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Abstract

A parallel genetic algorithm for the graph partitioning
problem is presented, which combines general heuris-
tic algorithms with techniques that are described in
evolution theory. In the parallel genetic algorithm the
selection of a mate is restricted to a local neighborhood.
In addition, the parallel genetic algorithm executes an
adaptation step after an individual is generated, with
the genetic operators crossover and mutation. During
the adaptation step the solution is improved by a com-
mon algorithm. Another selection step decides if the
adapted descendant should replace the parent individ-
ual. Instead of using a uniform crossover operator a
more intelligent crossover operator, which copies sub-
sets of nodes, is used. Basic parameters of the parallel
genetic algorithm are determined for different graphs.
The algorithm found for a large sample instance a new

unknown solution.

1 GENETIC ALGORITHMS

Genetic Algorithms are stochastic search algorithms
introduced by J.Holland in the 70’s [8].

rithms are based on ideas and techniques from genetic

These algo-

and evolutionary theory. Genetic algorithms simulate
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an evolutionary process with N individuals which rep-
resent points in a search space. Every individual is
encoded as a string called a genotype. The value of
the cost function which is defined for such a string is
called a phenotype.

In each step of the genetic algorithm, called a gen-
eration, every individual i1s evaluated with regard to
the entire population. This value is called the rela-
tive fitness of an individual. According to “natural
evolution” offspring are produced using genetic oper-
ators. The selection operator chooses individuals with
a probability that corresponds to the relative fitness.
Two chosen individuals produce a descendant using
the genetic operator crossover. The crossover opera-
tor exchanges substrings of the codes of the two chosen
individuals. The descendant replaces an individual in
the population after the generation step is complete.
Another genetic operator, called mutation, changes the
genotype of the descendant, with a small probability.
Mutation and crossover cause variation in the search
process. The mutation operator allows a search close
to a point in the search space, because only a small
number of changes occur. Crossover causes longer
jumps in the search space.

However, only selection leads the search in a specific
direction. Substrings of individuals that are more fit
than others are kept for the next generation. The
search is successful if the search space has the prop-
erty that a combination of two high valued points of
the search space leads to a higher valued point with
high probability [12].

Further information about genetic algorithms and

their applications is provided in [3] and [5].

2 PARALLEL GENETIC AL-
GORITHMS

In Holland’s genetic algorithm, selection occurs in the
entire population, whereas in the parallel genetic algo-
rithms the selection of a mate is restricted to a local

netghborhood. In addition, the parallel genetic algo-
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rithm executes an adaptation step after an individual
is generated, with the genetic operators crossover and
mutation. During the adaptation step the solution is
improved by a common algorithm. Another selection
step decides if the adapted descendant should replace

the parent individual.

The parallel genetic algorithm (PGA) can be described
as follows: An environment consists of a set of loca-
tions X = {xy,...,2n} which are divided geographi-
cally. Connections between locations are described by
a relation R on X. At each location xj there exists an
individual I} at time t. At the beginning of the evolu-
tionary process the initial individuals I{ are randomly
initialized. For each individual If, a set of neighbor
individuals N*(xy) are determined by the relation R.

Figure 1 shows the evolution process that runs on each

location.

artner individual

semon@ @
adaption
crossover ® (Iocal—hillclimb)

\ mutation
/
descendant

Figure 1: Evolution process

should descendant
survive?

PGA = (C,N,I° K, ¢, GO)

C is the set of genetic codings for the solutions.

N is the number of locations. The locations are

X = {#1,...,on}. At each time t there is a indi-
vidual Iltc € C on location zy.

% = {If, s I?V} is the initial population at
time ¢ = 0.

K C X x X is the communication relation.

c is a cost function which determines the phenotype

of the individual. A coding is evaluated.

GO = {mutation, crossing-over, selection, parent re-

placement strategy } is the set of genetic operators.

Figure 2: Parameters of the parallel genetic algorithm

— 41" International Conference on Genetic Algorithms, Plenum, 5
Morgan-Kaufman pp. 45-52 Q

Intelligent Structural Operators
for the k-way Graph Partitioning Problem 2

First, an individual chooses a partner for mating in
its neighborhood and creates a descendant using the
crossover operator. After the mutation operator is
applied, the descendant is improved in the adapta-
If the descendant is well adapted to the

environment,! it replaces the parent individual. The

tion step.

algorithm is terminated when a termination constraint
is fulfilled.?

Since the evolution process runs simultaneously on
each location, this model can be mapped onto a multi-
processor system. Each processor must know the cod-
ings of the individuals living on its neighbor processors.
The parallel genetic algorithm has been successfully
applied to the traveling salesman problem [14, 6]. In
this paper it is demonstrated that the parallel genetic
algorithm can also be applied to the complex k-way
graph partitioning problem. A formal description of
the k-way graph partitioning problem is given in the

next section.

3 THE k-WAY GRAPH PAR-
TITIONING PROBLEM

The k-way graph partitioning problem (k-GPP) is a
fundamental combinatorial problem which has appli-
cations in many areas of computer science (e.g., design
of electrical circuits, mapping) [10]. Mathematically
we can formulate the k-way graph partitioning prob-

lem as follows:

Let G = (V,E,w) be an undirected graph, where
V = {vy,ve,...,v,} is the set of nodes, E C V x V
is the set of edges and w : £ — IN defines the weights
of the edges. The k-way graph partitioning problem
is to divide the graph into k disjoint subsets of nodes
Py... Py, such that the sum of the weights of edges be-

tween nodes in different subsets is minimal, and the

1For example, if the descendant is better than the parents,
or if it is better than the worst individual in the neighborhood,

it is considered as well adapted.
2For example, a time limit may be used as termination

constraint.
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sizes of the subsets are nearly equal. The subsets are
called partitions, and the set of edges between the par-
titions is called a cut.

Let P = {P, ..., Py} be the partitions. Then the string
(9192...gn) describes a solution:

gi=—a <= v, €P, Vie{l, ... n}

With a € {1,...,k}. Node v; is assigned to the parti-
tion specified by ¢;. Instead of minimizing the cost of
the cut we maximize the sum of the weights of all the
edges between nodes in the same partitions. This is

an equivalent problem because the total cost of edges

1s constant. This leads to a cost function of:

Z w(vi, vj)

1<i<i<n
9i=9j;

C(glgz~~~gn) =

The advantage of this cost function is that a selection
operator for a genetic algorithm can be easily formu-
lated. Furthermore, the parallel genetic algorithm de-
scribed in this paper does not change the sizes of the
partitions during the computation. The equal size of

the partitions is controlled by the variance

2
def m m
(P) L L3 |- (% > |PZ»|) .

=1

4 PARALLEL GENETIC AL-
GORITHM APPLIED TO
THE k-GPP

To apply the parallel genetic algorithm to the k-way
graph partitioning problem, a representation of prob-
lem solutions has to be defined. Genetic operators
which control the composition of two solutions or the
modification of one solution have also to be defined.
In addition, the values of the parameters used by the
parallel genetic algorithm have to be determined (e.g.
population size, relation between the locations, muta-

tions, etc.).
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4.1 Representation,
Communication Relation, and Se-

lection

Rather than a simple binary representation, the dis-
crete string representation defined in section 3 is used
to code solutions of the k-way graph partitioning prob-
lem. Therefore, a larger alphabet ¥ = {1, .., k} is used.
To guarantee the constraint of the equal partition size,
only a subset of all k" possible strings is allowed. This
straightforward representation implies that the pheno-
type of a string g¢;...g, is given by the value ¢(g1...9n).
For the experiments, the communication relation be-

tween the locations is determined by a ring:

2y is neighbor of ;<=0 < (I—k+N) mod N < A,

where A denotes the number of neighbors and N de-
notes the population size. Let AN?(zy) be the set of
individuals located in the neighborhood of the indi-
vidual If. These individuals are called the selection
neighbors. For example, let three be the size of the the
selection neighborhood. Then those three individuals
are in the selection neighborhood that lie in the ring
directly before the individual itself (Figure 5).

The individual which is currently the best® can be
added to the selection neighbors. This individual is
called the currently best individual.

With the selection neighbors, the relative fitness of an

individual in an environment is defined as follows:

o(1})
> olp)

IteNt(zk)

VI; S Nt(l‘k)

The relative fitness determines the probability of se-
lecting an individual from the selection neighbors for
mating. With the help of this fitness function, very
good solutions can be found. Other selection strate-

gies are described elsewhere [2, 5].

3The currently best individual is the representation of the
best solution found since the parallel genetic algorithm is

started.

aﬁ%




appeared in:
ICGA 91

4.2 The Structural Crossover Operator

The crossover operator is very important for the suc-
cess of the genetic algorithm. If a crossover operator
destroys too much information already gained in the
past, the genetic algorithm degenerates to a simple
random search algorithm. To avoid losing too much
information, an intelligent structural crossover oper-
ator is defined. It copies whole partitions from one

solution into another.

O partition 1
O partition 2
@ partition 3
@ patition 4

detect the overwritten nodes
and remove nodes that destroy
the condition of equal partition
size

select apartition for

the crossover step result

Figure 3: Recombination of two solutions

Figure 3 depicts the recombination of two solutions. A
grid with 4 x 4 nodes 1s to be divided into 4 partitions.
To show the recombination step more clearly, colors
are used in the figure instead of numbers to represent
the different partitions.

First, a partition is randomly chosen in a parent so-
lution (the light gray partition). Then this partition
is copied into the other parent solution. Because this
copying process may destroy the constraint of equal
partition sizes, a repairing operator i1s applied. In
the repairing step, all nodes in the temporary solu-
tion which are not elements of the copied partition,
but have the same color as this partition, are detected.
These nodes are marked in the second part of Figure
3 with horizontal lines.

To assign these nodes to a partition, they have to be
marked (e.g. randomly) with the colors of those nodes
which have been overwritten by the copied partition.
In the example the white and the black partitions have
one node too few. So the nodes marked with horizontal
lines are relabeled with the colors white and black. A

new code is generated which represents a valid solution
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for the problem instance.

Executing the crossover operator on arbitrary geno-
types creates descendants which temporarily have a
lot of open positions during the crossover process. In
the extreme case, these positions could correspond to
a whole partition. If the number of nodes in a parti-
tion is large in comparison to the number of nodes in
the graph, a great disturbance of the old solutions will
arise. In order to avoid losing too much information
computed in the past, the codings are adapted before
the crossover process starts. They are changed, in such
a way that the difference between the two parent so-
ap ), (b1...bp)

denote the parent individuals. Then the difference of

lutions is as small as possible. Let (aj..

the two parent individuals is defined as follows:

0 otherwise

difference (ai...an,b1...by) def Z {

i=1

4.3 The Structural Mutation Operator

A common mutation operator that replaces values in
the string with an element randomly chosen out of ¥
will destroy the condition of equal partition size. To
avoid leaving the search space, a mutation is defined
as the exchange of two numbers of the coding.

Because, at the beginning of the evolution process,
the solutions generated with the crossover operator
are very different from each other, there is no need
to disturb them with a mutation operator. Mutations
are only executed if the difference between a parent
and the solution created by the crossover operator is
smaller than a parameter called mutations. Let A de-
note the minimum of the difference between the two
parents and its descendent generated by the crossover
step. If this difference is smaller than the parameter
mutations, then A - mutations swap operations are

executed on the coding of the descendant.

4.4 The Adaptation Step

For large problem instances, it is important to restrict

the solution space. This can be achieved by using a
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hill climbing algorithm to improve the solutions repre-
sented by the coding. Therefore, a variant of the 2-opt
algorithm introduced by Kernighan and Lin is imple-
mented [10]. For all pairs of nodes, the 2-opt algorithm
exchanges these nodes if the solution can be improved
by the exchange. This step 1s repeated until no further
improvement can be made. Since one iteration step is
done in O(n?) time, it is necessary to reduce the num-
ber of nodes on which this heuristic is used. Instead of
trying the exchange over all pairs of nodes, the 2-opt
algorithm is only executed on the nodes located at the

border of the partitions.

5 RESULTS

The parallel genetic algorithm is implemented on a
64 node transputer system. Each evolution process is
executed on one transputer. The maximal population
size is 64.

This paper concentrates on two different problem in-
stances. First, a graph whose edges are connected like
a grid 1s used to demonstrate some basic effects of the
parallel genetic algorithm. This graph is to be divided
into four partitions. Therefore, the globally optimal
solution for a grid with 100 nodes has a cost function
value of 20. Without equivalent solutions?, there ex-
ists only one globally optimal solution. The problem
grid provides a test instance for determining the basic
properties of the implemented algorithm.
Second, a graph called beam is used [4]. This graph
has 918 nodes and 3233 edges, and is to be divided
into 18 partitions.

There are only a few algorithms which can be com-
pared with the PGA, because other algorithms are
usually restricted to the 2-way graph partitioning
problem. Two of these comparable algorithms are the
round robin algorithm of Moore and the divide-and-
conquer Kernighan-Lin algorithm of Zmijewski[13, 7].

These algorithms do not use the constraint of equal

4Solutions are equivalent to each other only if they are dif-

ferent in the names of the partitions
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partition size, so that the partitioning problem is sim-

pler.

For the grid graph, parameters were found that allow
the globally optimal solution to be generated in every
case. Also, the PGA found the best known solution
for the instance beam. Figure 4 shows the progress of
this solution. The table 1 also shows the best known

results found with the different algorithms.

1200

Problem instance beam
—————— worst individual

1000 e AVErage

best individual

% i
2 800 |\
S ]

600

400

100 200 300 400 500
generations

Figure 4: Problem beam, Figure 5: Communication
64 individuals structure, Ring with 8 in-

dividuals

algorithm | minimal cost | a(P) | running time

GZ87 587 0.99 | 78 rounds

Moore 453 0.99 | 78 rounds

PGA 430 0.00 | 500 generations,
28 min

Table 1: Comparison of the best solutions for the in-

stance beam

6 PARENT REPLACEMENT
STRATEGY

In the implementation of the parallel genetic algorithm
for the k-way graph partitioning problem the conver-
gence speed, is an important factor. To increase the

convergence speed two special concepts are introduced:

1. The parent solution is only replaced if a specific

condition 1s fulfilled.

2. The currently best individual is included in the

selection neighborhood.
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In this section, different strategies for deciding whether
a descendant should survive and replace a parent in-
dividual are compared. The following replacement

strategies are considered:

Strategy “each”: Each parent individual is replaced
by its descendant. The replacement is done regard-
less of the quality of the parent or the descendant

solution.

Strategy “better”: A parent individual is only re-
placed by its descendant if the descendant is better

than the parent individual.

Strategy “locally better”: This strategy is a com-

bination of the previous strategies. The replace-
ment of a parent individual 1s dependent on the cost
of the neighbor individuals, the descendant, and the
parent itself. A parent is replaced if the descendant
is better than the parent solution, or if the descen-
dant is better than the worst individual in the {ocal

selection neighborhood.

The same experiments are done with and without the
currently best individual in the selection neighbor-
hood. The problem instance grid is used. For the
experiments with the problem instance grid, the pop-
ulation size is 16 and the size of the selection neigh-
borhood is 4. Figure 6 and 7 display the range of the
For

each generation, the cost of the worst and best indi-

cost values of the population over generations.

viduals are shown. Furthermore, the average cost of
the individuals in the population is shown. The graphs
shown in Figure 6 do not include the currently best in-
dividual in the selection neighborhood. Whereas, the
graphs shown in figure 7 include the currently best
individual in the selection neighborhood.

The experiments show that for the strategy “each,”
the cost range of the individuals in the population
fluctuate heavily among the generations. A relative
long time period is needed to find the minimal solu-
tion. If the currently best individual 1s included in the

selection neighborhood, the convergence speed can be

improved.

cost

cost

for the k-way Graph Partitioning Problem
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strategy “each”
worst individual

strategy “better”

worst individual
average

best individual

strategy “locally better”
worst individual
average

best individual

N average
best individual

0 5 10 15

generation

10 15 250 5

generation

10 15 250 5

generation

20 20 20 25

Figure 6: Replacement strategy for a parent without

the currently best individual in the selection neighbor-

hood

strategy “each”
worst individual

strategy “better”

worst individual
average

best individual

strategy “locally better”
worst individual
average

best individual

average
best individual

0 5 10 15

generation

10 15 250 5

generation

10 15 250 5

generation

20 20 20 25

Figure 7: Replacement strategy for a parent with the

currently best individual in the selection neighborhood

Using the strategy “better,” the convergence speed is
greater than with the strategy “each”. If the currently
best individual is also included in the selection neigh-
borhood, then the algorithm often gets stuck in a lo-
cally optimal solution. The algorithm converges too
quickly without discovering other possible solutions in
the solution space. The second graph in Figure 7 shows
that at a specific time period, all individuals have the
same cost value. No new information is gained by the
genetic algorithm.

Now the question arises, how convergence in low qual-
ity solutions can be avoided. One simple way to over-
come this problem is to combine the two strategies
with each other as described above. The replacement
strategy “locally better”, with the inclusion of the cur-
rently best individual in the selection neighborhood,
enables the parallel genetic algorithm to find high qual-
ity solutions with a high convergence speed.

Another important factor for jumping out of stable but

suboptimal solutions is a perturbation of the solution

i
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with the mutation operator. Using a sufficiently large
mutation rate enables the parallel genetic algorithm
to introduce new variation into the search process as
shown in the second graph of Figure 7. Here, the mu-
tation rate is %
This result also holds for the larger problem instance
beam. Figure 8 shows the range of the solutions gener-
ated with the strategy “locally better” and the inclu-

sion of the currently best individual in the selection

neighborhood. This approach produces the best re-

sults.
4 selection neighbors 4 neighbors, “local better"
450 450
445 445
40 440

435

cost
cost
I
w
a

430 430

435 433 431 433 431

better each local better without  with
current best individual

Figure 8: Replacement strategy. The problem instance

beam 1s used.

7 MUTATION

In the last section, it was shown that the mutation op-
erator is important for varying solutions when the ge-
netic algorithm get stuck in locally optimal solutions.
With a large experiment, the optimal number of mu-
tations are determined for the problem instance grid.

The optimal number of mutations achieves

1. that the average number of generations needed to

find a very good solution® is minimal.

2. that the frequency of finding the globally optimal

solution 1s maximal.

Figures 9 and 10 depict the result of the experiments
used to find the optimal number of mutations. 100 ex-

periments were done for each mutation in the interval

5For the problem instance grid, “very good” means “globally

optimal”
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from 0 to 50. Each experiment was terminated after
the globally optimal solution is found, or the evolu-
tion cycle (Figure 1) is repeated more than 100 times.
The strategy “locally better” is used for replacing the

parent individual.

0 1.00

080

=20)

f(c(P)

0.40

020

average number of generations

0 0.00
10 20 30 40 50 10 20 30 40 50

mutations

mutations

Figure 9: Analysis of the number of mutations. The
currently best individual is not included in the selec-

tion neighborhood

080

=20)

f(c(P)

0.40

020

average number of generations

0 0.00
10 20 30 40 50 10 20 30 40 50

mutations mutations

Figure 10: Analysis of the number of mutations. The
currently best individual is included in the selection

neighborhood

If the currently best individual is not included in the
selection neighborhood, the optimal number of muta-
tions is between 17 and 34. If fewer mutations are
done, the algorithm often get stuck in suboptimal so-
lutions. This can be avoided by increasing the number
of mutations. Finding the globally optimal solution
is prevented if too many mutations are executed. In

this case the algorithm degenerates to a simple random

search algorithm.

If the currently best individual is included in the selec-
tion neighborhood, the same effects appear. However,
the average number of generations which are needed

to find the globally optimal solution is smaller.

aﬁ%
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7.1 The Correlation Between Muta-
tion and the Adaptation Step

Common genetic algorithms use very small mutation
rates. For the problem instance grid an optimal so-
lution rate of about % was observed. This section ex-
plains, why a high mutation rate is needed to find very
good solutions quickly. To see the correlation between
the mutation rate and the adaptation step, one has to

remember that:

1. the adaptation step i1s executed after the recom-

bination of a new descendant.

2. the mutation operator is applied when the
crossover operator generates a descendant that is

very similar to one of its parents.

The PGA is applied to the problem instance grid. At
the end of the evolution process, a descendant is only
slightly different from one of its parents. If the 2-opt
algorithm were executed next, no new variation would
introduced into the search process.

Furthermore, with advancing generations nearly opti-
mal solutions are generated. Applying the 2-opt algo-
rithm on a slightly disturbed solution near the opti-
mum leads with high probability to the same old so-
lution. This fact is displayed in Figure 11. Let a be
a solution and b be the solution which is created by
applying some mutations and the 2-opt algorithm on
a. Figure 11 shows how often the solutions a and b are
equivalent for different good solutions.

To prevent the parallel genetic algorithm from getting
stuck, the mutation operator is used to disturb the
descendants. In addition the number of mutations has
to be sufficiently large.

The mutation operator is defined in such a way that it
is only applied if the difference between the parent so-
lutions and the descendant 1s smaller than the number
of mutations. Because the solutions are so different at
the beginning of the search process the mutation op-
erator is only applied later. Therefore, the crossover
and repairing operator are responsible for introducing

variety early on in the search process.
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f(equivalent)
°
&

5 10 15 20 25 30 5
mutation

Figure 11: Relative frequency of generating an equiv-
alent 2-optimal solution after applying a number of
mutations and the 2-optimal algorithm for different

good solutions

Another factor for a large mutation rate is that also
mutations are done regardless of the position of the
nodes in a partition. If the nodes are in the same par-
tition then the mutation operator generates obviously
not a new solution. This can in future implementa-
tions avoided if only mutations between different par-
titions are allowed. Furthermore, the nodes which are
allowed to mutate could be restricted to the borders

of the partitions.

7.2 Population Size and Neighborhood

Size

Using the problem instance grid, only slight differences
occur if other parameters like the population size are
modified. Therefore, the problem instance beam is fo-

cus of this section.

470 _Population size 16 470 _Population size 32 470 _Population size 64

455 455 455
450 450 450
445 445 445

435 435 435

cost
cost
cost

g f

431 432 433 435

430 430 430
440 437 440 441 43 437 436 436

425 425 425
4 6 10 16 4 6 10 32 4 6 10 64

neighbors neighbors

neighbors

Figure 12: Analysis of the population size and the size
of the selection neighborhood

Figure 12 compares the cost of solutions found with
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different population and neighborhood sizes. The se-
lection neighborhood of each individual includes the
currently best individual to increase the convergence
speed of the algorithm. To get good results, the pop-
ulation size is more important than the size of the
selection neighborhood. The best results are found
using the largest population —i.e. 64 individuals. In
addition, the size of the neighborhood should be small.
One important result is that, for large populations,
the PGA algorithm produces better solutions with a
restricted neighborhood than with a panmictic popu-

lation.

Crossover and Mutation

In [1], a genetic algorithm for the graph partitioning
problem can be found. This algorithm only generates
solutions for the 2-way partitioning problem. Experi-
mental results are only presented for graphs of up to
64 nodes. A uniform crossover operator is used to pro-
duce offspring. Each position of the offspring is ran-
domly labeled by one of the two corresponding num-
bers in the parent genotypes.

In this paper the uniform crossover operator has been
extended for the k-way graph partitioning problem.
With this crossover operator, however, no solutions
were found which were as good as those generated with
subset crossover for different mutations (Figure 13).

550

960
520

860

B 90 g
o o
460 E 760 gl
430 660 =
15 20 25 30 35 40 45 50 55 60 65 2-Opt KL PGA PGA
. generallu%os
mutations algorithm
Figure Figure 14: Comparison of

13: Uniform crossover op- the cost of the cut for dif-
erator with different mu- ferent heuristics on a ran-

tations dom graph with 900 nodes
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Random Graphs

Random graphs are defined so that the average degree
of each node is (n — 1)p, where n is the number of
nodes, and p is the probability that a pair of nodes 1s
connected by an edge. For a constant p and a large
n, random graphs are dense. The graph partitioning
problem is easier to solve for dense graphs, because
the solutions have nearly the same cost of the cut.
The GPP is more difficult for instances of restricted
random graphs whose degree is bounded, e.g. by 4 [9].
To compare the PGA with other heuristics, the 2-opt
and the KL-algorithm for the m-partitioning were also
implemented. The KL-algorithm tries to exchange se-
quences of nodes instead of exchanging only two nodes
in one step. A detailed description of these algorithms
is provided in [10] and [11].

Figure 14 shows the comparison of the algorithms 2-
opt, KL, and PGA terminated after 500 and 1000 gen-
erations. They are tested on a random graph with 900
nodes and maximum node degree of 4. Experiments
with the problem instances with 900 and 918 nodes
show that the PGA is much faster for regular graphs

than for restricted random graphs.

8 CONCLUSIONS

The parallel genetic algorithm computes very good re-
sults for the graph partitioning problem. For a large
problem instance the algorithm found a new unknown
minimal solution. The search space has the property
that a combination of two high valued points often
leads to a higher valued point. Implanting a small,
maximized subset of nodes from one solution into an-
other and applying a local hill-climbing heuristic to
this solution, often leads to a better partition.

Furthermore, this paper shows:

e that a parent replacement strategy improves the

quality of the solutions.

e that mutation is needed only if the crossover op-

erator produces a solution which is nearly equal
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to one of its parents.

e that the population should be chosen to be as

large as possible.

e that better solutions are generated with the re-
stricted neighborhood structure than with the

panmictic population structure.

e that for the implementation presented in this pa-
per, the selection neighborhood should have a size
of 4, and should include the currently best indi-
vidual to achieve the best results with a high con-

vergence rate.

e that to restrict the solution space, a discrete prob-
lem representation and structural genetic opera-

tors are important.

e that the adaptation step 1s very important for
restricting the solution space and improving the

convergence rate of the algorithm.

This implementation of a parallel genetic algorithm
shows that there exist two strategies for defining ge-
netic algorithms. The first strategy uses a sophisti-
cated representation and simple genetic operators onto
the codings to generate good solutions. Sometimes it
is difficult to find a sophisticated representation. Then
it is easier to chose a simple straightforward represen-
tation and introduce intelligence into the algorithm by
defining genetic operators which use the structure of
the problem to generate offspring.

There are many opportunities for further research in
this area. The most interesting would be to choose
a larger population size to display more clearly the
difference between the panmictic population and the
neighborhood model. A more sophisticated mutation
and selection operator may also be defined. The imple-
mentation environment makes it possible to run differ-
ent adaptation strategies on different locations in order
to inspect the solution space with different strategies.
Also, different communication relations may be com-

pared.
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