
Cyberaide onServe: Software as a Service on
Production Grids

Tobias Kurze1, Lizhe Wang2, Gregor von Laszewski2, Jie Tao3

Marcel Kunze3, David Kramer1, Wolfgang Karl1

1 Institut für Technische Informatik, Karlsruhe Institute of Technology, Germany
2 Pervasive Technology Institute, Indiana University, U.S.

3 Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany

Abstract—The Software as a Service (SaaS) methodology is a
key paradigm of Cloud computing. In this paper, we focus on an
interesting topic – to implement a Cloud computing functionality,
the SaaS model, on existing production Grid infrastructures. In
general, production Grids employ a Job-Submission-Execution
(JSE) model with rigid access interfaces. In this paper we develop
the Cyberaide onServe, a lightweight middleware with a virtual
appliance. The Cyberaide onServe implements the SaaS method-
ology on production Grids by translating the SaaS model to the
JSE model. The Cyberaide onServe virtual appliance is deployed
on demand, hosts applications as Web services, accepts Web
service invocations, and finally the Cyberaide onServe executes
them on production Grids. We have deployed the Cyberaide
onServe on the TeraGrid infrastructure and test results show
Cyberaide onServe can provide the SaaS functionality with good
performance.

Keywords – Virtual Appliance, Gird Computing, SaaS, Cloud
Computing.

I. INTRODUCTION

Cloud computing [1], [2], [3] is quickly changing the
technology landscapes and the way computing resources are
used. Various advanced computing paradigms provided by
Cloud computing, for example, Infrastructure as a Service,
Software as a Service, Platform as a Service, can offer
users nontrivial computing features, e.g., QoS guarantee and
customized computing environment provision.

Grid computing, which emerged around 15 years ago, now
has been widely adopted for large scale high performance
computing applications. Many countries and organizations
have developed some production Grid infrastructures, which
are normally built across distributed computing centers and
maintained with rigid access interfaces. As huge manpower
and investment have been devoted into building production
Grids, it is thus of great interests to bring Cloud computing
paradigms and advances on production Grids to make a full
usage of production Grid resources. Production Grids normally
are well organized and managed in a good order. In this
paper, we are interested in developing implementations that
bring Cloud computing paradigms to production Grid without
changing the interfaces and organizations of production Grids.

A production Grid basically uses a Job-Submission-
Execution (JSE) model: a job description is generated by users,
sent to a Grid system and is then finally executed. The Soft-
ware as a Service (SaaS) model employed in Cloud computing

is quite different: software is deployed and hosted as a service
in Clouds, and clients use this software by remotely invoking
services. The SaaS model distinguishes the features of Cloud
computing from Grid computing: Cloud users can on demand
get software execution environments from remote computing
resources with a performance guarantee. Implementing SaaS
on production Grids can bring various benefits to the users.
For example, allowing Cloud users to use a large amount of
existing Grid infrastructures. Grid users can access production
Grid, on demand, by invoking their own software services,
which can greatly level down the learning curve associated
with Grid computing. This paper focuses on how to build
Cloud functionalities on a production Grid, specifically, to
enable the SaaS on production Grids by translating the SaaS
model to the JSE model.

In this paper, we develop a light weight middleware, the
Cyberaide onServe, to realize the SaaS model on a produc-
tional Grid. The Cyberaide onServe is developed based on
the Cyberaide toolkit, which is a light weight middleware
for accessing production Grids. The Cyberaide onServe is
implemented as a virtual appliance which can be built on-
demand. After it is deployed, the cyberaide onServe serves
as an access layer for users to access production Grids. The
Cyberaide onServe accepts users’ software, deploys and hosts
users’ software as a service in the access layer. When users
want to invoke the service deployed, the Cyberaide onServe
translates users’ requirements into the JSE model and executes
the software on production Grids.

The contribution of this paper is two-fold:

• We develop a methodology to implement the SaaS model
on production Grids – translating the SaaS model into the
JSE model;

• We implement a light weight middleware, the Cyberaide
onServe, which can be deployed and access on the fly for
on-demand service provision on production Grids.

The rest of this paper is organized as follows: Section II
introduces background and related work of Grid computing,
virtual appliance, SaaS and Cloud computing. Section III
discusses the Cyberaide toolkit, our lightweight middleware
for Grid computing and Cloud computing. Section IV formally
specifies the requirements to develop SaaS on production
Grids. Section V overviews our solution for developing SaaS

2

on production Grids and the design of the Cyberaide onServe.
Section VI details the implementation of Cyberaide onServe,
which is developed based on the Cyberaide toolkit. Section VII
discusses typical usage scenarios of the Cyberaide onServe.
Section VIII then evaluates the Cyberaide onServe implemen-
tation. Finally this paper is concluded in Section IX.

II. BACKGROUND AND RELATED WORK

A. Cloud computing and virtualization

Cloud computing has recently become a hot topic. A com-
puting Cloud is a set of network enabled services, providing
scalable, QoS guaranteed, normally personalized, inexpen-
sive computing infrastructures on demand, which could be
accessed in a simple and pervasive way [3]. Conceptually,
users acquire computing platforms, or IT infrastructures, from
computing Clouds and then run their applications inside.
Therefore, computing Clouds render users with services to
access hardware, software and data resources, thereafter an
integrated computing platform as a service. The Cloud com-
puting distinguishes itself from other computing paradigms,
like Grid computing, Global computing, Internet Computing
in the following aspects:

• Utility computing model: Users obtain and employ com-
puting platforms in computing Clouds as easily as they
access a traditional public utility (such as electricity,
water, natural gas, or telephone network).

• On-demand service provisioning: Computing Clouds pro-
vide resources and services for users on demand. Users
can customize and personalize their computing environ-
ments later on, for example, software installation, net-
work configuration, as users usually own administrative
privileges.

• QoS guaranteed offer: The computing environments pro-
vided by computing Clouds can guarantee QoS for users,
e.g., hardware performance like CPU speed, I/O band-
width and memory size. The computing Cloud renders
QoS in general by processing Service Level Agreement
(SLA) with users.

• Autonomous System: The computing Cloud is an au-
tonomous system and it is managed transparently to
users. Hardware, software and data inside clouds can be
automatically reconfigured, orchestrated and consolidated
to present a single platform image, finally rendered to
users.

This paper aims to bring the advantages of aforementioned
Cloud computing methodologies by implementing the SaaS
mode for production Grids.

Many implementations of Cloud infrastructures use virtual
machines and virtual appliances as basic building blocks, such
as Eucalyptus [4], OpenNEbula [5], Xen Grid Engine [6], [7],
and Nimbus [8]. Nowadays, popular virtual machines include
XEN [9], VMware Server [10], KVM [11] and Microsoft
Virtual PC [12]. To reduce the complexity of software devel-
opment, a relatively new approach is to use virtual appliances.
Some software systems are difficult to compile, to link, and
to install and have been well tested only on a specific version
of tools and platforms. A software publisher can bundle the

necessary tools in an appliance and distribute it to users [13].
The Grid Appliance, an example of a virtual appliance, can
facilitate the deployment of Grid middleware on distributed
virtual machines [14]. Another interesting appliance is CERN
VM [15] which is built using rBuilder [16] and provides a
minimal Linux base to run LCG (LHC Computing Grid [17])
applications.

In this paper, we develop the Cyberaide virtual appliance for
users, which can be built on demand to provide Web services
and access to production Grids.

B. Production Grid computing

A production Grid [18], [19] can provide production level
services for high end computation and data intensive scien-
tific applications. Normally a production Grid is deployed
on a large-scale distributed computing infrastructure across
multiple administrative domains. From the viewpoint of Grid
users, a production Grid can be accessed with rigid security
interfaces and rules. Key features of a production Grid include:

• a production Grid is typically deployed on a large-
scale distributed computing infrastructure across multiple
administrative domains,

• a production Grid provides multiple production level Grid
services, and

• a production Grid is normally accessed with strict secure
interface, for example, with x.509 Certificates and Prox-
ies.

Typical examples of production Grids include WLCG [17],
[20], TeraGrid [21], [22], and EGEE [23].

In General, production Grids employ a Job-Submission-
Execution (JSE) model:

• Grid resource administrators install and deploy users’
application on compute resources,

• Grid users specify job submission with some job descrip-
tion language, then submit the jobs to Grid resources for
execution.

Compared with the SaaS model, the JSE model has some
drawbacks, for example, Grid users sometimes have difficulties
in obtaining a customized computing environment such as
operating systems and software libraries.

Our work of implementing the SaaS model on production
Grids, which are featured by above discussions.

C. On-demand Service Provision

Software as a Service is a key feature of Cloud computing.
Software or an application can be hosted as a service and pro-
vided to customers across the Internet. This model eliminates
the need to install and run the application on the customer’s
local computers. The SaaS methodology therefore alleviates
the customer’s burden of software maintenance and reduces
the expense of software purchases by on-demand pricing.

There have been significant effort of developing service
on demand for Grid computing or distributed computing.
SODA [24] is a Service-On-Demand Architecture that enables
on-demand creation of application services by dynamically

3

deploying virtual machines in Grids. [25] investigates a frame-
work for integrating the legacy business systems into Grid en-
vironment. A universal factory service [26] provides a dynamic
Grid service deployment mechanism and a resource broker
called door service. [27] presents a prototype Grid hosting
system, in which a set of independent Grids share a network of
cluster sites. [28] employs a business-oriented model for Grid
computing incorporating dynamic negotiation of service level
agreements. [29] proposes an on-demand service architectures
for virtual machine based on-demand service provision on
Grids. [30] automates the provision of HPC applications as
Grid services for on-demand supercomputing and simplifies
the construction of client-side applications. The Otho Toolkit
[31] develops application-specific Grid service wrappers based
on specifications of scientific legacy programs. [32] enhances
on-demand QoS provision of Grid services by integrating new
functionalities to enable the parties of a WS-Agreement to re-
negotiate and modify its terms during the service provision.
[33] proposes a Grid-based architecture and an implementation
to enable dynamic service overlays, which uses Grid factories
for creation of execution-environment and service-processes
components. An OGSI-compliant software information service
is implemented as part of NASA’s Information Power Grid
project for reconciling information from periodic, on-demand,
and user-specified sources [34]. HLAGrid [35] is a distributed
simulation framework, which allows resources on the Grid to
be utilized on demand by using Grid services. Above work is
implemented in following methods:

1) QoS on-demand Grid provision via SLA negotiation
[28], [32],

2) Applications specific deployment via language support
such as [31], [30], [25], [33],

3) On-Demand service deployment in virtualized machines
of Grid resources [24] [29].

4) Implementation via new Grid services [26] [35] [34].
Method 1) discusses on demand provision of QoS for Grid

services, which is different from our research focus. Method
2) provides various programming language level support for
on demand deployment of users’ applications. This method is
application specific, which cannot widely applied for different
types of users’ applications. Production Grids are accessed
with strict interfaces, for example, job submission model,
which currently do not allow virtual machines deployment of
method 3). In method 4) Some Grid services w are developed
in Grids new access interfaces, which cannot adopted by
production Grids. Therefore previous research cannot solve the
research issue of implementing the SaaS model on production
Grids.

In this paper, we propose an innovative solution of on
demand deployment of all kinds of applications in production
Grids, which can comply strict interfaces of production Grids.

III. CYBERAIDE: A LIGHT WEIGHT MIDDLEWARE FOR
PRODUCTION GRIDS

The solution for the Saas on production Grids presented in
this paper is developed based on the Cyberaide toolkit, a light
weight middleware for accessing Grids and Clouds [36], [37].

There are a lot of scenarios where an advanced cyberin-
frastructure is needed, but it might be difficult to use one.
A possible solution to this dilemma is provided by Cyberaide.
Several tools have been developed under the Cyberaide banner;
well-known examples are Cyberaide toolkit and Cyberaide
Shell. Consecutively, Cyberaide toolkit’s architecture will be
shortly introduced and explained.

Cyberaide enjoys the following essential features:
• Ease of use: makes the JavaScript based API and inter-

faces useful for Grid and Web developers.
• Low installation footprint: supports fast downloads as

well as easy maintenance through a small manageable
code base.

• Security: gains access to Grid resources in order to avoid
compromising the system. This is especially important
due to known limitations of JavaScript.

• Basic Grid functionality: provided for developers to cre-
ate Grid-based client applications.

• Advanced functionality: offered as many developers do
not want to replicate functionality provided by other Grid
middleware and upperware.

IV. SAAS ON PRODUCTION GRIDS: RESEARCH
DEFINITION

In this paper we focus on the SaaS model on production
Grids: users can dynamically deploy their applications as
Web services, which in turn execute users’ applications in
production Grids.

To develop the SaaS functionality on production Grids, a
solution has to comply interface requirements:

• The solution cannot change production interfaces and
functionalities, which typically are the job submission
model, security model and data transfer services. The
deployed software services can be accessed, published,
monitored and manipulated like a normal Web service.

• When a job is submitted to a production Grid, it is
required to access Grid infrastructures on the fly, like
security interfaces, resource selection and provision.

In addition to the above functional requirements, some other
concerns should be kept in mind in order to build a scalable
and flexible Cloud system:

• Toolkits, middleware, and other solutions that are known
to work well should be reused whenever possible.

• The solution’s architecture should be modularized or
structured in modules, so that independent parts can be
used separately.

• Provided user-interface(s) should be easy to use and ef-
ficient. The most important functions should be provided
through a single interface.

• Finally, a solution should be easy to install and to deploy,
as well as it should be accessible and usable by more than
one person, i.e., a group of people.

V. CYBERAIDE ONSERVE: OVERVIEW OF THE SOLUTION

This section overviews our solution for implementing the
SaaS on production Grids. Our methodology of implementing

4

SaaS on production Grids is shown as follows (see also Figure
1):

1) Users dynamically start Cyberaide virtual appliance,
which serves as an access layer for production Grids.

2) Clients then submit their software executables to Cy-
beraide virtual appliance.

3) Cyberaide virtual appliance then, on demand, deploys
Web services for these executables.

4) Users thereafter invoke their Web services.
5) The invoked Web service forwards a user’s invocation

to the Cyberaide virtual appliance.
6) The Cyberaide virtual appliance translates the Web ser-

vice invocation and submits jobs to production Grids for
job execution.

!"#$%&'#()

*"+$,)

-./0"1+$0)

2+"3%14)15541(&0)

6)

7)
8)

9)

:)

;)

,#<=1"0)

>0/),0"2+&0)

%,0")

Fig. 1. Methodology of SaaS on production Grid: an overview

In our solution we provide a dynamic access layer, which
can be deployed by users on demand to deploy Web services
and access production Grids. By introducing an access layer,
production Grids are remained unchanged. All intermediate
functionalities are implemented in the access layer.

The solution exposes its functionalities through a Web-
Interface which basically is the user-interface. The generated
Web services may then be used through their Web service
interfaces which are described by the associated WSDL de-
scription files. All the created Web services are published in an
UDDI registry together with the descriptions, the WSDL files,
and the service endpoint to make it easier to find a service.

As shown in Figure 2, the Cyberaide onServe is a multi-
layer solution:

• Users at the user layer access the Cyberaide layer via
multiple interfaces, such as Web portal or Web service
interfaces.

• The Cyberaide onServe virtual appliance at the access
layer:

– A Cyberaide portal provides user access interfaces
such as software upload and the Cyberaide service
management.

– A UDDI registry is the location where deployed
services are published

– A database stores the uploaded executables
– A SOAP server runs the deployed Web services

as well as some services related to the Cyberaide
toolkit.

– Other Control and Management components.
The access layer can be deployed locally by a user, or
deployed in a shared remote location and used by multiple
users.

• The production Grid Layer comprises all Grid related
services and tools (for example MyProxy, CoG Kit, etc.)
as well as the Grid itself.

!"#$%&'($)
*+%,&-)

!"#$%&'($).$('&,+%)

/%+(012+3)4%'(5)6)$7879):$%&4%'(9);4;;9)<!49)=>4%'(?)

@+#)
=A)B==C)

@+#)D10,&#-$))
1+*"),+)4%'())
E'&)4%'(F:/)

!"#$%&'($))
E'%,0&-)&**-'&31$)

@+#)50#.'55'+3))
G)D102+3)

*0#-'5H)

I$#))
5$%E'1$)

J0$%") '3E+K$)

L+M
N
&%$)0*-+&()

05$%5)

O$5+0%1$)5'($)

!-'$3,)5'($)

!"#$%&'($)+3L$%E$)
P'%,0&-)&**-'&31$)

Fig. 2. Cyberaide onServe Architecture

VI. CYBERAIDE ONSERVE: IMPLEMENTATION

While the previous sections give a rough overview of the
extended architecture, this section wants to shed light on
some details of the architecture, such as the communication
between the different components for instance. Basically, it
is a Java implementation that handles all the communication
and control mechanisms between each of the components. The
implementation is organized in the following packages:

• Database: The “DbManager” class implements the basic
functions permitting the storage and retrieval of infor-
mation. The SQL connection is handled through the
“java.sql.Connection” interface. In the case of MySQL,
just the MySQL-connector is needed which handles the
communication with the MySQL server.
All functionality concerning the database is organized in
the “dataIO” package.

• UDDI: The communication with the UDDI registry is
done using the “javax.xml.registry.Connection” interface.
The UddiManager class uses this interface to provide
the necessary functions to Cyberaide onServe. As jUDDI
[38] is an implementation of the Universal Description,
Discovery, and Integration specification for Web Services,
it is not necessary to use any jUDDI specific code.
The “UDDI” package contains the UddiManager class
that provides the necessary functions to publish a Web
service in the UDDI registry.

• The GridService “template-class” contains the code that
actually initializes the execution of an associated exe-
cutable on the Grid. It is part of the “service” package.

• The “datastructures” package contains representations
for executables and for Web services.

• The “tools” package contains tools like a watchdog class,
that is used to react correctly in some situations where a
problem may occur. (For example when a process takes
too long to complete.)

5

• Cyberaide Web service client: To create and submit the
job to the Grid, Cyberaide agent methods are used.
The Cyberaide agent is a Web service and exposes its
functions as Web methods. To use these functions, a
Web service client has been generated using wsimport.
This tool automatically creates the required classes to call
Web service methods by parsing the WSDL document
of the concerned service. Finally, communication with
the agent is performed through these generated classes.
The Cyberaide Web service client is part of the “client”
package.

• Build script: Another important detail is the build script
generating Web services. There is an ANT build file
[39] that provides two basic build options: build the tool
and build the Web service. The first option generates
the tool that is used directly through the Web interface.
The second, and the more interesting option, builds a
Web service for a specified file name. Basically, it uses a
Web service template file and modifies its name and the
initial value of an instance variable. Then it modifies the
service description file and generates an aar-file that is
finally copied into the Web service framework’s service
directory. The ant-build-file using the second option is
called by the tool itself after an executable has been
uploaded and the service is generated.

• Cyberaide portal: The chosen solution reuses the original
Cyberaide portal and extends it with a new function. This
new function is accessible through an additional button
that has been added to the existing Cyberaide portal
toolbar. By clicking the new button, the “Upload file and
generate Web Service” dialog is displayed. (see Figure 3)
The dialog permits the user to select a file that should be
uploaded to the portal server and to additionally specify
a description and information about possible parameters,
such as name and type.
By clicking the “Upload file and generate Web Service”
button, the form’s information is passed through a JSP
file. The JSP file then loads the chosen file to the portal
server and generates a parameter string. This parameter
string is used to call the Cyberaide onServe function that
generates and publishes a corresponding Web service.

VII. CYBERAIDE ONSERVE: USE SCENARIOS

Our solution provides the following two basic functionali-
ties:

• Accept executables and their descriptions through the
Web interface and generate and publish a related Web
service.

• When a Web service is used, a Grid job has to be
generated and sent to the Grid together with the related
executables and parameters.

This section discusses the use scenarios for above functional-
ities.

A. Uploading executable, generating and publishing Web ser-
vice

In this scenario a user wants to upload an executable to
generate a Web service that might then be executed on the

!

Fig. 3. Cyberaide onServe portal

Grid. The principal workflow is illustrated in Figure 4.

9

User

Webserver

Database

File

hosting

Uploads file
JSP calls

Java code

Generates WS

Stores file

Publishes

service

Web-Service

Extended Cyberaide Portal

Fig. 5. Upload executable and Web service generation

Fig. 4. Upload executable and Web service generation

• Upload: The user starts his/her browser and points it to
the extended Cyberaide portal Web site. Then, the user
selects the “Upload and generate Web service” option.
In the appearing dialog, a file has to be chosen and a
description may be provided, as well as details concerning
parameters and their types that might be passed through to
the executable. By confirming the dialog, the file is loaded
to the server and a small JSP script creates a parameter list
that is then used to start the Java program that conducts
further treatment.

• Further treatment: This Java program then performs the
following steps:

– Storage: It first stores the uploaded file in the
MySQL database, together with the its description
and the details about the parameters if provided by
the user.

6

– Service build: It then calls the ant-build script to
generate a Web service that is “linked” with the
uploaded file, in the sense, that when the execute
function of the Web service is called, the associated
file will be executed on the Grid.

– Publishing: Finally the generated Web service is
published in the jUDDI registry and is then ready
to be used.

B. Using generated Web service
The second scenario describes what happens if a user wants

to invoke a Web service that has been generated before by
Cyberaide onServe. The principal workflow of this scenario is
illustrated in Figure 5.

User
Database

Looks for

service

Executes job

on Grid

Loads

associated file

Creates service

client and uses

service

hosting

SOAP-Engine

Creates and

submits

 job

Cyberaide

Agent

Web-Service

Fig. 5. Use of Web service and execution on Grid

• Service Discovery and Web service client creation:
First of all, the user examines the jUDDI registry to
find the appropriate service. Once the service has been
discovered, a Web service client may be created by using
the corresponding WSDL document. This WSDL file
location is also specified in the UDDI entry for the
discovered service.

• Client execution requested: When the client is created
and the Web service executed, to specify the appropriate
parameters, the following steps are performed:

– File retrieval: The first thing that happens is the
lookup of the associated file in the database. It
is loaded from the database and then stored in a
temporary location.

– Authentication: Before any use of the Grid is possi-
ble, an authentication is required and performed by
the Cyberaide agent.

– Upload: After the successful authentication, the file
is uploaded to the Grid by using the functions
provided by the Cyberaide agent.

– Job description generation: Subsequently, a job de-
scription is generated by using the specified param-
eters and the name of the executable.

– Job submission: Finally, the job is submitted to the
Grid again using functions of the Cyberaide agent
and the generated job description.

VIII. PERFORMANCE EVALUATION AND DISCUSSION

A. Test organization

We take a performance study on the TeraGrid [21], [22].
The TeraGrid is a production Grid infrastructure which con-
tains 11 supercomputing centers across U.S. We measure
the system performance metrics when a Cyberaide virtual
appliance works in the TeraGrid test bed. The following
subsections discuss the performance of various components
of the Cyberaide onServe.

B. Web service client

When requesting the execution of a Web service, respective
of the executable represented by the Web service, the associ-
ated executable will be loaded from the database and stored
temporarily on the disk. Obviously, this step takes more time
if the performance of the database and/or the hard disk is poor.
Figure 6 shows the CPU utilization, the I/O of the hard disk
and the data sent over the network. To generate the graph, a
very small file (some bytes) has been used and loaded to a
Grid node. It is notable that the hard disk utilization is very
low as well as the amount of data sent to the Grid. A relatively
large part of the measured traffic is generated by the security
credential request and the associated answer. The CPU usage
achieves a high value while loading and decompressing the file
from the database and a second time when the job is being
created and submitted to the Grid.

Another very important factor influencing the performance
is the available network bandwidth. The slower the network,
the longer the upload of the executable will take. An upload
strategy that avoids frequent uploads of the same file may
finally result in a better overall performance in this case.

By replacing the small file used in the test before with a
much larger file (∼5MB), the bandwidth limitation becomes
visible. Figure 7 shows the network and hard disk I/O graphs.
The first blue peak indicates the moment the file is written
temporarily to the hard disk. Clearly, the hard disk is not
the limiting factor in this test, but the network bandwidth
is. It takes about 60 seconds to upload the file to the Grid
node. The transfer rate is almost constant all the time at about
80 to 90 KB/s. The upload time for larger files, or multiple
simultaneous uploads, will probably take even longer.

The current implementation of the solution does contain
some workarounds as some features provided by the Cy-
beraide toolkit didn’t work as expected. One result of these
workarounds is, that the actual status of the job can’t be
retrieved and that the local client has to request the output
tentatively. Finally this may result in a service customer that
requests the application’s output more often than necessary
which may reduce the network performance even more. This
effect is visible in Figure 6 and Figure 7. In a relative constant
interval the output of the running job is written to the hard
disk, resulting in periodic hard disk write access peaks.

Finally, the provided solution is quite good in a scenario
using a lot of relatively small files. The network limitation
doesn’t play a huge role in this case and K-GRAM permits
to submit a large number of jobs quite efficiently. Large files
naturally need a lot more of time to be loaded to the Grid and

7

!

Fig. 6. Web service execution: CPU utilization, network and hard disk I/O (3 seconds interval)

!

Fig. 7. Web service execution, larger file: network and hard disk I/O (3 seconds interval)

will even be reloaded when executed a 2nd time. This behavior
may not be optimal depending on the usage scenario.

On the other hand, there may be files that need a lot of
time to finish on the Grid. Depending on the available Grid
resources, its workload and the complexity of the executable
itself, the execution time may vary tremendously. The addi-
tional overhead added by Cyberaide onServe should be quite
small compared to the runtime of a typical executable a Grid-
Web service is generated for.

C. Portal and Web service generation

The Web Portal performance is basically influenced by two
factors, which are the same for the Web service client except
for the Grid-service’s performance which logically doesn’t
play a role here.

When a file is uploaded through the Web portal, it is stored
in a temporary location. Figure 8 shows a high peak of the
network input graph, indicating the reception of the file. The
used network operates at 1000Mbit/s, explaining the peak’s

height. The CPU utilization is very high due to the reception
and storage of the file and also because of tomcat handling the
request and loading the java-classes. Also, the Web service is
being created. In the case of multiple simultaneous uploads,
this could pose a problem.

Another implementation related problem is visible in the
hard disk graph. Two peaks indicating write hard disk activity
show, that the file is written two times. The problem is, that the
file is first stored temporarily and then in the database. This
solution is not optimal and may be improved. This second
storage operation also implies a high CPU utilization.

D. Further Discussion

1) Scalability: Finally, this Section will end with some
thoughts concerning the scalability of the presented solution
and some of the solution’s flaws. It is quite obvious that the
solution’s scalability is limited either by the system’s hard disk
I/O-performance or its network connection’s performance. The
solution doesn’t need a lot of CPU time nor a lot of memory,

8

!

Fig. 8. Upload file and generate Web service: CPU utilization, network and hard disk I/O (3 seconds interval)

even with multiple simultaneously requests - neither of them
should hence be the bottleneck.

2) Network connection: A system that only possesses a
slow network connection will naturally treat requests much
slower than a system with a more powerful network con-
nection. In the case of multiple simultaneous requests, the
system’s performance might suffer significantly.

This goes for both basic use cases of the presented solution
(upload and Web service generation scenario and Web service
usage scenario) and is related to the fact that in any case large
files (some MBs) might have to be transferred between the
involved machines. In a stress-test-scenario, when multiple up-
and downloads from and to the system have to be performed, a
poor network connection might become a bottleneck slowing
down the treatment of the requests.

3) Hard disk I/O: In the “upload and Web service gen-
eration scenario”, the bottleneck of a “standard” system that
is equipped with a “normal” hard disk and a good network
connection might become its I/O performance. This is also
due to a non-optimal solution when storing the files into the
database.

When a file is loaded to the server, it is first stored into a
temporary location and then loaded from this location into the
database. Hence there are at least two write “operations” and
one read “operation” necessary just to store one file in the
database. This is not optimal and may lead to performance
drops.

When using a Web service the situation is a bit different,
as two reads and just one write “operation” are necessary, and
also “mandatory”, this scenario is not a solution’s flaw.

4) Usability: This is a point quite difficult to evaluate as
usability is somewhat of a “matter of taste”. As mentioned
before, the upload and Web service creation functionality is
provided through a single interface – a Web-portal (see Figure

3). This Web portal should be easy to use for almost anybody.
It is a tool that also should be considered to be very efficient
by a majority of users.

To use the generated services, a user should examine the
UDDI registry provided by the solution. The user has to do so
by using external tools as the presented solution doesn’t come
with a tool to examine UDDI registries.

To actually use the generated and provided services, a Web
service client must be generated. The most easiest solution
is to parse the WSDL document with an appropriate tool,
such as “wsimport”, which then generates all needed classes
permitting to use the Web service in a comfortable way. An
even more comfortable solution may provide the necessary
files as a download, but the proposed wsimport solution also
seems to be quite user-friendly as the purpose is to provide
dynamically created Web services.

IX. CONCLUSION

Software as a Service (SaaS), a key functionality of Cloud
computing, brings a number of benefits for users, like on
demand deployment of software environment, location in-
dependent access and efficient software management. This
paper focuses on the research to build the SaaS model on
production Grids. Production Grids normally use the Job-
Submission-Execution (JSE) model with strict access inter-
faces. The Cyberaide onServe is developed to implement the
SaaS functionality on production Grids by translating the
SaaS model to the JSE model. The Cyberaide onServe is
implemented in a virtual appliance, thus it can be deployed
on demand by users to build the SaaS model on production
Grids. Test results and performance evaluation on the TeraGrid
infrastructure show that the Cyberaide onServe implements the
SaaS model on production Grids with a good performance.

9

ACKNOWLEDGMENT

Work conducted by Gregor von Laszewski and Lizhe Wang
is supported (in part) by NSF CMMI 0540076 and NSF SDCI
NMI 0721656. The authors want to thank Mr. Jai Dayal for
his comments on the paper.

REFERENCES

[1] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented cloud com-
puting: Vision, hype, and reality for delivering it services as computing
utilities,” in Proceedings of the 10th IEEE International Conference on
High Performance Computing and Communications (HPCC-08, IEEE
CS Press, Los Alamitos, CA, USA), 2008, pp. 5–13.

[2] L. Wang, J. Tao, M. Kunze, A. Castellanos, D. Kramer, and W. Karl,
“Scientific cloud computing: Early definition and experience,” in Pro-
ceedings of the 10th IEEE International Conference on High Perfor-
mance Computing and Communications, September 2008, pp. 825–830.

[3] L. Wang, G. von Laszewski, M. Kunze, and J. Tao, “Cloud Computing:
a Perspective Study,” New Generation Computing, vol. 28, March
2010. [Online]. Available: http://cyberaide.googlecode.com/svn/trunk/
papers/08-lizhe-ngc/08-ngc.pdf

[4] “Eucalyptus,” [Online], http://www.eucalyptus.com/.
[5] “Opennebula,” [Online], http://www.opennebula.org/doku.php?id=start.
[6] “Xge - xen grid engine,” [Online], http://mage.uni-marburg.de/trac/xge.
[7] N. Fallenbeck, H. J. Picht, M. Smith, and B. Freisleben, “Xen and the

art of cluster scheduling,” in Virtualization Technology in Distributed
Computing, 2006. VTDC 2006. First International Workshop on, 2006,
p. 4. [Online]. Available: http://dx.doi.org/10.1109/VTDC.2006.18

[8] “Nimbus Project.” [Online]. Available: http://workspace.globus.org/
clouds/nimbus.html/

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and
the art of virtualization.” in SOSP, M. L. Scott and L. L.
Peterson, Eds. ACM, 2003, pp. 164–177. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/sosp/sosp2003.html#BarhamDFHHHN03

[10] “Vmware server,” [Online], http://www.vmware.com/products/server/.
[11] “Kvm - kernel based virtual machine,” [Online], http://www.linux-kvm.

org/page/Main Page.
[12] “Microsoft virtual pc,” [Online], http://www.microsoft.com/windows/

virtual-pc/default.aspx.
[13] C. P. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich, J. Chow,

M. S. Lam, and M. Rosenblum, “Virtual appliances for deploying
and maintaining software.” in LISA. USENIX, 2003, pp. 181–194.
[Online]. Available: http://dblp.uni-trier.de/db/conf/lisa/lisa2003.html#
SapuntzakisBCZCLR03

[14] D. I. Wolinsky and R. J. Figueiredo, “Simplifying resource sharing in
voluntary grid computing with the grid appliance,” in IPDPS. IEEE,
2008, pp. 1–8. [Online]. Available: http://dblp.uni-trier.de/db/conf/ipps/
ipdps2008.html#WolinskyF08

[15] “Cernvm,” [Online], http://cernvm.cern.ch/cernvm/.
[16] “rbuilder,” [Online], http://www.rpath.com/rbuilder/.
[17] “Lcg,” [Online], http://lcg.web.cern.ch/LCG/.
[18] I. Foster and J. Gieraltowski, “The grid2003 production grid: Principles

and practice,” in HPDC ’04: Proceedings of the 13th IEEE International
Symposium on High Performance Distributed Computing. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 236–245.

[19] D. Lingrand, J. Montagnat, and T. Glatard, “Modeling user submission
strategies on production grids,” in HPDC ’09: Proceedings of the
18th ACM international symposium on High performance distributed
computing. New York, NY, USA: ACM, 2009, pp. 121–130.

[20] T. Antoni, D. Bosio, and M. Dimou, “Wlcg-specific special features in
ggus. wlcg worldwide lhc computing grid,” CERN, Geneva, Tech. Rep.
CERN-IT-Note-2009-018, May 2009.

[21] P. Beckman, “Building the TeraGrid,” Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, vol.
363, no. 1833, pp. 1715–1728, 2005.

[22] C. Catlett, “The Philosophy of TeraGrid: Building an Open, Extensible,
Distributed TeraScale Facility,” in Cluster Computing and the Grid,
2002. 2nd IEEE/ACM International Symposium on, 2002, pp. 8–8.

[23] R. Berlich, M. Hardt, M. Kunze, M. Atkinson, and D. Fergusson, “Egee:
building a pan-european grid training organisation,” in ACSW Frontiers
’06: Proceedings of the 2006 Australasian workshops on Grid computing
and e-research. Darlinghurst, Australia, Australia: Australian Computer
Society, Inc., 2006, pp. 105–111.

[24] X. Jiang and D. Xu, “Soda: A service-on-demand architecture for
application service hosting utility platforms,” in HPDC ’03: Proceedings
of the 12th IEEE International Symposium on High Performance Dis-
tributed Computing. Washington, DC, USA: IEEE Computer Society,
2003, p. 174.

[25] Z. Luo, “Research on on-demand grid services access,” Neural, Parallel
Sci. Comput., vol. 12, no. 3, pp. 407–418, 2004.

[26] E.-K. Byun, J.-W. Jang, W. Jung, and J.-S. Kim, “A dynamic grid
services deployment mechanism for on-demand resource provisioning,”
in CCGRID ’05: Proceedings of the Fifth IEEE International Symposium
on Cluster Computing and the Grid (CCGrid’05) - Volume 2. Wash-
ington, DC, USA: IEEE Computer Society, 2005, pp. 863–870.

[27] L. Ramakrishnan, D. Irwin, L. Grit, A. Yumerefendi, A. Iamnitchi, and
J. Chase, “Toward a doctrine of containment: grid hosting with adaptive
resource control,” in SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing. New York, NY, USA: ACM, 2006,
p. 101.

[28] G. Engelbrecht and S. Benkner, “A service-oriented grid environment
with on-demand qos support,” in SERVICES ’09: Proceedings of the
2009 Congress on Services - I. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 147–150.

[29] Z. Huang, C. He, L. Gu, and J. Wu, “On-demand service in grid:
Architecture, design and implementation,” in ICPADS ’05: Proceedings
of the 11th International Conference on Parallel and Distributed Systems
- Workshops. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 674–678.

[30] S. Benkner, I. Brandic, G. Engelbrecht, and R. Schmidt, “Vge – a
service-oriented grid environment for on-demand supercomputing,” in
GRID ’04: Proceedings of the 5th IEEE/ACM International Workshop
on Grid Computing. Washington, DC, USA: IEEE Computer Society,
2004, pp. 11–18.

[31] J. Hofer and T. Fahringer, “Presenting scientific legacy programs as
grid services via program synthesis,” in E-SCIENCE ’06: Proceedings
of the Second IEEE International Conference on e-Science and Grid
Computing. Washington, DC, USA: IEEE Computer Society, 2006,
p. 34.

[32] G. Di Modica, O. Tomarchio, and L. Vita, “Dynamic slas management
in service oriented environments,” J. Syst. Softw., vol. 82, no. 5, pp.
759–771, 2009.

[33] O. Ardaiz and L. Navarro, “Grid-based dynamic service overlays,”
Future Gener. Comput. Syst., vol. 24, no. 8, pp. 813–823, 2008.

[34] P. Z. Kolano, “A unified framework for periodic, on-demand, and user-
specified software information,” in GRID ’04: Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 273–280.

[35] Y. Xie, Y. M. Teo, W. Cai, and S. J. Turner, “Servicing provisioning for
hla-based distributed simulation on the grid,” in PADS ’05: Proceedings
of the 19th Workshop on Principles of Advanced and Distributed
Simulation. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 282–291.

[36] G. von Laszewski, A. Younge, X. He, K. Mahinthakumar, and
L. Wang, “Experiment and Workflow Management Using Cyberaide
Shell,” in 4th International Workshop on Workflow Systems in
e-Science (WSES 09) in conjunction with 9th IEEE International
Symposium on Cluster Computing and the Grid. IEEE, 2009.
[Online]. Available: http://cyberaide.googlecode.com/svn/trunk/papers/
09-gridshell-ccgrid/vonLaszewski-ccgrid09-final.pdf

[37] “The cyberaide project.” [Online]. Available: http://multicore.amd.com/
[38] “Aparche juddi,” [Online], http://ws.apache.org/juddi/.
[39] “Apache ant,” [Online], http://ant.apache.org/.

