Architecture

In near future, we will observe a shift within information technologies toward
service oriented concepts. From the perspective of Grid computing, we define a
service as a platform-independent software component, which is described with
a description language and published within a directory or registry by a service
provider (see Figure 6.4). A service requester can locate a set of services with a
query to the registry, a process known as resource discovery. A suitable service
can then be selected and invoked, a process known as binding [38, 41].

Definition: Service
A platform-independent software component published within a directory
or registry by a service provider.

14 CHAPTER 6. GESTALT OF THE GRID

The usefulness of the service-based Grid architecture can be illustrated by
scheduling a task on a computer cluster. First, we locate a set of possible re-
sources. Next, we select a compute resource from this set where we would like to
schedule our task. A criterion to select such a resource could be cost or load bal-
ance among the resources. Once a suitable resource is selected, we bind the task
of execution to this resource. Figure 3 shows the parties and message exchanges
that define a service-based model. An important aspect of services is the possi-
bility to easily compose new services while using existing ones. This is enabled
by the standard description, not only of the protocol, but also of the behavioral
description of such a service.

Clearly, it is possible to develop complex flows between services. Since this
service-based model deals with the use of asynchronous services, it will be im-
portant to deal appropriately with service guarantees in order to avoid deadlocks
and other hazards.

find
publish

Requestor Provider

Figure 6.4: The service model allows the description of a provider service that
can be published in a registry and be found and bound by a requestor.

The service-based concept has been in wide use, not only by the Grid commu-
nity, but also by the business community. This fact has led to recent collaborative
efforts between the Grid and the business community. An example of such an
activity is the creation of the Open Grid Service Architecture, which we describe
in more detail in Section 6.5.2.1.2.

6.4. GRID MANAGEMENT ASPECTS 15

6.3.4 Grid Challenges

Whatever the form of the Grid, we must consider, the dynamic, unpredictable
properties of the Grid, while at the same time providing a reliable and persistent
infrastructure. Additionally, we would like to enable open collaborations withouth
neglecting protection of the collaboration with appropriate security restrictions.
These apparent contradictions — desire for reliability vs. a potential unreliable
infrastructure, or restricted vs. unrestricted access to information — provide com-
plex challenges for Grids (see Figure 6.5). In order for Grids to become a reality,
we must develop infrastructures, frameworks, and tools that address these com-
plex management challenges and issues.

Software/
Application

Hardware
Infrastructure

Figure 6.5: The Grid approach must deal with a complex management challenge
in many areas.

6.4 Grid Management Aspects

A massively distributed and interconnected system entails management issues that
go far beyond those of typical computers. Among these issues are the security of

16 CHAPTER 6. GESTALT OF THE GRID

the system to maintain the overall integrity of the system; data and information
management to ensure that the relevant data about users, systems, and experiments
is available to users and programs on the Grid; execution and resource manage-
ment to handle the allocation of resources and ensure that tasks are executed in
a timely matter; software management to handle deployment of software pack-
ages; and hardware management to ensure that the physical base of the Grid stays
running. This section addresses these issues and their relationship to the Grid.

6.4.1 Managing Grid Security

Since the Grid approach deals with heterogeneous and disperse resources and ser-
vices, security aspects within Grids play an important role. Most commodity
security services available today enable the interaction between two peers. The
concepts used to enable this interaction are authentication, authorization, encryp-
tion, and nonrepudiation (see Figures 6.6 and 6.7)

Authentication deals with the verification of the identity of an entity within the
Grid. Though this is commonly associated only with identification of a Grid user,
the Grid also requires authentication of resources and services provided as part of
the Grid.

Authorization deals with the verification of an action an entity can perform af-
ter authentication was successfully performed. Thus, policies must be established
that determine the capabilities of allowed actions. A typical example is the use
of a batch queue is allowed for a user A between 3 and 4 o’clock, but user B is
allowed to use the queue only from 5 to 6 o’clock. In general, policies determine
who can do what, when, and at which resource.

Encryption provides a mechanism for protecting the confidentiality of mes-
sages in transit between two peers.

Nonrepudiation deals with issues that provide data or message integrity, such
as verifying that data was not changed accidentally or maliciously during message
transmission.

Besides these general security issues, the Grid infrastructure poses unique re-
quirements. For instance, it is unfeasible to authenticate via password challenges
for a user on thousands of different resources.

Sngle sign-on is a mechanism that supports authentication to a large number
of Grid resources on behalf of the user or resource by delegating the task of au-
thentication to a service acting on behalf of the user (also called a proxy service).
Such a service will typically create a temporary credential (often referred to as
a secure proxy) that is used for authentication. An important factor to consider

6.4. GRID MANAGEMENT ASPECTS 17

Delegation Authorization

Non-
Repudations

Community
Authorization

Figure 6.6: The issues to be addressed in security.

within single sign-on is that different domains may provide different local secu-
rity mechanisms. Thus, any solution muse be able to deal with different identity
mappings, such as Unix accounts accessible through PKI or Kerberos.

Delegation is the process of one Grid entity acting on behalf of another Grid
entity. Delegation must be performed carefullybecause it is possible to create
delegation chains. A simple exampleof such a chain is the initiation of a process
on a resource D, initiated by a resource A, and subsequently delegated through B
and C(A—B—C~—D). In general, we observe the longer the chain, the greater
the risk for misuse. Accordingly, it is desirable to create what we term limited
delegation. This includes procurements for authentication restriction with more
sophisticated Grid services. Thus, we can create a limited proxy that may, among
other things, restrict use to a particular Grid resource.

Community authorization provides mechanisms for a virtual organization to
define policies for groups of users that can be applied to enabling access con-
trol to resources by a community. This service is needed in case it is impossible
or impractical to keep track of the access to a resource on a user-by-user basis.
An authority that establishes trust between the peers regulates inclusion in such
a community. In this sense community authorization enables single sign-on to

18 CHAPTER 6. GESTALT OF THE GRID

Authentication Authorization
| D c Single Sign-on
.
Secure communication

oo i e
t r(;)l;(ﬂt hau_t ;jncatlon -repudial authorization
an orization through delegation

. Delegation
Secure Execution i I :

Figure 6.7: Cartoons of security concepts useful for Grids.

resources while being delegated to a trusted authority.

Secure execution is desired in environments where the user community be-
comes too large to handle. In these cases, it is important to provide a service that
can run untrusted applications (those submitted by the users) in a trusted environ-
ment (the cluster at a compute center or a Grid); the concept of virtual machines
essential for such a service.

We must consider the user community when designing a security infrastruc-
ture for applications and services running in a Grid environment. Many users are
unwilling to deal with obtrusive security procedures, but at the same time expect
a reasonable level of security. Hence, it is of utmost importance to present the
security mechanisms to the users in an easy and mostly transparent way. A min-
imum level of understanding by users is necessary, so that they can specify their
own security requirements and understand the security guarantees or risks of the
Grid. In this respect, an educational service provided as part of the strategy of
production Grids can offer the necessary explanations and guidance for accessing
Grid resources and developing secure service.

6.4.2 Managing Grid Information

Within Grids, information about the users and the system is critical. User in-
formation helps to establish collaborative sessions, and system information helps
users select the appropriate resources and applications. The availability of such
information is important for the maintenance, configuration, and use of the hetero-

6.4. GRID MANAGEMENT ASPECTS 19

geneous and dynamically changing Grid infrastructure. Characteristics that must
be imposed on such an information service to support Grids include

e uniform, flexible access to information;
e scalable, efficient access to dynamic data;and

e access to multiple information sources.

The creation of such an information service must be an integral part of each
Grid toolkit and application. In the past, distributed directories have provided
such a service. Often a centrally maintained relational database may serve the
same purpose. In any case, the design of a scalable information service must
consider the distributed nature of the Grid. Equally important is the fact that the
resource owners may not wish to export the information about their system to
unauthorized users. Although restricted access to information is already possible,
it is not adequately addressed in the first generation of prototype production Grids.

6.4.3 Managing Grid Data

Each program executed in a Grid is dependent on data, and the data requirements
for applications running on the Grid are enormous. For example, gathering the
data for a meterological forcast requires the processing and storage of petabytes
of data each day. To compensate for limited storage capacities at remote sites,
services that perform delivery on demand may augment the data with a lifetime to
limit the amount of actual data in the Grid. If the calculation cannot be performed
on the server where the data is located, the user must be able to efficiently replicate
that data elsewhere. Thus, a reliable file transfer service must be provided to move
the data between source and destination on behalf of the issuing client. Filters can
be used to reduce the amount of data during a transfer, based on metadata attached
with the file. If the data can be created with less effort than the actual data transfer,
it may be advantageous to augment data with pedigree information about how to
regenerate the data instead of storing the data.

6.4.4 Managing Grid Execution and Resources

Calculations on resources within the Grid are controlled by execution services.
The simplest execution service is part of the operating system and allows execu-
tion of jobs and tasks on a single resource. A Grid security infrastructure must be

20 CHAPTER 6. GESTALT OF THE GRID

in place that provides authentication and authorization mechanisms to govern the
use of this resource. Batch queuing systems provide a convenient way to extend
such an execution service to a cluster, a parallel computer, or a supercomputer.
To enable the use of multiple instances of such resources, a resource co-allocation
mechanism is needed. Such a mechanism will identify a suitable set of resources
based on the Grid information service and verify that the selected resources are
available (or to fulfill the user’s request if they are not), reserve the resources, and
finally execute the user’s task on this agglomeration of resources.

Algorithms to control the collective use of such resources may be quite com-
plex. Since the algorithmic implications for scheduling in such an environment are
an NP complete problem, heuristics may be used to solve the scheduling problem
and to guarantee the execution of the tasks. Researchers are currently exploring
the use of combinatorial optimization strategies, stochastic sampling, economic
models, and agent-based systems. Smart services are necessary that can deal with
deadlock prevention, avoidance, and QoS guarantees on the local and global scale.
Often, complicated workflows must be formulated as part of the complex interdis-
ciplinary applications run by scientists on Grids. Thus, it is necessary to provide
workflow management services that allow control of the flow of data and applica-
tions as part of the problem-solving process.

6.4.5 Managing Grid Software

Deployment of applications, components, and services in a distributed heteroge-
neous environment is a challenging problem. Of particular concern is guarantee-
ing interoperability between different versions of software and libraries on already
installed and operational software and services. The use of the Grid service model
described earlier offers a partial solution to this problem by providing metadata
to each application and service installed on the Grid that can be queried through
the Grid information service. In this way, it is possible to include portability data
within the infrastructure, which will be used as part of an authorization service to
verify whether services or applications can interoperate.

6.4.6 Managing Grid Hardware

The resource providers are responsible for hardware management on the Grid.
Notifications about downtimes and maintenance upgrades must be available through
the information service in order to simplify the user’s search for suitable resources
with service guarantees. In general, hardware management must be augmented

6.5. GRID ACTIVITIES 21

with an appropriate infrastructure on the hardware service provider side. Quality
of service augmentations on the hardware level, such as networks, could provide
a profound advantage for future Grid infrastructures.

6.5 Grid Activities

We have organized our discussion of Grid project into three classes: community
activities, development toolkits, and applications (see Figure 6.8). Within each
class, we describe various activities in being performed by the Grid community.

Grid

T

Applications Development Community

Science Collaboration Middleware Userware Standardization Production Grids Industry
/ / / \ \ v DOE Science Grid
Astro Physics Akenti Global GridForum NASA IPG
Particle Physics . SRB . IETF NPACI
Structural Biology Access Grid Legion Globus Compute Services Portal W3C UK Grid
Geo Physics NWS OMG AsialPecific Grid
other Prod. Grids
Python CoG Kit Condor Hotpage
JSP CoG Kit Netsolve Unicore
Web Services Ninf Punch
Java CoG Kit Nimrod Java CoG Kit

Figure 6.8: A simple classification of Grid activities: community activities, devel-
opment tools and applications.

6.5.1 Grid Activities

A variety of activities are performed by the community. Each of these activities
has a profound impact on the development of Grids. We identify three basic Grid
user communities and the activities they perform:

e Development: Grid programmers who develop services in a collaborative
fashion for deployment in the Grid.

e Application: Scientific or application users who access the services pro-
vided as part of the Grid.

22 CHAPTER 6. GESTALT OF THE GRID

e Community Building: Administrators who deploy services and applications
in production Grids in order to make them accessible to others.

While today’s Grid users include mostly large-scale scientific application users
and developers, we expect that with the availability of robust Grid toolkits the
community will expand to the financial sector, the health care sector, small indus-
tries, and even the common household user needing access to services resources
accessible through the Grid. Thus, the Grid will be instrumental in furthering the
scientific discovery process [19] while developing the next generation of commu-
nity problem-solving environments.

6.5.1.1 Global Grid Forum

The Global Grid Forum (GGF) is an international community-initiated forum of
individual researchers and practitioners working on various facets of Grids. The
mission of the GGF is to promote and develop Grid technologies and applications
through the development and documentation of “best practices,” implementation
guidelines, and standards, with an emphasis on “rough consensus and running
code.” The objective is to support with such standards the creation of produc-
tion Grids; address infrastructure obstacles inhibiting the creation of these Grids;
perform educational outreach; and facilitate the use of Grid technologies within
diverse application communities. Based on the Internet Engineering Task Force
model, the GGF contains several area groups and, within these areas, working
groups dealing with a particular Grid-related problem. The current areas are in-
formation services, security, scheduling and management, performance, architec-
ture, data, and applications and models. Regular meetings are held in which over
two hundred organizations from more than thirty countries are represented [25].

6.5.1.2 Production Grids

A number of national and international community production Grids have been
established in the past few years. Each is part of a virtual organization spanning
multiple administrative domains and enabling access to high-end resources such
as supercomputers, mass storage systems, and advanced instruments. A well-
trained administrative staff is responsible for deploying services and components
in such collectively maintained production Grids.

6.5.1.2.1 DOE Science Grid The Department of Energy (DOE) Science Grid
is a pilot program to provide an advanced distributed computing infrastructure

6.5. GRID ACTIVITIES 23

based on Grid middleware and tools to enable the degree of scalability in scientific
computing necessary for DOE to accomplish its science missions. Emphasis is
placed on making the construction and use of large-scale heterogeneous systems
as easy as using today’s desktop environments. The DOE Science Grid [40] is part
of a large initiative, entitled Scientific Discovery through Advanced Computing
(SciDAC) [19], that was started in FY2001. The objective of SciDAC is to develop
the scientific computing software and hardware infrastructure needed for terascale
computers to advance its research programs in basic energy sciences, biological
and environmental research, fusion energy sciences, and high-energy and nuclear
physics.

6.5.1.2.2 TeraGrid The TeraGrid [21] project seeks to build and deploy the
world’s largest, fastest, most comprehensive, distributed infrastructure for open
scientific research. Upon completion, the TeraGrid will include 13.6 teraflops
of Linux cluster computing power distributed at four sites: the National Center
for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-
Champaign; the San Diego Supercomputer Center (SDSC) at the University of
California - San Diego; Argonne National Laboratory in Argonne, Illinois; and
the California Institute of Technology (Caltech) in Pasadena. The TeraGrid will
include other distributed facilities capable of managing and storing more than 450
terabytes of data, high-resolution visualization environments, and toolKkits for Grid
computing. A high-speed network, which will operate between 50 and 80 giga-
bits/second, will permit the tight integration of the components in a Grid. The
$53 million project is funded by the National Science Foundation and includes
corporate partners. The TeraGrid benefits from other Grid-related activities per-
formed at the partner sites through the National Computational Science Alliance
(Alliance) [9, 78, 10] and the National Partnership for Advanced Computational
Infrastructure (NPACI) [11]. The Alliance and NPACI is supporting the TeraGrid
activities through their partners and infrastructure/building activities and their cur-
rent and future Grid infrastructures.

6.5.1.2.3 NASA Information Power Grid The NASA Information Power Grid
project was initiated from a series of workshops in autumn of 1997. The goal is
to provide seamless access to resources between NASA sites and a few selected
NPACI sites for application development. These applications are likely to in-
clude aeronautics and other areas of interest to NASA, such as space sciences and
earth sciences. The requirements NASA will address first are seamless access

24 CHAPTER 6. GESTALT OF THE GRID

to distributed legacy applications via networks, cross-platform computational and
interactive visualization of large three-dimensional data sets, intelligent and dis-
tributed data mining across unspecified heterogeneous data sources, agent tech-
nologies, privacy and security, and tools for the development of multidisciplinary
systems. Additionally, NASA must deal with a number of real-time requirements
for aircraft operations systems[15]. The current hardware resources included in
the prototype Information Power Grid are based on Globus technology and com-
prise approximately 1,500 CPU nodes in six SGI Origins distributed across sev-
eral NASA centers. Also included are 10-50 terabytes of securely accessible mass
storage, several workstation clusters with approximately 100 CPUs, and a Condor
pool with 300 workstations.

6.5.1.2.4 EuroGrid EuroGrid [14] is an application testbed for the European
Grid community. It is supported as a shared cost research and technology de-
velopment project between the European Commission and its eleven partner in-
stitutions. It will demonstrate the use of Grids in selected scientific and indus-
trial communities, address the specific requirements of these communities, and
highlight the benefits of using Grids. The objectives are to establish and oper-
ate a European Grid between several of Europe’s High Performance Computing
centers. Besides developing Grid software and applying it within state-of-the-art
applications such as bio-molecular simulations, weather prediction, coupled CAE
simulations, structural analysis, and real-time data processing, the alignment with
commercial partners is intended to productize the software and provide supported.

6.5.1.2.5 Data Grid The DataGrid [12] project is funded by European Com-
munity. The objective is to enable next-generation scientific exploration that re-
quires intensive computation and analysis of shared large-scale databases, from
hundreds of terabytes to petabytes, across widely distributed scientific virtual
communities. The initiative is led by CERN, the European Organization for Nu-
clear Research, together with five other main partners and fifteen associated part-
ners. Major application areas are quantum chromodynamics, Earth observation,
and human health research.

6.5.1.2.6 Asia-Pacific The ApGrid [13] is a partnership for Grid computing in
the Asia Pacific region. So far, it includes about thirty institutions. One of the im-
portant objectives of ApGrid is building an international Grid testbed. The current
technology plan includes the Globus Toolkit as its underlying infrastructure.

6.5. GRID ACTIVITIES 25

6.5.2 Grid Middleware

The collection of APIs, protocols, and software that allow creation and use of a
distributed system, such as a Grid, is called middleware. It is at a lower level than
end-user applications while being at a higher level than the underlying network
transport methods. A variety of middleware packages are available, of which we
shall examine a select few.

6.5.2.1 The Globus Project

Over the past few years, the Globus Project has contributed in many ways to the
Grid effort. It has five thrust areas. First, the Globus Project conducts research
on Grid-related issues such as resource management, security, information ser-
vices, data management, and application development environments. Second, the
Globus Project is developing open-source, open architecture Grid software, called
the Globus Toolkit. A growing number of research institutes and companies have
committed to supporting this open-source activity. Third, the Globus Project as-
sists in the planning and building of large-scale testbeds, both for research and
for production use by scientists and engineers. Fourth, the Globus Project collab-
orates in a large number of application-oriented efforts that develop large-scale
Grid-enabled applications in collaboration with scientists and engineers. Fifth,
the Globus Project is committed to community activities that include educational
outreach and participation in defining Grid standards as part of the Global Grid
Forum.

The Globus Toolkit is modular, enabling users to choose the components
needed for the development of Grid-enabled applications.

Security is an important aspect of the Globus Toolkit. The Grid Security Infra-
structure (GSI) uses public key cryptography as the basis for its functionality. It
enables key security services such as mutual authentication, confidential commu-
nication, delegation, and single sign-on. GSI builds the core for implementing
other Globus Toolkit services..

Communication within Globus is handled through the GlobuslO library, which
provides TCP, UDP, IP multicast, and file 1/0O services with support for security,
asynchronous communication, and quality of service. An important tool pro-
vided by the Globus Project is MPICH-G2, which supports MPI across several
distributed computers. MPICHG2 was used at SC2001 in an astrophysical calcu-
lation and received the Gordon Bell Prize [55].

Information about a Grid is handled through the Metacomputing Directory

26 CHAPTER 6. GESTALT OF THE GRID

Service. The concept of a directory service for the Grid was first defined in [?] and
later refined in [39]. The Metacomputing Directory Service manages information
about entities in a Grid in a distributed fashion. The current implementation of
MDS is based on the Lightweight Directory Access Protocol (LDAP). This pro-
tocol enables uniform querying of system information from a variety of system
components, and for optionally constructing a uniform namespace for resource
information across a system that may involve many organizations.

Resource management within Globus is handled through a layered system in
which high-level global resource management services are build on top of lo-
cal resource allocation services.The current Globus resource management system
comprises three components: (1) an extensible resource specification language
that serves as a method for exchanging information about resource requirements
between all of the components in the Globus resource management architecture;
(2) a standardized interface to local resource management tools including LSF,
NQE, LoadLeveler, and Condor; and (3) a resource coallocation service that al-
lows construction of sophisticated co-allocation strategies that allows use of mul-
tiple resources concurrently.

Data management is supported by integration of the GSI protocol to access
remote files through, for example, the HTTP and the FTP protocols.

Data gridsare supported through replica catalog services in the newest release
of the Globus Toolkit. These services allow copying of the most relevant portions
of a data set to local storage for faster access. Installation of the extensive toolkit
is enabled through a packaging toolkit that can generate custom-designed instal-
lation distributions.

Current research activities include the creation of a community access server,
restricted proxies for placing additional authorization requests within the proxy
itself, data grids, quality of service, and integration within commaodity technolo-
gies such as the Java framework and web services. Future versions of the Globus
Toolkit will integrate the Grid architecture with Web services technologies.

6.5.2.1.1 Commodity Grid Kits The Globus Project provides a small set of
useful services, including authentication, remote access to resources, and infor-
mation services to discover and query such remote resource. Unfortunately, these
services may not be compatible with the commodity technologies used for appli-
cation development by the software engineers and scientists.

To overcome this difficulty, the Commodity Grid project is creating Commodity
Grid Toolkits (CoG Kits) that define mappings and interfaces between Grid ser-

6.5. GRID ACTIVITIES 27

vices and particular commodity frameworks. Technologies and frameworks of
interest include Java, Python, CORBA [79], Perl, Web Services, .NET, and JXTA.

Existing Java [80] and Python CoG Kits provide the best support for a subset
of the services within the Globus Toolkit. The Python CoG Kit uses SWIG in
order to wrap the Globus C-API, while the Java CoG Kit is a complete reimple-
mentation of the Globus protocols in Java. The Java CoG Kit is done in pure Java
and provides the ability of using a pure Java GRAM service. Although the Java
CoG Kit can be classified as middleware for integrating advanced Grid services,
it can also be viewed both as a system providing advanced services currently not
available in the Globus Toolkit and as a framework for designing computing por-
tals [81]. Both the Java and Python CoG Kits are popular with Grid programmers
and have been used successfully in many community projects.

6.5.2.1.2 Open Grid Services Architecture One of the major problems fac-
ing Grid deployment is the variety of different “standards”, protocols, and difficult-
to-reuse implementations. This situation is exacerbated by the fact that much of
the Grid development has been done separately from corporate-distributed com-
puter development. As a result, a chasm has begun to appear [52].

The Open Grid Services Architecture (OGSA) is an effort to utilize commod-
ity technology to create a Grid architecture. OGSA utilizes the Web service de-
scriptions as a method to bring concepts from web services into the Grid.

In OGSA, everything is a network-enabled service that is capable of doing
some work through the exchange of messages. Such “services” include com-
pute resources, storage resources, programs, networks, databases, and a variety of
tools. When an OGSA service conforms to a special set of interfaces and sup-
port standards, it is deemed a “Grid service.” These Grid services have the ability
maintain their state; hence, it is possible to distinguish one running Grid service
instance from another. Under OGSA, Grid services may be created and destroyed
dynamically. To provide a reference mechanism for a particular Grid service in-
stance and its state, each instance has a unique Grid service handler (GSH).

Because a Grid service instance may outlast the protocol on which it initially
runs, the GSH contains no information about protocols or transport methods, such
as an IP address or XML schema version. Instead, this information is encapsulated
into a Grid service reference (GSR) which can change over time. This strategy
allows the instance to upgrade or add new protocols.

To manipulate Grid services, OSGA has interfaces that handle and reference
abstractions that make up OGSA. These interfaces can vary from service to ser-

28 CHAPTER 6. GESTALT OF THE GRID

vice; however, the discovery interface must be supported on all services to allow
the location of new Grid service instances.

Using such an object-oriented system offers several advantages. All compo-
nents are virtualized, removing many dependency issues and allowing mapping of
multiple logical resources into one physical resource. Moreover, because there is
a consistent set of interfaces that all services must provide, construction of com-
plex services is greatly simplified. Together these features allow for mapping of
service semantics onto a wide variety of platforms and communication protocols.

When OGSA is combined with CoG Kits, a new level of ease and abstraction
is brought to the Grid. Together, these technologies will form the basis for the
forthcoming Globus 3.0[48].

6.5.2.2 Legion

Legion is a Grid software project developed at the University of Virginia. Legion
addresses Grid key issues such as scalability, programming ease, fault tolerance,
security, and site autonomy. The goal of the Legion system is to support large
degrees of parallelism in application code and to manage the complexities of the
physical system for the user. Legion seamlessly schedules and distributes the user
processes on available and appropriate resources while providing the illusion of
working on a single, virtual machine.

As does other Grid middleware, Legion provides a set of advanced services.
These include the automatic installation of binaries, a secure and shared virtual
file system that spans all the machines in a Legion system, strong PKI-based au-
thentication, flexible access control for user objects, and support of legacy codes
execution and their use in parameter space studies.

Legion’s architecture is based on an object model. Each entity in the Grid is
represented as an active object that responds to member function invocations from
other objects. Legion includes several core objects, such as compute resources,
persistent storage, binding objects that map global to local process IDs, and imple-
mentation objects that allow the execution of machine code. The Legion system
is extensible and allows users to define their own objects. Although Legion de-
fines the message format and high-level protocol for object interaction, it does not
restrict the programming language or the communications protocol.

Legion has been used for parameter studies, ocean models, macromolecular
simulations, and particle-in-cell codes. Legion is also used as part of the NPACI
production Grid; a portal eases the interaction with the production Grid using
Legion.

6.5. GRID ACTIVITIES 29

6.5.2.3 Storage Resource Broker

The Storage Resource Broker (SRB) [20] developed by the San Diego Super-
computer Center is client-server middleware that provides a uniform interface for
connecting to heterogeneous remote data resources and accessing replicated data
sets. The SRB software includes a C client library, a metadata server based on
relational database technology, and a set of Unix-like command line utilities that
mimic, for example, Is, cp, and chmod SRB enables access to various storage sys-
tems including the Unix file system, archival storage systems such as UNITREE
[8] and HPSS [6] and database Large Objects managed by various database man-
agement systems such as DB2, Oracle, and Illustra. SRB enables access to data
sets and resources based on their attributes rather than their names or physical lo-
cations. Forming an integral part of SRB are collections that define a logical name
given to a set of data sets. A Java-based client GUI allows convenient browsing
of the collections. Based on these collections, a hierarchical structure can be im-
posed on data, thereby simplifying the organization of data in a manner similar to
a Unix file system. In contrast to the normal Unix file system, however, a collec-
tion can encompass data that is stored on remote resources. To support archival
mass storage systems, SRB can bind a large set of files (that are part of a col-
lection) in a container that can be stored and accessed as single file. Additionally,
SRB supports three authentication schemes: GSI, SEA (an RSA-based encryption
scheme), and plain text password. Furthermore, SRB can enable access control to
data to groups of users. Other features of SRB include data replication, execution
of user operations on the server, data reduction prior to a fetch operation by the
client, and monitoring.

6.5.2.4 Akenti

Akenti is a security model and architecture providing scalable security services
in Grids. The project goals are to (1) achieve the same level of expressiveness of
access control that is accomplished through a local human controller in the de-
cision loop, and (2) accurately reflect existing policies for authority, delegation,
and responsibilities. For access control, Akenti uses digitally signed certificates
that include the user identity authentication, resource usage requirements (or use-
conditions), user attribute authorizations (or attribute certificates), delegated au-
thorization, and authorization decisions split among on-line and off-line entities.
All of these certificates canbe stored remotely from the resources. Akenti provides
a policy engine that the resource server can call to find and analyze all the remote

30 CHAPTER 6. GESTALT OF THE GRID

certificates. It also includes a graphical user interface for creating use-conditions
and attribute certificates.

6.5.2.5 Network Weather Service

Network Weather Service (NWS) [51] is a distributed monitoring service that pe-
riodically records and forecasts the performance of various network and compu-
tational resources over time. The service is based on a distributed set of per-
formance sensors that gather the information in a central location. This data is
used by numerical models to generate forecasts (similar to a weather forecasting).
The information also can be used by dynamic schedulers to provide statistical
quality-of-service readings in a Grid. Currently, the system supports sensors for
end-to-end TCP/IP performance measuring bandwidth and latency, available CPU
percentage, and available nonpaged memory. The forecast models include mean-
based methods, which use some estimate of the sample mean as a forecast, and
median-based methods, which use a median estimator, and autoregressive meth-
ods. While evaluating the accuracies of the prediction during runtime, NWS is
able to configure itself and chose the forecasting method (from those that are pro-
vided with NWS) that best fits the situation. New models can be included in
NWS.

6.5.3 High-Throughput Computing

High-throughput computing is an extension of the concept of supercomputing.
While typical supercomputing focuses on floating-point operations per second
(flops), high-throughput systems focus on floating-point operations per month or
year [24]. The projects listed in this section are projects that provide increased
performance for long term calculations by utilizing distributed commodity hard-
ware in a collaborative method.

6.5.3.1 Condor

Condor is a system to utilize idle compute cycles on workstations while distribut-
ing a number of queed jobs to them. Condor focusing on high-throughput com-
puting, rather than high performance computing [77]. Condor maintains a pool
of computers while using a centralized broker to distribute jobs based on load in-
formation or preference asseret with the jobs to be executed. Condor provides a

6.5. GRID ACTIVITIES 31

broker that identifies in the pool of resources idle computers with available re-
sources on which to run the program (thus, the metaphor of a condor soaring over
the desert looking for food).

The proper resources are found through the ClassAds mechanism of Condor.
This mechanism allows each computer in the pool to advertise the resources that
it has available and publish them in a central information service. Thus, if a job is
specified to require 128 megabytes of RAM, it will not be placed on a computer
with only 64 megabytes or RAM [24].

The ever-changing topology of workstations does, of course, pose a problem
for Condor. When a user returns to his computer, he usually wants it to stop
running Condor processes. To address this issue, the program uses the checkpoints
described above and restarts on another host machine. Under Condor, allows the
specification of elementary authorization policies, such as user A is allowed to
use the machine but not user B, and the definition of a policies for running jobs
in the background or when the user is not interactively using the machine. Such
authorization frameworks have been successfully reused in other projects such as
SETI@Home [56, 44, 43, 42].

Today, condor also includes client side brokers that handle more complex tasks
such as job ordering via acyclic graphs and time management features. To prevent
monopolizing the resources by a single large application Condor can use a fair
scheduling algorithm. A disadvantage with the earlier condor system was that
it was difficult to implement a co-allocation of resources that are not part of a
workstation but of a supercomputing batch queue system. To utilize also batch
queues within a pool, condor introduced a mechanism that provides the ability
to integrate resources for a particular period of time into a pool. This concept
is also known as glide-in, which are enebled through a Globus backend. Using
this technique, a job submitted on a Condor pool may be executed elsewhere on
another computing Grid. Currently Condor is working with the Globus Project to
provide the necessary resource sharing [77].

Much of Condor’s functionality results from the trapping of system calls by
a specialized version of GLIBC that C programs are linked against. Using this
library, most programs require only minor (if any) changes to the source code.
The library redirects all 1/0 requests to the workstation that started the process.
Consequently, workstations in the Condor pool do not require accounts for every-
one who can submit a job. Rather, only one general account for Condor is needed.
This strategy greatly simplifies administration and maintenance. Moreover, the
special GLIBC library provides the ability to checkpoint the progress of a pro-
gram. Nevertheless, condor provides also a mechanism that makes it possible to

32 CHAPTER 6. GESTALT OF THE GRID

run jobs unchanged, but much of the advanced features such as checkpointing and
restarting can not be utilized.

Additional, Grid functionality has been included with the establishment of so
called Condor flocks that may represent pool in different administrative domains.
Policy agreements between these flocks enable the redistribution of migratory jobs
between these flocks [43, 42].

6.5.3.2 NetSolve

NetSolve, developed at the University of Tennessee’s Innovative Computing Lab,
is a distributed computing system that provides access to computational resources
across a heterogeneous distributed environment via a client-agent-server interface
[33, 16].

The entire NetSolve system is viewed as a connected non-directed graph.
Each system that is attached to NetSolve can have different software installed on
it. Users can access NetSolve and process computations through client libraries
for C, Fortran, Matlab, and Mathematica. These libraries can access numerical
solvers such as LAPACK, ScaLAPACK, and PETSc. When a computation is sent
to NetSolve, the agent uses a “best-guess” methodology to determine which server
to send the request to. That server then does the computation and returns the re-
sult using the XDR format [36]. Should a server process terminate unexpectedly
while performing a computation, the computation is automatically restarted on a
different computer in the NetSolve system. This process is transparent to the user
and usually has little impact other than a delay in getting the results.

Because NetSolve can use multiple computers at the same time through non-
blocking calls, the system has an inherent amount of parallelism. This, in one
sense, makes it easy to write parallel C programs.

The NetSolve system is still being actively enhanced and expanded. New
features included a graphical problem description file generator, Kerberos authen-
tication, and additional mathematical libraries [26].

NetSolve’s closest relative is Ninf (see Section 6.5.3.3). Work has been done
on software libraries that allow routines written for Ninf to be run on NetSolve
and vice versa. Currently, however, there are no known plans for the two projects
to merge [33].

6.5. GRID ACTIVITIES 33

6.5.3.3 Ninf

Ninf (Network Information Library for High Performance Computing) is a dis-
tributed remote procedure call system with a focus on ease of use and mathemat-
ical computation. It is developed by the Electrotechnical Laboratory in Tsukuba,
Ibaraki, Japan.

To execute a Ninf program, a client calls a remote mathematical library rou-
tine via a metaserver interface. This metaserver then brokers various requests to
machines capable of performing the computation. Such a client-agent-server ar-
chitecture allows a high degree of fail-safety for the system. When the routine is
finished, the metaserver receives the data and transfers it back to the client.

The Ninf metaserver can also automatically order requests. Specifically, if
multiple dependent and independent calculations need to take place, the indepen-
dent ones will execute in parallel while waiting for the dependent calculations to
complete.

Bindings for Ninf have been written for C, Fortran, Java, Excel, Mathematica,
and Lisp. Furthermore, these bindings support the use of HTTP GET and HTTP
PUT to access information on remote Web servers. This feature removes the need
for the client to have all of the information and allows low-bandwidth clients to
run on the network and receive the computational benefits the system offers [64].

Several efforts are under way to expand Ninf into a more generalized system.
Among these efforts are Ninflet, a framework to distribute and execute Java appli-
cations, and Ninf-G a project designed a computational RPC system on top of the
Globus Toolkit [71].

6.5.3.4 SETI@Home

SETI@Home, run by the Space Science Lab at the University of California Berke-
ley, is one of the most successful coarse grain distributed computing systems in
the world. Its goal is to integrate compute resources on the Web as part of a collec-
tive of independent resources that are plentiful and can solve many independent
calculations at the same time. Such a system was envisioned as a way to deal with
the overwhelming amount of information recorded by the Arecibo radio telescope
in Puerto Rico and the analysis of the data. The SETI@home project developed
stable and user appealing screen savers for Macintosh and Windows computers
and a command-line client for Unix systems [56, 62] that started to be widely
used in 1999.

At its core, SETI@Home is a client-server distributed network. When a client

34 CHAPTER 6. GESTALT OF THE GRID

is run, it connects to the SETI@Home work unit servers at the University of Cal-
ifornia - Berkeley and downloads a packet of data recorded from the Arecibo
telescope. The client then performs a fixed mathematical analysis on the data
to find signals of interest. At the end of analysis, the results are sent back to
SETI@Home, and a new packet is downloaded for the cycle to repeat.

Packets of information that have been shown to have useful information are
then analyzed again by the system to ensure there was no client error in the report-
ing of the data. In this way, the system shows resiliency toward modified clients,
and the scientific integrity of the survey is maintained [57]. To date, SETI@Home
has accumulated more than 900,000 CPU-years of processing time from over 3.5
million volunteers around the globe. The entire system today averages out to 45
Tflops, which makes it the world’s most powerful computing system by a big mar-
gin [34]. One of the principal reasons for the project’s success is its noninvasive
nature; running SETI@Home causes no additional load on most PCs where it is
run only during the inactive cycles. In addition, the system provides a wealth of
both user and aggregate information and allows organizations to form teams for
corporations and organizations, which then have their standings posted on the Web
site. SETI@Home was also the first to mobilize massive amounts of participates
by creating a sense of community and project the goals of the scientific project to
large amounts of non scientific users.

SETI@Home was originally planned in 1996 to be a two-year program with
an estimated 100,000 users. Because of its success, plans are now under way for
SETI@Home I, which will expand the scope of the original project [28]. Multiple
other topic such as protein folding have also been adapted [4].

6.5.3.5 Nimrod-G

Nimrod was originally a metacomputing system for parameterized simulations.
Since then it has evolved to include concepts and technologies related to the Grid.
Nimrod-G is an advanced broker system that is one of the first systems to account
for economic models in scheduling of tasks. Nimrod-G provides a suite of tools
that can be used to generate parameter sweep applications, manage resources, and
schedule applications. It is based on a declarative programming language and an
assortment of GUI tools.

The resource broker is responsible for determining requirements that the ex-
periment places on the Grid and for finding resources, scheduling, dispatching
jobs, and gathering results back to the home node. Internal to the resource broker
are several modules:

6.6. GRID APPLICATION 35

e The task-farming agent is a persistent manager that controls the entire ex-
periment. It is responsible for parameterization, creation of jobs, recording
of job states, and communication. Because it caches the states of the experi-
ments, an experiment may be restarted if the task-farming agent fails during
arun.

e The scheduler handles resource discovery, resource trading, and job assign-
ment. In this module are the algorithms to optimize a run for time or cost.
Information about the costs of using remote systems is gathered through
resource discovery protocols, such as MDS for the Globus Toolkit.

e Dispatchersand actuatorsdeploy agents on the Grid and map the resources
for execution. The scheduler feeds the dispatcher a schedule, and the dis-
patcher allocates jobs to the different resources periodically to meet this
goal.

The agents are dynamically created and are responsible for transporting the
code to the remote machine, starting the actual task and recording the resources
used by a particular project.

The Nimrod-G architecture offers several benefits. In particular, it provides
an economic model that can be applied to be metacomputing, and it allows inter-
action with multiple different system architectures, such as Globus, Legion, and
Condor.

In the future Nimrod-G will be expanded to allow advance reservation of re-
sources and use more advanced economic models such as demand-and-supply,
auctions, and tenders/contract-net protocols [30].

6.6 Grid Application

At the beginning of Section 6.5.1 we divided Grid projects into three classes:
community activities, toolkits (middleware), and applications. Here we focus on
three applications representative for current Grid activities.

6.6.1 Astrophysics Simulation Collaboratory

The Astrophysics Simulation Collaboratory (ASC) was originally developed in
support of numerical simulations in astrophysics, and has evolved into a general-
purpose code for partial differential equations in three-dimensions [1, 31]. Per-
haps the most computationally demanding application that has been attacked with

36 CHAPTER 6. GESTALT OF THE GRID

ASC is the numerical solution of Einsteins general relativistic wave equations,
in the context, for example, of the study of neutron star mergers and black hole
collisions. For this purpose, the ASC community maintains an ASC server and
controls its access through login accounts on the server. Remote resources inte-
grated into the ASC server are controlled by the administrative policies of the cite
contributing the resources. In general, this means that a user must have an account
on the machine on which the service is to be performed. The modular design of
the framework and its exposure through a Web-based portal, permits a diverse
group of researchers to develop add-on software modules that integrate additional
physics or numerical solvers into the Cactus framework.

The astrophysics simulation collaboratory (ASC) pursues the following objec-
tives [32]:

e Promote the creation of a community for sharing and developing simulation
codes and scientific results;

e Enable transparent access to remote resources, including computers, data
storage archives, information servers, and shared code repositories;

e Enhance domain-specific component and service development supporting
problem-solving capabilities, such as the development of simulation codes
for the astrophysical community or the development of advanced Grid ser-
vices reusable by the community;

e Distribute and install programs onto remote resources while accessing code
repositories, compilation, and deployment services;

e Enable collaboration during program execution to foster interaction during
the development of parameters and the verification of the simulations;

e Enable shared control and steering of the simulations to support asynchronous
collaborative techniques among collaboratory members;

e Provide access to domain-specific clients that, for example, enable access
to multimedia streams and other data generated during the execution of the
simulation.

To achieve these objectives, ASC uses a Grid portal based on JSP for thin-
client access to Grid services. Specialized services support community code de-
velopment through online code repositories. The Cactus computational toolkit is
used for this work. The ASC is scheduled to be opened for users in the astro-
physics community in September 2002.

6.6. GRID APPLICATION 37

6.6.2 Particle Physics Data Grid

The Particle Physics Data Grid (PPDG) [18] is a collaboratory project concerned

with providing the next-generation infrastructure for current and future high-energy
and nuclear physics experiments. One of the important requirements of PPDG

is to deal with the enormous amount of data that is created during high energy

physics experiment and must be analyzed by large groups of specialists. Data

storage, replication, job scheduling, resource management, and security compo-

nents supplied by the Globus, Condor, STACS, SRB, and EU Data Grid projects

[12] all will be integrated for easy use by the physics collaborators. Development

of PPDG is supported under the DOE SciDAC initiative (Particle Physics Data

Grid Collaboratory Pilot) [18].

6.6.3 NEESgrid

The intention of NEESgrid is to build a national-scale distributed virtual labora-
tory for earthquake engineering. The initial goals of the project are to (1) extend
the Globus Information Service to meet the specialized needs of the community
and (2) develop a set of services called NEESpop, along with existing Grid ser-
vices to be deployed to the NEESpop servers. Ultimately, the system will include
a collaboration and visualization environment, specialized NEESpop servers to
handle and manage the environment, and access to external system and storage
provided by NCSA [68].

One of the objectives of NEESgrid is to enable observation and data access to
experiments in real time. Both centralized and distributed data repositories will be
created to share data between different locations on the Grid. These repositories
will have data management software to assist in rapid and controlled publication
of results A software library will be created to distribute simulation software to
users. This will allow users with NEESgrid-enabled desktops to run remote sim-
ulations on the Grid [67].

NEESgrid will comprise a layered architecture, with each component being
built on core Grid services that handle authentication, information, and resource
management but are customized to fit the needs of earthquake engineering com-
munity.

The project will have a working prototype system by the fourth quarter of
2002. This system will be enhanced during the next years, with the goal to deliver
a fully tested and operationa system 2004 to gather data during the next decade.

38 CHAPTER 6. GESTALT OF THE GRID

6.7 Portals

The term “portal” is not uniformly defined within the computer science commu-
nity. Sometimes it represents integrated desktops, electronic market places, or
information hubs [49, 73, 50]. We use the term portal here in the more general
sense of a community access point to information and services (see Figure 6.9).

Users

y

Portal
RN
Applications Information
and and
Services Data

Figure 6.9: Portals provide an entry point that helps to integrate information and
data, application and services.

Definition: Portal
A community service with a single point of entry to an integrated system
providing access to information, data, applications, and services.

In general a portal is most useful when designed for a particular community
in mind. Today, most common Web portals build on the current generation of
Web based commodity technologies, based on the HTTP protocol for accessing
the information through a browser.

Definition: Web portal
A portal providing users ubiquitous access, with the help of web-based

6.7. PORTALS 39

commodity technologies, to information, data, applications, and services.
The current generation of Web portals is accessed through HTTP and Web
browsers.

A Grid portal is a specialized portal useful for users of production Grids. A
Grid portal provides information about the status of the Grid resources and ser-
vices. Commonly this information includes the status of batch queuing systems,
load, and network performance between the resources. Furthermore, the Grid
portal may provide a targeted access point to useful high-end services, such as the
generation of a compute- and data-intensive parameter study for climate change.
Grid portals provide communities another advantage: they hide much of the com-
plex logic to drive Grid-related services with simple interaction through the portal
interface. Furthermore, they reduce the effort needed to deploy software for ac-
cessing resources on production Grids.

Definition: Grid portal
A specialized portal providing an. entry point to the Grid to access applica-
tions, services, information, and data available within a Grid.

In contrast to Web portals, Grid portals may not be restricted to simple browser
technologies but may use specialized plug-ins or executables to handle the data
visualization requirements of, for example, macromolecular displays or three-
dimensional high-resolution weather data displays.

A Grid portal may deal with different user communities, such as develop-
ers, application scientists, administrators, and users. In each case, the portal must
support a personal view that remembers the preferred interaction with the portal at
time of entry. To meet the needs of this diverse community, sophisticated Grid por-
tals (currently under development) are providing commodity collaborative tools
such as newsreaders, e-mail, chat, and video conferencing, event scheduling. Ad-
ditionally, some Grid portal developers are exploiting commaodity technologies
such as JavaBeans and JSP, which are already popular in Web portal environ-
ments. In the following subsections we highlight several examples of well-known
Grid portals and the toolkits being used to create these portals.

6.7.1 HotPage

HotPage [17] is a portal that provides a collective view of a distributed set of high-
performance computing resources. The portal enables researchers easily to find

40 CHAPTER 6. GESTALT OF THE GRID

information about each of the resources in the computational Grid. This infor-
mation (which is stored in HTML) includes technical documentation, operational
status, load and current usage, and queued jobs. Additionally, HotPage enables
users to access and manipulate files and data and to submit, monitor, and delete
jobs. Grid access is through the Globus Toolkit [22] or via the Network Weather
Service [51]. The HotPage backend is accessed through Perl CGI scripts that cre-
ate the pages requested. HotPage has been installed on a variety of production
Grids, such as NPACI [11] and NASA IPG [15].

6.7.2 Webflow and Gateway

Webflow and its successor Gateway [35] are two influential projects in designing
portals for Grids. They offer a programming paradigm implemented over a vir-
tual Web-accessible Grid. An application is designed by a computational graph
that is visually edited by the end-user, using Java applets. Nodes of the graph are
reusable modules that written by the developers. Module users need not, how-
ever, be concerned with issues such as allocating and running the modules on
various machines, creating connections among the modules, sending and receiv-
ing data across these connections, or running several modules concurrently on
one machine. The Gateway system takes care of these management issues and
coordinates the execution.

The Gateway system is based on a modern three-tier architecture. Tier 1 is the
high-level front-end enabling visual programming, steering, run-time data analy-
sis and visualization, and collaboration; this front-end is based on Web technolo-
gies and object-oriented commodity standards. Tier 2 is formed by distributed
object-based, scalable, and reusable Web servers and object brokers and builds
the middleware. Tier 3 comprises the back-end services such as execution ser-
vices and data movement services.

6.7.3 XCAT

The XCAT Project [59] from Indiana University provides and implementation
of the Common Component Architecture (CCA) [3] to assist in the assembly of
applications using Grid resources. The CCA specification describes the construc-
tion of portable software components that can be re-used in any CCA compliant
runtime frameworks. These frameworks are tuned for a variety of application en-
vironments and in some cases are designed for applications that run on massively

6.7. PORTALS 41

parallel computers. Here components may be parallel objects (multiple compo-
nent instances operating in synchrony and communicating with each other with
MPI) or they may be highly multi-threaded and run on large shared memory, mul-
tiprocessor servers. In other cases, the frameworks are designed to enable the con-
struction of applications from components that are distributed over a Grid. XCAT
allows Grid application programmers to script complex distributed computations
and package these applications with simple interfaces for others to use. Each user
obtains a personal notebook for controlling the applications; the notebook is used
as elementary abstraction to package applications and data scripts and parameters
as part of a an Web page. The portal server has an integrated event service al-
lowing application and Grid resource information to publish events through the
Network Weather Service [51] and Autopilot [2]. XCAT has been tested on dis-
tributed simulation of chemical processes in semiconductor manufacturing and
collaboratory support for X-ray crystallography. XCAT is based on Globus and
uses the Java CoG Kit [53, 80] for its core security and remote task creation, and
RMI over XSOAP [59] as a communication protocol.

6.7.4 UNICORE

UNICORE (UNiform Interface to COmputing REsources) [23] provides a ver-
tical integration environment for Grids including access to resources through a
portal. It is designed to assist in the workflow management of tasks to be sched-
uled on resources part of supercomputing centers. A UNICORE workflow com-
prises hierarchical assemblies of interdependent tasks, with dependencies that are
mapped to actions such as execution, compilation, linking, and scripting accord-
ing to resource requirements on target machines on the Grid. Besides strong
authentication, UNICORE assists in compiling and running applications and in
transferring input and output data. One of the main components of UNICORE
is the preparation and modification of structured jobs through a graphical user
interface that supports workflows. It allows the submission, monitoring, and con-
trol of the execution as part of a client that gets installed on the user’s machine.
Originally, UNICORE supported Web browser plug-ins, but it is now distributed
as a standalone application. UNICORE is being used as the Grid infrastructure
for a research project known as UNICORE Plus. This project is enhancing the
original UNICORE software with new functionality to handle system adminis-
tration and management, modeling of dynamic and extensible resources, creation
of application-specific client and server extensions, improved data and file man-
agement functions, and runtime control of complex job chains. Metacomputing

42 CHAPTER 6. GESTALT OF THE GRID

support (e.g., reservation, co-scheduling, application-level communication, and
performance analysis) is also under consideration. Development to utilize Globus
enabled resources within UNICORE is under development [5].

6.7.5 JIPANG

JIPANG (Jini-based Portal Augmenting Grids) [76] is both a portal system and a
toolkit, providing a uniform interface layer for accessing a variety of Grid systems.
JIPANG is built on top of the Jini distributed object technology. It functions as a
higher-level management services to resources being managed by individual Grid
systems such as Ninf [65], NetSolve [37], and the Globus Toolkit [22] via the Java
CoG Kit [80]. A Java API provides the user with a uniform interface to the Grid.
A specialized JIPANG browser allows the interactive access to Grid resources and
services.

6.7.6 PUNCH

PUNCH (Purdue University Network-Computing Hubs) is a distributed network
computer that allows users to access text and graphical applications remotely via
a Web browser. PUNCH provides the ability to define several community portals,
each of which serves a specific set of users [27]. When users visit a community
portal, they are presented with a menu of applications that they can execute. These
applications range from CPU simulators to drawing programs to complex com-
mercial Electronic Design Automation (EDA) and mathematical analysis pack-
ages. For text-based tools, an HTML interface is provided that forwards all com-
mands on to the actual application. This enables a quick integration of command
line based applications into PUNCH. For more complex graphical applications,
systems such as VNC are used to transmit the display back to the remote users
[54]. Such a method has also been used by other Grid portal activities including
the Access Grid (see Section 6.7.7).

At the base of PUNCH is PVFS, the PUNCH Virtual File System. By using a
series of proxies over standard NFS protocols, PUNCH is able to allow near-native
NFS performance over disparate networks. Also, the PVFS removes the need for
individual user accounts. Instead, all files are owned by a system account with
the PUNCH user of the file being identified by its position in the file system tree.
This abstraction is taken further to the level of user maintenance. In a traditional
distributed system, user account information would need to be propagated to all
systems on the network. PUNCH solves this by maintaining a pool of UIDs on

6.7. PORTALS 43

each server that are dynamically assigned to users when they begin execution of
processes on a server. An accounting facility keeps track of the UIDs in use and
automatically reclaims UIDs at the end of the user’s session.

Based on these features, PUNCH allows different institutions to share com-
putational resources and applications. Sharing is possible even across different
administrative domains based on a limited-trust relationship that can be estab-
lished between the domains. This feature allows users at multiple universities to
have access to the same computer systems with small risks of exploitations [45].

6.7.7 Access Grid

The Access Grid (AG) Project develops a package of Grid Software and maintains
a production Grid of resources that can be used to support human interaction. The
goal of the Access Grid is to support large-scale distributed meetings, collabora-
tive work sessions, seminars, lectures, tutorials and training. It provides the ability
to include multimedia display, presentation and interaction environments, and in-
terfaces to Grid middleware and visualization environments. This focus on group
communication is in contrast to desktop based tools which focus much more in
individual communication.

The environment is intended to foster both formal and informal group interac-
tions. Large-format displays integrated with intelligent or active physical meeting
rooms (also called nodes) are a central feature of Access Grid nodes. Such a phys-
ical meeting room contains the high-end audio and visual technology needed to
provide a high-quality compelling user experience. There are a number of Access
Grid nodes deployed world-wide that are frequently used to conduct meetings,
site visits, training sessions and educational events [29].

6.7.8 Commercial Grid Activities

Many of the early Grid projects that started as research efforts are now also mar-
keted commercially. Legion, for example, is currently marketed through Avaki
(which was co-founded by the developers of Legion). Several companies have
decided to include the Globus Toolkit in their Grid marketing strategies that are
based on extensions or support models. Nevertheless, the Globus Toolkit will
continue to be a free open-source toolkit.

Efforts such as IBM’s commitment to the Web services framework, Microsoft’s
Net, [7], and Sun’s Web services [75] and JXTA framework [58] will be major
drivers for the next generation of Grid software. The development of an Open

44 CHAPTER 6. GESTALT OF THE GRID

Grid Service Architecture together with companies such as IBM promises to inte-
grate business and research models and processes in order to leverage from each
other’s technologies. Much additional work is needed to extend this early work.

6.8 Future and Conclusion

In this chapter, we have identified a vision that motivates the creation of Grids and
Grid-enabled systems. We have also examined a variety of projects that address
some — but not all — of the issues that must be resolved before the Grid is truly
universal. In addition to the development of middleware, interfaces are needed
that can be used by the application scientists to access Grids. Commodity Grid
toolkits enabling access to Grid functionality on an API level such as Fortran, Java,
and Python are important. Portals must also be developed to hide the complex
infrastructure of Grids and allow scientists to use this infrastructure in the daily
scientific exploration. The tools and technologies discussed in this chapter are but
the first step in the creation of a global computing Grid.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Science Division subprogram of the Office of Advanced Scientific Computing Re-
search, U.S. Department of Energy, under Contract W-31-109-Eng-38. DARPA,
DOE, and NSF support Globus Toolkit research and development. We thank lan
Foster, Geoffrey C. Fox, Dennis Gannon, Xian-He Sun, and the members of the
Computingportals working group, formerly known as Datorr and is now active as
part of the Grid Computing Environment working group of the GGF for the valu-
able discussions leading up to this work. The Globus Toolkit and Globus Project
are trademarks held by the University of Chicago.

Bibliography

[1] ASC Portal Home Page. http://www.ascportal.org.

[2] Autopilot. http://www-pablo.cs.uiuc.edu/Project/Autopilot/AutopilotOverview.htm.
[3] Common Component Architecture Forum. http://www.cca-forum.org/.

[4] Folding@home. http://folding.stanford.edu/.

[5] Grid Interoperability Project. http://www.grid-interoperability.org/.

[6] HPSS. http://www.sdsc.edu/hpss/hpss1.html.

[7] Microsoft .NET. http://www.microsoft.com/net/. part of Microsoft website.

[8] Unitree. http://www.unitree.com/.

[9] National Center for Supercomputing Applications, 1986.
http://www.ncsa.uiuc.edu/.

[10] Alliance on Track to Enhance Services, 2000.
http://archive.ncsa.uiuc.edu/datalink/0005/VMR.intro.html.

[11] National Partnership for Advanced Computational Infrastructure, 2000.
http://www.npaci.edu/.

[12] The DataGrid Project, 2000. http://www.eu-datagrid.org/.

[13] ApGrid: Partnership for Grid Computing in the Asia Pacific Region.
http://www.apgrid.org/.

[14] EUROGRID: Application Testbed for European Grid Computing, 2001.
http://www.eurogrid.org/.

45

46 BIBLIOGRAPHY

[15] Information Power Grid Engeneering and Research Site, 2001.
http://www.ipg.nasa.gov/.

[16] Netsolve Web Page, 2001. http://www.cs.utk.edu/netsolve.
[17] NPACI HotPage, 2001. https://hotpage.npaci.edu/.
[18] Particle Physics Data Grid. http://www.ppdg.net/.

[19] Scientific Discovery through Advanced Computing (SciDAC), 2001.
http://www.sc.doe.gov/ascr/mics/scidac/.

[20] Storage Resource Broker (SRB), 2001. http://www.npaci.edu/DICE/SRBY/.
[21] TerraGrid, 2001. http://www.teragrid.org/.

[22] The Globus project WWW page, 2001. http://www.globus.org/.

[23] UNICORE. http://www.unicore.de/.

[24] Condor Home Page. http://www.cs.wisc.edu/condor/, Feb 2002.

[25] Global Grid Forum Web Page, 2002. http://www.gridforum.org.

[26] NetSolve Home Page. http://icl.cs.utk.edu/netsolve/, February 2002.

[27] PUNCH Home Page. http://punch.ecn.purdue.edu/, March 2002.

[28] SETI@Home Home Page. http://setiathome.ssl.berkeley.edu/, February
2002.

[29] The Access Grid Web Page. http://www-fp.mcs.anl.gov/fl/accessgrid/, 2002.

[30] ABRAMSON, D., BUYYA, R., AND GIDDY, J. A Computational Economy
for Grid Computing and its Implmentation in the Nimrod-G Resource Bro-
ker. Future Generation Computer Systems ???, 2?? (??? 2002), ??? not yet
published as of this writing.

[31] ALLEN, G., BENGER, W., GOODALE, T., HEGE, H., LANFERMANN, G.,
MASsSO, J., MERzKY, A., RADKE, T., SEIDEL, E., AND SHALF, J. Solv-
ing Einstein’s Equations on Supercomputers. |[EEE Computer (1999), 52—
59. http://www.cactuscode.org.

BIBLIOGRAPHY 47

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

ALLEN, G., BENGER, W., GOODALE, T., HEGE, H.-C., LANFERMANN,
G., MERzKY, A., RADKE, T., SEIDEL, E., AND SHALF, J. The Cactus
Code: A Problem Solving Environment for the Grid. In High-Performance
Distributed Computing, 2000. Proceedings. The Ninth International Sympo-
siumon (???, August 2000), pp. 253 -260.

ARNOLD, D., AGRAWAL, S., BLACKFORD, S., DONGARRA, J., MILLER,
M., SAGI, K., SHI, Z., AND VADHIYAR, S. Users’ Guide to NetSolve
V1.4. Computer Science Dept. Technical Report cs-01-467, University of
Tennessee, Knoxville, TN, July 2001.

BELL, G., AND GRAY, J. What’s next in high-performance computing.
Communications of the ACM 45, 2 (February 2002), 91-95.

BHATIA, D., BURZEVSKI, V., CAMUSEVA, M., Fox, G. C., FURMANSKI,
W., AND PREMCHANDRAN, G. WebFlow - a visual programming paradigm
for Web/Java based coarse grain distributed computing. Concurrency: Prac-
tice and Experience 9, 6 (1997), 555-577.

CAsaNOVA, H., AND DONGARRA, J. NetSolve: A Network Server for
Solving Computational Science Problems. The International Journal of Su-
percomputer Applicationsand High Performance Computing 11, 3 (October
1997), 212-223. older versions are available.

CAasaNOVA, H., AND DONGARRA, J. NetSolve: A Network Server for
Solving Computational Science Problems. International Journal of Super-
computer Applicationsand High Performance Computing 11, 3 (1997), 212—
223.

CHRISTENSEN, E., CURBERA, F., MEREDITH, G., AND WEERAWARANA,
S. Web Services Description Language (WSDL) 1.1, 15 March 2001.
http://www.w3.org/TR/wsdl.

CzaJowskl, K., FITZGERALD, S., FOSTER, |., AND KESSELMAN., C.
Grid Information Services for Distributed Resource Sharing. In Proceed-
ings of the Tenth IEEE Inter national Symposium on High-Performance Dis-
tributed Computing (San Francisco, California, August 2001), IEEE Press,
pp. 181-184.

Doe Science Grid. http://www.doesciencegrid.org/.

48

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

BIBLIOGRAPHY

EHNEBUSKE, D., Box, D., KAKIVAYA, G., LAYMAN, A., FRYSTYK, H.,
MENDELSOHN, N. N., THATTE, S., AND WINER, D. Simple Object Ac-
cess Protocol (SOAP) 1.1, 2000. http://www.w3.0rg/TR/SOAP.

EPEMA, D. H. J., LIVNY, M., VAN DANTZIG, R., EVERS, X., AND
PRUYNE, J. A worldwide flock of Condors: load sharing among worksta-
tion clusters. Tech. Rep. DUT-TWI-95-130, Delft University of Technology,
Delft, The Netherlands, 1995.

EVERS, X., DE JONGH, J. F. C. M., BOONTJE, R., EPEMA, D. H. J.,
AND VAN DANTZIG, R. Condor flocking: load sharing between pools of
workstations. Tech. Rep. DUT-TWI-93-104, Delft University of Technology,
Delft, The Netherlands, 1993.

FIELDS, S. Hunting for Wasted Computing Power: New Software for Com-
puting Networks Puts Idle PC’s to Work. University of Wisconsin Research
Sampler, 1993.

FIGUEIREDO, R. J., KAPADIA, N. H., AND FORTES, J. A. The PUNCH
virtual file system: seamless access to decentralized storage services in a
computational grid. In Proceedings of the 10th IEEE International Sym-
posium on High Performance Distributed Computing (San Francisco, CA,
August 2001), IEEE, IEEE Press.

FOSTER, I. The anatomy of the grid: Enabling scalable virtual organiza-
tions. International Journal of High Performance Computing Applications
15, 3 (August 2001), 200-222. a brief introduciton to the grid.

FOSTER, I. The Grid: A New Infrastructure for 21st Century Sci-
ence. Physics Today 55, 22 (2002), 42. http://www.aip.org/pt/vol-55/iss-
2/p42.html.

FOSTER, I., KESSELMAN, C., NICcK, J., AND TUECKE, S. The Physiology
of the Grid: An Open Grid Services Architecture for Distributed Systems In-
tegration. http://www.globus.org/research/papers/ogsa.pdf, February 2002.

Fox, G. C. Portals for Web Based Education and Computational Science,
2000.

BIBLIOGRAPHY 49

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

Fox, G. C., AND FURMANSKI, W. High Performance Commodity Com-
puting. In The Grid: Bluepirnt for a new computing infrastructure, 1. Foster
and C. Kesselman, Eds. Morgam Kaufman, 1999.

GAIDIOZ, B., WoLsKkl, R., AND TOURANCHEAU, B. Synchro-
nizing Network Probes to avoid Measurement Intrusiveness with the
Network Weather Service. In Proceedings of 9th IEEE High-
performance Distributed Computing Conference (August 2000), pp. 147-
154. http://www:.cs.ucsb.edu/ rich/publications/.

GANNON, D., CHiu, K., GOVINDARAJU, M., AND SLOMIN-
sKi, A. An Analysis of The Open Grid Services Architecture.
http://www.extreme.indiana.edu/ gannon/OGSAanalysis3.pdf, March 2002.

GeTtov, V., VON LAszewskl, G., PHILIPPSEN, M., AND FOS-
TER, |I. Multi-Paradigm Communications in Java for Grid Com-
puting. Communications of ACM 44, 10 (2001), 119-125.
http://www.globus.org/cog/documentataion/papers/.

KAPADIA, N. H., FIGUEIREDO, R. J., AND FORTES, J. A. PUNCH: Web
Portal for Running Tools. IEEE Micro 20, 3 (May-June 2000), 38-47.

KARONIS, N. MPICH-G2 Web Page, 2001.
http://www.hpclab.niu.edu/mpi/.

KORPELA, E., WERTHIMER, D., ANDERSON, D., CoBB, J., , AND
LEBOFSKY, M. SETlat-home: Massively Distributed Computing for SETI
, January/February 2001.

KORPELA, E., WERTHIMER, D., ANDERSON, D., CoBB, J., AND
LEBOISKY, M. SETI@home-massively distributed computing for SETI.
Computing in Science & Engineering 3, 1 (January—February 2001), 78-83.

KRISHNAN, N. The Jxta solution to P2P .

KRISHNAN, S., BRAMLEY, R., GANNON, D., GOVINDARAJU,
M., INDURKAR, R., SLOMINSKI, A., TEMKO, B., ALKIRE, R.,
Drews, T., WEBB, E., AND ALAMEDA, J. The XCAT Sci-
ence Portal. In Proceedings of SC2001 (November 10-16 2001).
http://www.sc2001.org/papers/pap.pap287.pdf.

50

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

BIBLIOGRAPHY

LICKLIDER, J., AND TAYLOR, R. W. The Computer as a Communication
Device, 1968. http://memex.org/licklider.pdf.

LYSTER, P. M., BERGMAN, L., LI, P., STANFILL, D., CRIPPEN, B.,
BLowm, R., PARDO, C., AND OKAYA, D. Casa Gigibit Supercomputing
Network: CALCRUST Three-Dimensional Real-Time Multi-Dataset Ren-
dering. In Presented at Supercomputing '92 (Minneapolis, MN, 17-20
November 1992).

MOLNAR, D. The SETIlat-home Problem. ACM, 1 (jan 2001).

MooORE, G. E. Cramming More Components Onto Integrated Circuits.
Electronics 38, 8 (April 19 1965), 114-117.

NAKADA, H., SATO, M., AND SEKIGUCHI, S. Design and Implementa-
tions of Ninf: towards a Global Computing Infrastructure. Future Genera-
tion Computing Systems 15, 5-6 (1999), 649-658.

NAKADA, H., SATO, M., AND SEKIGUCHI, S. Design and Implementa-
tions of Ninf: towards a Global Computing Infrastructure. Future Genera-
tion Computing Systems 15, 5-6 (1999), 649-658.

The Seven Layer of the OSI Model. http://www.iso.org,
http://www.webopedia.com/quick _ref/OSI_Layers.html.

PRUDHOMME, T., KESSELMAN, C., FINHOLT, T., FOSTER, |., PARSONS,
D., ABRAMS, D., BARDET, J.-P., PENNINGTON, R., TOWNS, J., BUT-
LER, R., FUTRELLE, J., ZALUZEC, N., AND HARDIN, J. NEESgrid: A
Distributed Virtual Laboratory for Advanced Earthquake Experimentation
and Simulation: Scoping Study. Tech. Rep. 2001-02, NEES, February 2001.

PRUDHOMME, T., AND MisH, K. D. NEESgrid: A Distributed Virtual Lab-
oratory for Advanced Earthquake Experimentation and Simulation: Project
Execution Plan. Tech. Rep. 2001-02, NEES, June 2001.

RESOLUTION, F. N. C. Definition of ”Internet”.
http://www.itrd.gov/fnc/Internet res.html, 24 October 1995.

RICHARDSON, L. F. The Collected Papers of Lewis Fry Richardson. Cam-
bridge University Press, Cambridge, 1993. 2 volumes.

BIBLIOGRAPHY o1

[71] SEKIGUCHI, S. Ninf Project Home Page. http://ninf.apgrid.org/, February
2002.

[72] SHUMAN, F. G. History of Numerical Weather Prediction at the NMC.
Weather and Forecasting, 4 (1989).

[73] SMARR, L. Infrastructures for Science Portals, 2001.
http://www.computer.org/internet/v4nl/smarr.htm.

[74] SOMERVILLE, R. C. The Forgiving Air: Understanding Environmental
Change. University of California Press, Berkeley, 1996.

[75] Web services made easier. http://java.sun.com/xml/webservices.pdf. Article
Published by Sun Microsystem.

[76] SUZUMURA, T., MATSUOKA, S., AND H.NAKADA. A Jini-based Comput-
ing Portal System. http://matsu-www.is.titech.ac.jp/ suzumura/jipang/.

[77] TeEam, C. Condor Version 6.2.2 Manual, 6.2.2 ed. University of Wisconsin-
Madison, Professor Miron Livny, 7367 Computer Science, 1210 West Day-
ton St, Madison, W1 53706-1685, 2001.

[78] TowNs, J. The Alliance Virtual Machine Room, 2001.
http://archive.ncsa.uiuc.edu/SCD/Alliance/VMR/.

[79] VERMA, S., GAWOR, J., VON LASZEWSKI, G., AND PARASHAR, M. A
CORBA Commodity Grid Kit. In 2nd International Workshop on Grid Com-
puting in conjunction with Supercomputing 2001 (SC2001) (Denver, Col-
orado, November 12 2001). http://www.globus.org/cog.

[80] vON LAszewskl, G., FOSTER, |., GAWOR, J., AND LANE,
P. A Java Commodity Grid Kit. Concurrency and Com-
putation: Practice and Experience 13, 8-9 (2001), 643-662.
http://www.globus.org/cog/documentation/papers/cog-cpe-final.pdf.

[81] vON LAszEwsKI, G., FOSTER, |., GAWOR, J., LANE, P., REHN, N.,
AND RuUSSELL, M. Designing Grid-based Problem Solving Environments
and Portals. In 34th Hawaiian International Conference on System Sci-
ence. Maui, Hawaii, 2001. http://www.mcs.anl.gov/ laszewsk/papers/cog-
pse-final.pdf.

52 BIBLIOGRAPHY

[82] VYyssoTsKy, V. A., CORBAT, F. J., AND GRAHAM, R. M. Structure of
the Multics Supervisor. In Joint Computer Conference, AFIPS Conf. Proc
27 (1965), p. 203. http://www.multicians.org/fjcc3.html.

