e\

ring with
8 individuals

Figure 2: communication structure

algorithm | minimal | ¢(|F;]) | run
cost time
[3] 587 0.99 | 78 rounds
[8] 453 0.99 | 78 rounds
PGA 430 0.00 | 28 min,
[6, 7] 500 gene-
rations

Figure 3: Minimal costs found with dif-

ferent algorithms

References

[1] G.C. Everstine. A comparison of three resequencing algorithms for the reduction of
matrix profile and wavefront. Int. J. Numer. Methods in Eng., Vol. 14, 837-853, 79.

[2] M. Gorges-Schleuter. ASPARAGOS: An Asynchronous Parallel Genetic Optimiza-
tion Strategy. In 3rd Int. Conf. on Genetic Algorithms, San Mateo, Morgan Kauf-

mann, 89.

[3] J. R. Gilbert and E. Zmijewski. A Parallel Graph Partitioning Algorithm for a

1200

1000 ——minimum

cost of cut
=
8

600

40

generation

Figure 4: problem beam, 64 individuals

T
500

Message-Passing Multiprocessor. Techn. Report 87-803, Cornell University, 87.

[4] J. H. Holland. Adaptation in natural and artificial systems. Ann Arbor, University

of Michigan Press, 75.

[5] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning

Graphs. Technical report, Bell Syst. Techn. J., February 70.

[6] G. von Laszewski. Ein paralleler genetischer Algorithmus fir das GPP. Master’s

thesis, Univerisitat Bonn, 90.

[7] G. von Laszewski. A parallel genetic algorithm for the graph partitioning problem. In
Transputer Research and Aplications 4, Proc. of the 4th Conf. of the North-American

Transputers Users Group, [0S Press, Ithaca, NY, 90.

[8] D. Moore. A Round-Robin Parallel Partitioning Algorithm. Technical Report 88-916,
Cornell University, [thaca, NY, 88.

[9] H. Miihlenbein. Parallel Genetic Algorithm, Population Dynamics and Combinato-
rial Optimization. In 3rd Int. Conf. on Genetic Algorithms, San Mateo, Morgan
Kaufmann, 89.

Using the simple string representation leads to the problem that different individuals
have the same phenotype. Assume that two solutions exists which are only different
in numbers for the partitions. Then a crossover operator like the one described above
destroys to much information because the set of overwritten nodes becomes too large. In
this case it is useful to adapt the two parent strings. The numbers of the partitions are
changed in such a way that the difference between the two parent solutions is as small as
possible. A more formal description can be found in [6, 7].

For larger problems, it is important to restrict the solution space. This can be done by
improving the solutions with a hill climbing algorithm. Therefore, a variant of the 2-opt
algorithm described in [5] is used. For all pairs of nodes, the assignment of the two nodes
to a partition is exchanged, if the exchange improves the cost of the solution. This step is
repeated until no improvement can be done. Instead of trying the exchange over all pairs
of nodes we execute the 2-opt algorithm only on the nodes located at the border of the
partitions.

The relationship between the individuals are determined by a ring. If for example, three is
the size of the neighborhood, then those three individuals are in the neighborhood which
lies in the ring directly behind the individual (figure 2). We also include the so far best
individual in the neighborhood of an individual.

4 Results

The PGA is implemented on a 64 transputer based system. Each processor contains an
individual. This implementation environment is used to experiment with the partitioning
of graphs defined in [1]. There are only a few algorithms that can be compared with
the PGA, because the partitioning problem is usually restricted to the bi-partitioning
problem (k = 2). Two comparable algorithms can be found in [3, 8]. These algorithms do
not use the constraint of equal partition size, so that the partitioning problem is simpler.
The PGA algorithm found the best known solution for the problem instance beam with
918 nodes which is divided into 18 parts. Figure 3 shows the best known results found
with the different algorithms. Column 3 of the table compares the standard deviation of
the size of the parts found with the different algorithms. Figure 4 shows the progress of
the solution. Experiments with different population sizes and neighborhood sizes shows
that a small neighborhood size and a large population size should be chosen to get the

best results (e.g. 4, 64) [6, 7].

5 Conclusion

The parallel genetic algorithm computes very good results for the graph partitioning
problem because the search space has the property that a combination of two high valued
points of the search space leads often to a higher valued point. The algorithm uses
distributed selection in a restricted neighborhood. A large population size and a small
neighborhood size should be chosen in order to find the best results. The definition of
sophisticated genetic operators is useful if a representation is difficult to find or if the
choosen representation does not take advantage of the structure of the problem.

3 Representation, Operators, Population Structure

To apply the parallel genetic algorithm to the GPP, a representation of solutions has to
be defined. We chose the simple string representation described in section 2.

If a crossover operator destroys too much information gained in previous steps, the genetic
algorithm degenerates to a simple random search algorithm. To take advantage of the
information already gained, a structural crossover operator is defined. It copies whole
partitions from one solution into another.

O partition 1
O partition 2
@ partition 3
@ patition4
select a partition for detect the overwritten nodes
the crossover step and remove nodes which result

destroys the condition of equal
partition size

Figure 1: Recombination of two solutions

Figure 1 depicts the recombination of two solutions. A grid with 4 x 4 nodes is to be
divided into 4 partitions. To show the recombination step more clearly, colors are used in
the figure instead of numbers for the partitions.

First, a partition is randomly chosen in a parent solution (the light gray partition). Then
this partition is copied into the other parent solution. Because this copy process may
destroy the constraint of equal sizes of the partitions, a repairing operator is applied.
In the repairing step, all nodes in the temporary solution which are not elements of the
copied partition, but have the same color as this partition, are detected.

These nodes are marked in the second part of the figure 1 with horizontal lines. To assign
these nodes to a partition, they have to be marked (e.g. randomly) with the colors of those
nodes which have been overwritten by the copied partition. In the example the white and
the black partitions have one node too few. So the nodes marked with horizontal lines
are relabeled with the color white and black.

Mutation is applied after the recombination step. To avoid creating invalid solutions,
mutation is defined as a number of exchanges of two numbers in the coding. The exchange
step is repeated as long as the difference between the new descendant and one parent is
under a specific limit. The difference is defined as follows:

difference (ay...an,b1...b,) = Z{ 1 if a; # b

~ | 0 otherwise

If we represent the solutions of the problem as a fitness landscape in a certain configuration
space, we see that a PGA tries to jump from two local minima to a third minimum, using
the crossover operator. This jump is (probabilistically) successful, if the fitness landscape
has a certain correlation. The PGA can be applied to other combinatorial problems with
great success [9, 2]. The parallel genetic algorithm can be described as follows:

Specification: A genetic representation of the optimization problem has to be defined.

Initialization: An initial population and its population structure has to be created.
Local hill climbing is done independently by each individual to increase
its fitness.

Local selection: A partner for mating is selected by each individual in its neighborhood.

Recombination: A new descendant is created with genetic operators using the codings
of the parents.

Hill climbing: Local hill climbing is done to increase the fitness of the descendant.

Replacement: The parent is replaced, if the fitness of the improved descendant is,
e.g., at least as good as the worst in the local neighborhood. If not
finished, go to Local selection.

2 The Graph Partitioning Problem

The k way graph partitioning problem is a fundamental combinatorial problem which has
applications in many areas of computer science (e.g., design of electrical circuits, mapping)
[5]. Mathematically we can formulate the GPP as follows:

Let G = (V, E,w) be an undirected graph, where V' = {v,vs,...,v,} is the set of nodes,
E CV xV is the set of edges and w : E — IN defines the weights of the edges. The
GPP is to divide the graph into k£ disjunct node subsets P;... P, such that the sum of the
weights of edges between the subsets is minimal, and the sizes of the subsets are nearly
equal. The subsets are called partitions. The edges between the partitions are called cut.
Let Py, ..., Py be the partitions. Then the string (¢g192...g») describes the partition:

vw€EP, << ¢g=a ac{l,. k} Vie{l, .. n}

Node v; is assigned to the partition with the number ¢;. Instead of minimizing the cost
of the cut we maximize the sum over all weights of edges between nodes in the same
partitions. This is an equivalent problem because the total cost of edges is constant.

c(g192---9n) = Z w(v;, vj)
1<i<y<n
9i=4y

The advantage of this cost function is that a selection operator can be easily formulated.
The following PGA does not change the sizes of the subsets during the computation.

Partitioning a Graph with a
Parallel Genetic Algorithm

Gregor von Laszewski Heinz Mihlenbein
gregor@cis.ohio-state.edu muehlen@gmdzi.uucp
The Ohio-State University, CIS Gesellschaft fur Mathematik
2036 Neil Avenue und Datenverarbeitung
Columbus, Ohio 43210-1227 W-5205 St.Augustin, Germany
Abstract

We present a parallel genetic algorithm for the k way graph partitioning prob-
lem. The algorithm uses selection in local neighborhood and sophisticated genetic
operators. For a sample problem the algorithm has found better solutions than
those found by recent GPP algorithms. The success of the parallel genetic algo-
rithm depends on the representation, a suitable crossover operator and an efficient
local hill climbing method which is used to restrict the solution space.

1 Parallel Genetic Algorithms

The basic idea of genetic algorithms [4] is to start parallel search with a population of N
individuals represented by chromosomes. In every generation the fitness of each individual
is evaluated. Parents are selected according to their fitness, so that better individuals are
more often selected for mating. Descendants are produced by combining the chromosomes
of their parents. The exchange and variation of genetic material is controlled by genetic
operators such as crossover and mutation.

Parallel genetic algorithms (PGA) use three major modifications compared to genetic
algorithms. First, the individuals are living in a 2-D world with restricted neighborhood
relations. Therefore, the selection of a mate is done by each individual independently in
its neighborhood. Second, each individual may improve its fitness during its lifetime e.g.,
by local hill climbing. Third, an individual replace its parent only if it fulfills a specific
condition.

The PGA runs asynchronously with maximal efficiency on MIMD parallel computers due
to the fact that the individuals are active and not acted on as in genetic algorithms.
The success of the PGA depends on the genetic representation of the combinatorial prob-
lem, a suitable crossover operator and an efficient local hill climbing method.

We will show the power of the PGA with an application of the k way graph partitioning
problem (GPP). The PGA has computed solutions for very large problems, which are
comparable to or even better than any other solution found by other heuristics.

