
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2000; 00:1–7 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

A Portal for Visualizing Grid
Usage∗

Gregor von Laszewski1,2,∗Jonathan DiCarlo2 Bill Allcock1

1 Argonne National Laboratory, Argonne, IL 60439
2 University of Chicago, Computation Institute, Chicago, IL 60637

SUMMARY

We introduce a sensor framework for measuring the use of Grid services and exposing
simple summary data to an authorized set of Grid users through a JSR168-enabled
portal. The sensor framework has been integrated into the Globus Toolkit and allows
Grid administrators to have access to a mechanism helping with report and usage
statistics. Although the original focus was the reporting ont the use of GridFTP services,
the usage service has been expanded to report also on the use of other Grid services.

key words: Grid, Grid Monitoring, Grid Usage, Java CoG Kit

1. Introduction

As the Grid evolves and is used as part of dynamically changing environments, it is important
to be able to measure how Grid services are used within a production Grid. By enhancing Grid
services with the ability to report its usage as part of a tightly integrated software solution, we
allow production Grids to monitor which services are used when. Such usage data is essential
for the development of mechanisms that deal with the ad hoc and sporadic nature of a Grid
[]. Having access to such information enables the community to develop more sophisticated
prediction algorithms, fault-tolerant Grid frameworks, and to fulfill the need for reporting.
With this information we can develop next-generation scheduling systems, quality-of-service
guarantees, adaptive systems, and optimizations. In the development of a usage service, we
need to address the following elementary questions:

1. What data needs to be reported?
2. When and how often do we need to report?

∗Correspondence to: Gregor von Laszewski, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL
60440,U.S.A., E-mail: gregor@mcs.anl.gov

Received 9 December 2005
Copyright c© 2000 John Wiley & Sons, Ltd. Revised



2 GREGOR VON LASZEWSKI, ET AL

3. Where and how do we collect the information and archive it?
4. Who should have access to the data or a subset of the data?
5. How can we use this data in developing advanced Grid services?

In this paper we introduce a framework that allows the monitoring of Grid services. The data
is archived and can be visualized through a Grid portal using JSR168 compatible portlets [1].
The framework has been tested and is now integrated as part of the Globus Toolkit. The paper
is structured as follows. First, we position our work in relationship to other Grid information
services. Next, we introduce the architecture of our framework. Then we focus on the display
of the data as part of a portal. Finally we present our summary.

2. Related Work

Monitoring has always been a major part of distributed computing, including Grid computing.
In general, we find two types of systems: a) those designed for monitoring resource availability
and status and b) those designed for monitoring resource usage. Most available Grid monitoring
systems focus on resource availability and status. For example, they report which compute
resources are available at a particular time, what disk space is available, and how the
CPU is used. Ganglia, MonALISA [4], NWS [2], and the Globus Toolkit MDS [8] are
examples of general-purpose resource-monitoring systems. Usage-monitoring systems answer
the question: What are users doing with the resources? Such systems may be used as part of
intrusion detection services or advanced Grid services that dynamically adapt based on use
patterns. Grid-based examples of such systems are discussed within the Global Grid Forum
[7]. In addition, we find tools and frameworks that support the development of presentation
components for monitoring systems such as the Round Robin Database tool (RRD) [5], and
the Open Grid Computing Environment (OGCE) framework [6] to export the information as
part of a portal. Our system falls into the class of monitoring resource usage and at the same
time provides a framework for visualizing the results within a portal.

3. Design and Architecture

The design of our Grid Usage Sensor Service (GUSS) is independent of the Globus Toolkit
and can, in principle, be reused by other frameworks and Grid services. To demonstrate its
usefulness in real Grid middleware, however, we are paying special attention to how we can use
our framework in the Globus Toolkit. The GUSS architecture is inherently distributed in order
to support the distributed nature of Grids. Figure 1 depicts the high-level architectural view
of the GUSS framework, while demonstrating the integration of services of the Globus Toolkit
that have been augmented with usage sensors. We distinguish the following components:

GUSS sensor: A sensor identifies the use of a component and forwards this information to
a usage collector.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



A PORTAL FOR VISUALIZING GRID USAGE 3

Figure 1. Architecture. Figure 2. Portal.

GUSS server: A server contains a receiver that collects the information of a sensors. The
data is than internally prepared for archiving to a database or for e-mail notifications
to inform subscribed users about usage information.

GUSS visualization server: The visualization server contains a JSR168 portable portlet.
Based on a query an authorized user fills out, it retrieves data from the database and
displays it in a suitable diagram or table via a charting component.

GUSS thick client: In addition to the portlet, the user can also browse the data directly
through a Java Swing component.

One of the architectural principles that we have employed is to design a language-
independent implementation based on specialized protocols between the sensors and the
service. However, to focus on the instrumentation of the Globus Toolkit, we have developed
specialized sensor protocols and the associated sensors and clients for the GridFTP server [9],
the Reliable File Transfer service, the Replication Location Services, the Java Web Services
Core [?], the C Web Services Core, and the Grid Resource Allocation Manager. Furthermore,
we have integrated a number of parameters allowing us to control on a component basis what
data is reported. For example, whenever the GridFTP server finishes sending or receiving a file,
the GridFTP sensor sends out information containing metadata such as size and information
about the transfer start and end times. In contrast, the Java Web Services core sensor [?] sends
out information each time the container is started or stopped, and includes a list of the Web
services that are running in the container.

At present we use UDP to submit the information between the sensor and the clients.
Although, one could adapt the architecture to use different protocols that provide more
reliability, we found that using UDP provides the advantage to be independent from network

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



4 GREGOR VON LASZEWSKI, ET AL

outages. In case of failures summary information could be send out at a later time. To
improve performance under load, we have integrated in the server two listener threads for
each sensor type: a high-priority thread catches packets and puts them unchanged into a ring
buffer; a lower-priority thread takes packets out of the ring buffer and parses them. Once the
server has parsed the data, it is analyzed and archived. Summary information is periodically
generated and stored in a historical database. A cron job is used to control the frequency of
the statistical analysis process. Another cron job is used to initiate that the server forwards
summary information to a mailing list to which users may subscribe.

To improve the performance of the framework, we have taken care to ensure that the
database and the GUSS server can be hosted on different machines. Furthermore, we have
integrated a cron job that moves sensor data to a secondary archive at a given time interval.
Hence, the data immediately accessible for processing in the server is kept small. The
architecture supports two mechanisms to expose the data: a Java client that allows querying
and displaying the data in graphical form, and a JSR168-based portlet that allows the display
in a portal.

3.1. Sensor Data Format and Components

To parse the packets, we use the “chain of responsibility” pattern [3]. For each Grid service
class we customize handlers. Hence, one can develop new handlers and extend the framework
with user-defined sensors and their analysis. For rapid parsing we have designed our packets
to include a component identifier in the first two bytes, a protocol version identifier in the
next two bytes, and component specific information in the rest of the packet. The advantage
of using this pattern is that when we add monitoring for a new Grid service, one can easily
write a new handler subclass and register it with the listener. Also, if we need to change the
format of a packet, for instance when we like to monitor a new feature, we can assign a new
version identifier and create a handler for it, while leaving the old handler to continue parsing
packets. At present, we keep the length of all usage update packets under 1472 bytes to avoid
packet fragmentation.

It is beyond the scope of this paper to present a detailed technical description of all the
different sensor packets designed for the Globus Toolkit. However, in order to give an idea
about the kind of information reported, we look at the current implementation of the GridFTP
GUSS packets in more detail. The data transmitted from the sensors to the server contains
the following component specific data: IP address, a timestamp, and a number of name value
pairs where the values store information for the name of the host logging the transfer; the time
that transfer was initiated; the time that transfer was completed; the GridFTP server version;
the size of the buffer used in the transfer; the block size used in the transfer; the number of
bytes in the file transferred; the number of streams used in the transfer; the number of stripes
used in the transfer; the types of transfer that identifies if the logging host is storing the file to
disk, or retrieving it from disk. Of these fields, the ones of most interest are the start and finish
times of the transfer, the host, the file size, and the operations store or retrieve. During our
summarization process, many derived quantities are calculated from this basic information.
Carful analysis is necessary, because a GridFTP transfer can involve up to three hosts, the
sender, the receiver, and the host that commanded the transfer. Hence, the GridFTP server

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



A PORTAL FOR VISUALIZING GRID USAGE 5

sends update packets on both store operations (file received) and retrieve operations (file sent),
which consequently results in the listener to potentially receive two update packets for the same
transfer. To increase scalability this data will be first simply stored in the database, but the
analysis process must take into account the possible duplication of information in order to
avoid double counting. A purge process can eliminate duplicated data.

3.2. Scalability

We began data collection in March 2005 as part of an evaluation phase. By June 2005 the
number of GridFTP packets reached over 6 million. Even if the storage space is not a problem,
the need to search and analyze so much data may adversely affect the query performance.
Therefore, we concluded to use a summarization and archival process to reduce the need for
queries to search through all of these packet records. The data that we summarize includes
obvious data points such as the total and average number of data entries as well as histograms
showing the total number of hosts, transfer speed, transfer duration, and transfer size and
their standard deviation.

3.3. Visualization

To provide adequate support for analyzing and monitoring the data, we have developed a
visualization framework based on a portal that interfaces to a GUSS Web server and can access
the data collected. It responds to two types of user requests: requests for plots of quantities
over specified time periods and requests for tabular summaries of the overall usage. To answer
these requests, it queries the database, compiles the individual usage packets into a summary
for each time period, generates an image file of a plot if necessary, and returns an html page
with the summary information to the client.

Figure 2 shows a screenshot of the portal showing the result to a query to depict the number
of active hosts participating in GridFTP transfers at a specified day.

These quantities that can be queried are as follows:

• Number of unique hosts active during the time period (where “active” means that they
sent or received at least one file);

• Number of files transferred (regardless of host) during the time period;
• Total number of bytes in all files transferred during the time period;
• Number of new hosts, observed for the first time during the period;
• Mean time taken for a single transfer, with standard deviation, averaged over the time

period;
• Mean size of a file transfer, with standard deviation, averaged over the time period;
• Mean file transfer speed (size divided by time), with standard deviation, averaged over

the time period; and
• Mean number of streams used in transfers, averaged over the time period;

Internally, the functionality of the GUSS Web service can be divided into the following
tasks:

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



6 GREGOR VON LASZEWSKI, ET AL

1. Get and parse queries coming from a GUSS client. Queries include information about
the time period (start and end dates) in question, the quantity to be plotted, and the
time granularity (by hour, by day, etc.)

2. Compare new request to recently served requests to see whether an existing cached
query result can be reused.

3. Check whether summaries exist for all of the time periods between the requested start
and end dates, and for all of the host categories of interest.

4. Process the retrieved records to calculate averages, totals, and standard deviations, and
store the results in a summary database.

5. Using the summaries for each time period, create a chart according to the users query,
and save it as image in a file. Return to the client an html file containing a link to
the image. Alternatively, return to the client an html fragment containing a table of
numerical data calculated from the summaries.

4. ResultsBetween June 18 and August 18, 2005, GridFTP usage packets were received from 428 unique
hosts in 30 countries. The breakdown of these hosts by top-level domain is shown in Table
I. Packets received from hosts in the mcs.anl.gov and isi.edu domains are excluded because
these domains are used as GridFTP testbeds and produce a very large volume of packets.
Out of the 428 hosts 22 hosts were in the mcs.anl.gov and isi.edu domains, but these 22 hosts
logged 38.1% of all usage packets (626086 packets out of 1643596). GridFTP usage packets
outnumbered packets from all other Globus components combined, and made up 72.33% of all
packets received (see Table II).

5. ConclusionDevelopment of the Grid requires us to think at higher levels of abstraction compared to
traditional software development. For this purpose, a bird’s-eye view of activity is invaluable.
A usage sensor framework such as that introduced here may help advance the development of
more sophisticated Grid services. It may also help Grid users and administrators in evaluating a
snapshot in time and in identifying which Grid services are used. By presenting the information
graphically through a portal, we enable users and administrators to potentially search for use
patterns that otherwise would be more difficult to find. This service distinguishes itself from
other services such as MDS in that it reports on actual resource usage instead of resource
status.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls



A PORTAL FOR VISUALIZING GRID USAGE 7

Table I. Known GridFTP hosts by top-level domain

Domain Number Comments
.gov 28
.edu 71
.com 5
.org 126 (of which 97 are teragrid.org)
.mil 1
.net 14
.am 1 Armenia
.ar 2 Argentina
.at 9 Austria
.au 9 Australia
.br 3 Brazil
.ca 10 Canada
.ch 1 Switzerland
.cl 2 Chile
.cn 1 China
.cz 2 Czech Republic
.de 6 Germany
.es 21 Spain
.fi 3 Finland
.gr 4 Greece
.hr 4 Croatia
.it 14 Italy
.ie 1 Ireland
.in 1 India
.jp 14 Japan
.kr 12 South Korea
.nl 1 Netherlands
.pl 3 Poland
.ru 9 Russia
.sg 5 Singapore
.sk 1 Slovak Republic
.th 1 Thailand
.tw 11 Taiwan
.ua 2 Ukraine
.uk 23 United Kingdom
.us 1 United States
Total 422

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls



8 GREGOR VON LASZEWSKI, ET AL

Table II. Usage packets by Globus component

Component Number of Packets Percentage of Total
GridFTP 1643596 72.33%

C WS Core 180454 7.94%
GRAM 173936 7.65%

Java WS Core 57956 2.55%
RLS 6398 0.28%
RFT 210063 9.24%

unparsable 256 0.01%
Total 2272403

6. Acknowledgments

The submitted manuscript has been created by the University of Chicago as Operator of
Argonne National Laboratory (“Argonne”) under Contract No. W-31-109-ENG-38 with the
U.S. Department of Energy. We acknowledge the many Globus Toolkit developers who have
provided customized protocols and handlers for the different Globus services reported on in
this paper.

REFERENCES

1. Alejandro Abdelnur and Stefan Hepper. Java Specification Request 168: Portlet Specification. Web,

October 2003. Available from: http://www.jcp.org/en/jsr/detail?id=168.

2. B. Gaidioz, R. Wolski, and B. Tourancheau. Synchronizing Network Probes to avoid Mea-

surement Intrusiveness with the Network Weather Service. In Proceedings of 9th IEEE High-

Performance Distributed Computing Conference, pages 147–154, August 2000. Available from:

http://www.cs.ucsb.edu/~rich/publications/.

3. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.

4. I.C. Legrand, H.B. Newman, R. Voicu, C. Cirstoiu, C. Grigoras, M. Toarta, and C. Dobre. Monalisa: An

agent based, dynamic service system to monitor, control and optimize grid based applications. In Computing

in High Energy and Nuclear Physics (CHEP), Interlaken, Switzerland, 27 September - 1 October 2004.

CERN. Available from: http://monalisa.cacr.caltech.edu/documentation/monalisa_chep04.pdf.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls



A PORTAL FOR VISUALIZING GRID USAGE 9

5. Tobias Oetiker, Jake Brutlag, and Alex van den Bogaerdt. Rrdtool: logging and graphing. Web, 2005.

Available from: http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/index.en.html.

6. Open Grid Computing Environments. Web Page. Available from: http://www.ogce.org.

7. OGSA Resource Usage Service (RUS-WG). Available from: https://forge.gridforum.org/projects/rus-wg.

8. Jennifer M. Schopf, Mike D’Arcy, Neill Miller, Laura Pearlman, Ian Foster, and Carl Kesselman. Monitoring

and discovery in a web services framework: Functionality and performance of the globus toolkit’s mds4.

Preprint ANL/MCS-P1248-0405, Argonne National Laboratory, Argonne, IL, 2005. Available from:

http://www-unix.mcs.anl.gov/~schopf/Pubs/mds-sc05.pdf.

9. GT 4.0 GridFTP. Web, 2005. Available from: http://www-unix.globus.org/toolkit/docs/4.0/data/gridftp/.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls



10 GREGOR VON LASZEWSKI, ET AL

Disclaimer

The submitted manuscript has been created by the University of Chicago as Operator of
Argonne National Laboratory (”Argonne”) under Contract No. W-31-109-ENG-38 with the
U.S. Department of Energy. The U.S. Government retains for itself, and others acting on
its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls


