
Analysis and Provision of QoS for Distributed Grid
Applications

Rashid J. Al-Ali1, Kaizar Amin2,3, Gregor von Laszewski2, Omer F.
Rana1, David W. Walker1, Mihael Hategan2, and Nestor Zaluzec2

1Cardiff University, UK
2Argonne National Laboratory, USA
3University of North Texas, USA

Abstract.
Grid computing provides the infrastructure necessary to access and use dis-

tributed resources as part of virtual organizations. When used in this way, Grid
computing makes it possible for users to participate in collaborative and distributed
applications such as tele-immersion, visualization, and computational simulation.
Some of these applications operate in a collaborative mode, requiring data to be
stored and delivered in a timely manner. This class of applications must adhere to
stringent real-time constraints and Quality-of-Service (QoS) requirements. A QoS
management approach is therefore required to orchestrate and guarantee the timely
interaction between such applications and services. We discuss the design and a
prototype implementation of a QoS system, and demonstrate how we enable Grid
applications to become QoS compliant. We validate this approach through a case
study of an image processing task derived from a nanoscale structures application.

Keywords: Grid Computing, Quality of Service, Resource Management

1. Introduction

Many commercial and scientific applications require access to high-
performance and high-end resources that are both expensive to own and
maintain. Often there are also a limited number of such resources avail-
able. The development of Grid infrastructure (Laszewski and Wagstrom;
Foster, Kesselman, Tuecke) allows these resources to be shared by
service providers and users. However, effective use of such resources
necessitate the development of mechanisms which take into account the
particular constraints needed to satisfy particular application resource
demands. Hence, some applications may be dependent, to a greater de-
gree, on obtaining results within a particular time frame. Visualisation
applications are an example – where the rendering of a graphical scene
requires simulation results to be returned within a particular time pe-
riod for the application to be usable. Consequently, considerable effort
has gone into the development of resource scheduling algorithms and
complex execution frameworks to satisfy these requirements. Although
the Grid community has collectively made significant progress towards

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

final-jogc.tex; 25/04/2004; 12:01; p.1

2 R. Al-Ali et al.

support for such types of applications, only recently has consideration
been given to a fundamental problem prevailing in service-oriented
architectures: providing deterministic Quality-of-Service (QoS) assur-
ances to service consumers. After all, providing non-trivial QoS is one
of the primary goals of the Grid approach – as without such support
distributed resources become unusable. Nevertheless, most Grid en-
vironments operate on a best-effort basis, sharing the Grid resources
among users with equal priority. Degradation in performance and effi-
ciency is a key need that must be addressed when a large number of
requests are issued for the same set of shared Grid resources.

To address this problem, we concentrate on ways to increase the
collective efficiency of scientists using resources collaboratively. One
practical solution is to introduce QoS mechanisms that enable service
providers to partition their services based on quality criteria such as
priority, fairness, and economic gain. In other words, a QoS-aware
Grid infrastructure can offer deterministic QoS assurances based on
a particular criterion, rather than on a best-effort basis. In previous
work we outline the G-QoSm architecture for managing and specifying
QoS attributes associated with Grid services (Al-Ali, Rana et al.), and
a technique for integrating this with the the Java CoG Core kit (Al-
Ali, Amin et al.). Our approach is restricted to handle soft-real time
applications – whereby we provide support for making resource reserva-
tions to accomplish a particular execution deadline, but do not provide
any guarantees that the actual deadline is met. We can only provide
guarantees that a single (or collection of) resource(s) will be available
to execute an application – but not that the subsequent execution will
complete within a certain time.

The paper is structured as follows. In Section 2 we provide an
overview of QoS in networking and computational resource sharing. In
Section 3 we outline the general requirements of a Grid QoS manage-
ment system and give an overview of existing Grid QoS systems. In
Section 4 we present G-QoSm and its major components. In Section 5
we discuss a typical high-performance Grid application and outline its
QoS requirements. In Section 7 we discuss performance results based
on executing applications with QoS support. At present we primarily
provide support for management of computational resources – although
some initial work has been undertaken on supporting network resources
also (using the Bandwidth Broker (S. Sohail et al.)).

final-jogc.tex; 25/04/2004; 12:01; p.2

Analysis and Provision of QoS for Distributed Grid Applications 3

2. Quality-of-Service: Background and Terminology

Quality of service has been explored in various contexts (Oguz et al.;
Bochmann et al.). Two types of QoS attributes can be distinguished:
those based on the quantitative, and the qualitative characteristics of
the Grid infrastructure. Qualitative characteristics refer to aspects such
as service reliability and user satisfaction. Quantitative characteristics
refer to aspects such as network latency, CPU performance, or storage
capacity. For example, the following are quantitative parameters for
network QoS: Delay (the time it takes a packet to travel from sender
to receiver), Delay jitter (the variation in the delay of packets taking
the same route), Throughput (the rate at which packets go through the
network), Packet-loss rate (the rate at which packets are dropped, lost,
or corrupted). Although qualititative characteristics are important, it
is difficult to measure these objectively. Systems which are centered on
the use of such measures utilise user feedback (Deora et al.) to compare
these, and relate them to particular system components. Our focus is
primarily on quantitative characteristics.

Similarly, compute QoS can be specified based on how the compu-
tational (CPU) resource is being used – i.e. as a shared or an exclusive-
access resource (Roy et al.). When more than one user-level application
shares a CPU, the application can specify that it requires a certain per-
centage access to the CPU over a particular time period. In exclusive-
access systems, in which usually one user-level application has exclusive
access to one or more CPUs, the application can specify the number
of CPUs as a QoS parameter. In exclusive-access only one application
will be allowed to use the CPU for 100% of the time, over a particular
time period.

Storage QoS is related to access to devices such as primary and
secondary disks or other devices such as tapes. In this context, QoS
is characterised by bandwidth and storage capacity. Bandwidth is the
rate of data transfer between the storage devices and the application
program reading/writing data. Bandwidth is dependent on the speed
of the bus connecting the application to the storage resource, and the
number of such buses that can be used concurrently. The number and
types of parallel I/O channels available between the processor and the
storage media are significant parameters in specifying storage QoS.
Capacity is the amount of storage space that the application can use
for writing data.

It is necessary for applications to specify their QoS requirements
as the characteristics of a single resource that is necessary to run their
application (compute, storage and network), and the period over which
the resource is required. Such a resource may, in practise, involve the

final-jogc.tex; 25/04/2004; 12:01; p.3

4 R. Al-Ali et al.

aggregation of a number of different network, compute and data re-
sources to achieve the desired outcome. Resource reservation provides
one mechanism to satisfy the QoS requirements posed by an application
user, and involves giving the application user an assurance that the
resource allocation will provide the desired level of QoS. The reservation
process can be immediate or undertaken in advance, and the duration
of the reservation can be definite (for a defined period of time) or
indefinite (from a specified start time and till the completion of the
application).

3. QoS in Grid Computing

A key Grid problem that many researchers have been investigating
is resource management, specifying how Grid middleware can provide
resource coordination for client applications transparently. One of the
most successful middleware projects that provides such coordination is
the Globus Alliance (The Globus Alliance). Recently, there has been a
push to make greater use of Grid middleware in business applications –
as the traditional focus has been towards computational science. This
change in emphasis has also led to greater emphasis being placed on
commercial technologies – such as Web Services – and currently service-
oriented concepts play a key role in emerging Grid standards.

Generally, Grid applications submit their requirements to Grid
resource management services that schedule jobs as resources become
available. Each resource provider must support a resource manager
or scheduler that can receive requests from external applications (i.e.
applications that are being managed by individuals who do not own
the resources). However, there are several applications that need to
obtain results for their tasks within strict deadlines, hence they cannot
wait for resources to become available. For these applications, it is often
necessary to reserve Grid resources and services at a particular time (in
advance or on-demand). In addition, other features are highly desirable,
indeed required, if the Grid resource management service is to be able
to handle complex scientific and business applications. We review these
requirements in the next subsection and then briefly discuss how well
current QoS systems meet these requirements.

3.1. Requirements

A Grid resource management system attempt to address the following
requirements that relate to QoS issues.

final-jogc.tex; 25/04/2004; 12:01; p.4

Analysis and Provision of QoS for Distributed Grid Applications 5

Advance Resource Reservation The system should support mech-
anisms for advance, immediate, or ‘on-demand’ resource reserva-
tion. Advance reservation is particularly important when dealing
with scarce resources, as is often the case with high-end resources
made available on the Grid.

Reservation Policy The system should support a mechanism that
allows Grid resource owners to enforce their policies governing
when, how, and who can use their resource. This should be un-
dertaken while decoupling reservation and policy entities, in order
to improve reservation flexibility (Karsten et al.).

Agreement Protocol The system should assure the clients of their
advance reservation status, and the resource quality they expect
during the service session. Such assurance can be contained in an
agreement protocol, such as Service Level Agreements (SLAs).

Security The system should prevent malicious users penetrating, or
altering, data repositories that hold information about reserva-
tions, policies and agreement protocols. In addition to a secure
channel between an application and the Grid resources it uses, a
security infrastructure that provides support for authentication,
authorisation and access control should be provided.

Simplicity The QoS enhancement should have a reasonably simple
design that requires minimal changes to be made to existing com-
putation, storage or network infrastructure (although, in practise,
this tradeoff is hard to achieve).

Scalability The approach should be scalable to a large number of
entities, since the Grid is a global-scale infrastructure. This is
especially true as Grids are expected to be open and dynamic,
with resources and users joining and leaving the Grid in a non-
deterministic manner.

3.2. Current QoS Efforts

Quality of Service (QoS) has been extensively explored in distributed
multimedia and networking communities (Bochmann et al.; Oguz et
al.). In the multimedia community, QoS issues are geared to provide a
client with an acceptable level of presentation quality when accessing a
multimedia document. This level of quality includes supporting network
QoS connecting the client to the server, and end server QoS comprising
compute and memory performance, to process and dispatch multimedia

final-jogc.tex; 25/04/2004; 12:01; p.5

6 R. Al-Ali et al.

frames at specific rates. In this context, network QoS deals specifically
with providing certain quality levels for network link characteristics be-
tween two points, with these characteristics expressed in terms of delay,
jitter, packet loss rate and throughput (bandwidth). To manage these
network parameters, either particular network elements are modified –
essentially network routers or switches – to support specialist protocols
(such as RSVP), or changes are made at the network end-points to
control how packets from an application are transmitted based on feed-
back from the receiver. The first of these (based on modifying network
elements) is often not a viable option, as network administrators are
reluctant to make such modifications. The alternative approach is often
the preferred solution, whereby feedback about network performance
is used to control the rate at which data is transmitted at the sender
end. Such a variable rate mechanism may lead to a reduction in the
presentation quality of the delivered data, but allows at least some
output to be generated at the receiver end (compared to no output at
all).

In Grid computing, QoS management aims to provide assurance
for accessing resources, while maintaining the security level between
domains. Unlike multimedia and network QoS, Grid QoS requires a cen-
tral information service (Czajkowski et al.) for up-to-date information
on resources available for use by others. Such an information service
can be interrogated by an application user to determine which resources
can be used to execute an application. As Grid QoS simultaneously
deals with a number of resources per service session, Service Level
Agreements (SLAs) become essential to specify the service level the
client must receive and the provider must supply. Such SLAs must also
make use of parameters that are provided by resource owners when
they publish properties of their resources. It is important that each
parameter within the SLA is capable of being monitored. SLAs often
encode requirements that an application user wishes to achieve, and
capabilities that a resource owner can provide to others. Such contracts
between users and providers may be expressed using first-order logic,
algebraic operators, or be encoded within a scripting language as a
policy. Often there is a tradeoff between the expressiveness offered
by a particular encoding style, and the ease of use, evaluation and
modification of a particular requirement. QoS management in Grid
computing has recently become an active area of research.

Sahai et al. (Sahai et al.) propose a SLA management entity to
support QoS in the context of commercial Grids. They envision the
SLA management entity existing within the OGSA architecture, with
its own set of protocols for manageability and assurance; they also
describe a language for SLA specification. Although an interesting ap-

final-jogc.tex; 25/04/2004; 12:01; p.6

Analysis and Provision of QoS for Distributed Grid Applications 7

proach, this work is still at a very preliminary stage, and the general
applicability of this work is still not obvious.

A general negotiation model called Service Negotiation and Acqui-
sition Protocol (SNAP) is introduced be Czajkowski et al. (Czajkowski
et al.), which proposes a resource management model for negotiating re-
sources in distributed systems such as Grids. SNAP defines three types
of SLAs that coordinate management across a desired resource set, and
can, together, be used to describe a complex service requirement in a
distributed environment. Resource interactions are mapped to well-
defined, platform-independent, Service Level Agreements (SLAs), with
the SNAP protocol managing resources across different administrative
domains, via three types of SLAs: Task SLA (TSLA), Resource SLA
(RSLA) and Bind SLA (BSLA). The TSLA describes the task that
needs to be executed, and the RSLA describes the resources needed to
accomplish this task. The BSLA provides an association between the
resources from the RSLA and the application ‘task’ in the TSLA. The
SNAP protocol necessitates the existence of a resource management
entity that can provide guarantees on resource capability; for exam-
ple, RSLA. Our reservation model can encapsulate such a requirement
and implement the RSLA negotiation. TSLA is similar to our QoS
request, where the user provides the resource requirements along with
the service desired.

Keahey et al. (Keahey et al.) propose an architecture called Virtual
Application Service (VAS) for managing QoS in computational Grids.
VAS is an extended Grid service with additional interfaces for negoti-
ation of QoS level and service demands. The key objective of VAS is
to facilitate the execution of real-time services which have very specific
deadline constraints. A client submits a request to VAS for advance
or immediate reservation of a service; supplying only time constraints.
The system has metadata – consisting of application information and
application modelling information associated with every service, allow-
ing the system to compute the feasibly of fulfilling the client’s request
under such time constraints. From this metadata (such as execution
time and hardware resource information) the system determines the
computational (CPU) resources required to support the request, and,
subsequently, undertakes CPU slot reservation. A Service Level Agree-
ment is then presented to the user. This work is similar to our approach
with the following differences:

− VAS is a deadline-bound system, and the client must only specify
the time constraints as the QoS metric.

− VAS is designed for a specific application domain called National
Fusion Collaboratory (NFC).

final-jogc.tex; 25/04/2004; 12:01; p.7

8 R. Al-Ali et al.

− VAS assumes that with every service deployed, there must be meta-
data, and some application modelling (such as execution time with
specific hardware) has been previously undertaken. It therefore
requires the application to predict how long it will need to run.
This is a particualarly difficult objective to achieve in a dynamic
Grid environment.

− VAS computes the time needed for service execution, based on a
prediction model and uses service metadata as a basis for this.

In our approach we make use of different allocation strategies for run-
ning user applications – based on whether they require a Time-domain
or Resource-domain allocation strategy. For users who request a Time-
domain allocation, 100% of the computational resources must be allo-
cated to their jobs. Therefore, whereas VAS requires users to bench-
mark their applications by running them first on an unloaded (100%)
CPU – to enable prediction of their execution times when the CPU
also contains other application – our approach does not necessitate this
benchmarking. Instead, we can utilise results of application execution
times where a guaranteed service execution has been requested – and
use these as a benchmark. Although the difference is subtle, but is
nevertheless important in a dynamic and open environment, such as
the Grid, where the need to execute code to benchmark their times
cannot be enforced on application users. Burchard et al. (Burchard et
al.) also propose the use of SLAs to negotiate service execution pa-
rameters between resource managers. The SLA management is achived
via a Virtual Resource Manager (VRM) – that enables interaction be-
tween a number of schedulers on different clusters. The VRM acts as a
coordinator to aggregate SLAs negotiated with different sub-systems.
Although the SLA management in this work is similar to our effort, the
focus in our approach is on utilising the service paradigm, where the
VRM is intended to integrate execution across a number of co-located
clusters.

Members of the the Global Grid Forum (GGF) have started to
identify issues of concern related to Grid QoS. For example; the GGF
Grid Resource Agreement and Allocation Protocol (GRAAP) Work-
ing Group (WG), has produced a ‘state of the art’ document which
lays down properties for resource reservation in Grids (MacLaren).
We envision that our reservation model, employed in the proposed
system, can be used to support the reservation properties outlined by
the GRAAP-WG. The GRAAP-WG has already produced a GGF draft
recommendation document, and still under discussion is an OGSI-based
agreement model (Czajkowski et al.). This proposed Agreement-based
Grid Service Management (OGSI-Agreement) model, defines a set of

final-jogc.tex; 25/04/2004; 12:01; p.8

Analysis and Provision of QoS for Distributed Grid Applications 9

OGSI-compatible portTypes through which management applications
and services can negotiate. This agreement defines the required behav-
ior (QoS) of a delivered service, with reference to a particular service
consumer. Further, the document contains an abstract management
protocol to manage the agreement stages of the QoS lifecycle – from
service creation up until termination. Once the agreement model has
been standardized by the GGF, we will attempt to incorporate this
agreement model into our G-QoSm framework. Although it is not ex-
actly clear how much of this work will actually come to fruition, with
the current emphasis on modifying OGSI to be compliant with Web Ser-
vices (as part of the recent Web Services Resource Framework (WSRF)
effort).

The General-purpose Architecture for Reservation and Allocation
(GARA) is the most commonly known framework for supporting QoS
in the context of computational Grids. GARA (Foster, Kesselman, Lee
et al.) provides programmers with the capability to specify end-to-
end QoS requirements. It provides advance reservations, with uniform
treatment of various types of resources such as network, computation,
and storage. GARA’s reservation is aimed to provide a guarantee that
the client or application initiating the reservation will receive a specific
QoS from the resource manager. GARA also provides an application
programming interface to manipulate reservation requests, such as cre-
ate, modify, bind, and cancel. GARA uses the Dynamic Soft Real-time
(DSRT) scheduler (Chu et al.) as the underlying resource manager for
computational resources.

Although GARA has gained popularity in the Grid community,
it has limitations in coping with current application requirements and
technologies:

− The current focus in Grid computing is towards the use of Web
Service technologies. The road map of many existing Grid mid-
dleware systems also suggests a move towards Web services stan-
dards – such as the increasing importance of the Web Services
Resource Framework (WSRF). GARA is not OGSA-compliant,
and therefore, OGSA-enabled applications cannot directly make
use of GARA services.

− Grid applications require the simultaneous allocation of various
resources. An agreement protocol should exist to inform the ap-
plication about the resources negotiated for allocation and the
level of quality the application expects. This information is usually
encapsulated in a Service Level Agreement (SLA). GARA does not
support the concept of an agreement protocol and establishing a
SLA for various resources.

final-jogc.tex; 25/04/2004; 12:01; p.9

10 R. Al-Ali et al.

Figure 1. The G-QoSm architecture with an OGSA-enabled QoS service.

− QoS monitoring and adaptation during the active QoS session is
one of the most important and successful mechanisms to provide
a quality guarantee (Al-Ali, Hafid et , Rana et al.). GARA is not
tooled with adaptive functions to support compute resources.

4. Grid QoS Management

Grid Quality of Service Management (G-QoSm) is a framework to sup-
port QoS management in computational Grids in the context of the
Open Grid Service Architecture (OGSA) (Al-Ali, Rana et al.; Al-Ali,
Amin et al.). G-QoSm consists of three main operational phases: es-
tablishment, activity, and termination. During the establishment phase,
a client application states the desired service and QoS requirements.
G-QoSm then undertakes a service discovery, based on the specified
QoS properties, and negotiates an agreement for the client application.
During the activity phase additional operations such as QoS monitor-
ing, adaptation, accounting and possibly re-negotiation may take place.
During the termination phase the QoS session is ended due to resource
reservation expiration, agreement violation, or service completion; re-
sources are then freed for use by other clients. The framework supports

final-jogc.tex; 25/04/2004; 12:01; p.10

Analysis and Provision of QoS for Distributed Grid Applications 11

these three phases using a number of specialist components, as depicted
in Figure 1. In subsequent sections we describe these interactions, and
highlight how service provision is undertaken.

4.1. QoS Grid Service

The basic building block of our architecture is the QoS Grid service
(QGS), an OGSA-compliant Grid service providing QoS functionalities
such as negotiation, reservation and resource allocation with certain
quality levels. Each QoS-enabled resource is accessed through a QGS.
The QGS publishes itself to a QoS registry service, so clients and QoS
brokers are able to discover the existence of the QGS. In addition to
the QoS functionalities, it supports two types of allocation strategies:

− Resource domain: in this allocation strategy a client can specify
a certain percentage capacity of the shared QoS-enabled resource,
e.g. access to 50% CPU time, or a 20Mbps bandwidth out of a
total of 155Mbps available.

− Time domain: in this allocation strategy a client may request
an entire resource to be reserved for exclusive use, i.e. no other
clients/applications are allowed to share the resource; for example;
reserving 100% of the CPU.

This functionality is enabled by ensuring that all requests for resources
are issued through the QGS. Further, the QGS interacts with a number
of modules to deliver QoS guarantees. These modules are the QoS Han-
dler, reservation manager, allocation manager, and the QoS registry
service (see Figure 1). Currently, G-QoSm supports compute resource
based QoS only (we have started to also include reservation of network-
based resources via a Bandwidth Broker, and will subsequently attempt
to support disk allocation).

The architecture, as illustrated in figure 1 consists of a client
(bottom part of the figure) and a service provider (top part of the
figure). The client makes use of a registry service (UDDIe), and may be
implemented using the Java CoG Kit. The client may be a physical user
accessing the registry service via a portal, or may be another service
issuing a search request. If the client is another service, access to the
registry is via a QoS Broker. A service provider, on the other hand,
illustrated in the top portion of figure 1 must provide access to physical
resources that are used to manage the service (this includes support for
computation, data storage and network access). The first interaction
between a client and a service provider is therefore via the discovery
operation invoked on the registry service. The UDDIe Handler enables

final-jogc.tex; 25/04/2004; 12:01; p.11

12 R. Al-Ali et al.

a service provider to publish properties of a service within the registry,
and to subsequently alter any parameters associated with the service.
Once a request for a service has been received, the reservation or allo-
cation manager is invoked. To support QoS characteristics, therefore,
a service provider must ensure that in addition to the service being
offered to external users, it also support additional components to allow
reservation (and subsequently allocation) of resources on which the
service is to be hosted. In addition, the service must be annotated with
additional properties that enables these QoS attributes to be encoded
in its interface.

The QGS performs: i) resource reservation and ii) resource alloca-
tion. When a reservation request is received, the QGS undertakes an
admission control to check the feasibility of granting such a request.
This feasibility check is undertaken by the reservation manger. If such
a reservation is possible, the requested resources are reserved, the reser-
vation table is updated and an agreement comprising the reservation
specification is generated and returned to the client.

One the other hand, when a resource allocation request is received,
the QGS verifies that the user has indeed made a reservation based
on the supplied agreement. If this test passes, then the QGS submits
the specification of the job to be executed to the Globus Resource
Allocation Manager (GRAM) on that particular resource. Along with
the job specification, the QGS supplies other parameters related to
compute resource allocation with quality levels – these parameters are
passed from GRAM to the compute resource manager for immediate
allocation. This process is handled by the Allocation manager provided
within the QGS. The QGS therefore contains the following modules:

− Reservation Manager: the reservation manager uses a data struc-
ture that supports reservations for quantifiable resources – i.e.
resources associated with defined capacities. The reservation man-
ager is de-coupled from the underlying resources and does not have
direct interaction with them. However, it obtains resource char-
acteristics, and policies governing resource usage, from the policy
manager. The policy manager, on the other hand, is responsible for
validating reservation requests by applying domain-specific rules,
established by the resource owners, on when, how, and by whom
the resource can be used. In brief, when the reservation manager
receives a reservation request from the QGS, it contacts the policy
manager for validation and then performs admission control to
check the availability of the requested resource. Upon success, it
returns a positive reply to the QGS, which allows the QGS to
propose a negotiable service agreement offer.

final-jogc.tex; 25/04/2004; 12:01; p.12

Analysis and Provision of QoS for Distributed Grid Applications 13

− Allocation Manager: The Allocation Manager has a primary role to
interact with underlying resource managers for resource allocation
and de-allocation, and to inquire about the status of the resources.
It has interfaces with various resource managers, namely, the Dy-
namic Soft Real Time Scheduler (DSRT) (Chu et al.) and Network
Resource Manager (NRM); we are also investigating Nest as the
disk storage resource manager (Bent et al.). When the allocation
manager receives resource allocation request from the QGS, it for-
wards the request to the designated underlying resource manager.
The Allocation Manager interacts with adaptive services to en-
force adaptation strategies; for details, see (Al-Ali, Hafid et , Rana
et al.). The NRM is implemented using the DiffServ Bandwidth
Broker (S. Sohail et al.)

− QoS Registry Service: Since the framework is based on the OGSI
implementation, the QGS and other Grid services in the OGSI
container should be published in some registry service so they
can be accessed by others. Service publishing, in this discussion,
does not mean simply publishing a service name, URL, and ba-
sic description. For example, for QGS, it includes information on
what QoS-enabled service it offers, what allocation strategies it
employs, and what classes of network QoS it offers (e.g., best
effort, controlled load, or guaranteed). For other Grid services,
service publishing includes information about QoS properties such
as performance characteristics and service execution requirements.
We make use of an extended version of the Universal Description
Discovery and Integration (UDDI) registry to achieve this. UD-
DIe (ShaikAli et al.) is a Web services registry which provides
service providers a means to publish their services with QoS prop-
erties and, hence, to search for these services based on the QoS
properties.

4.2. Java CoG Kit Core

The QoS Grid Service (QGS) described offers the requisite functionality
for QoS-related features that allows the provisioning of any arbitrary
Grid resource into a QoS-aware Grid entity. However, in order to take
advantage of such QoS-aware Grid resources it is important for ap-
plications to conveniently interact with such entities without having
to undergo significant changes in logic and implementation. Hence, we
provide interactions with the QGS via convenient middleware libraries
making it seamless for Grid applications to benefit from the G-QoSm
architecture.

final-jogc.tex; 25/04/2004; 12:01; p.13

14 R. Al-Ali et al.

The Java CoG Kit (Laszewski and Foster et al.) is a Java-based
modular middleware used to provide access to various Grid imple-
mentations such as Globus Toolkit v2 (GT2) and v3 (GT3). One of
the modules of the Java CoG Kit, called as cog-core1, provides the
core functionality for such technology- and architecture-independent
interoperability. Cog-core provides APIs offering abstract Grid func-
tionality such as remote job execution and file transfers without any
consideration for the underlying Grid implementation. For example,
consider a Grid application developed using the APIs provided by cog-
core. Since cog-core offers absolutely abstract functionality irrespective
of the backend architecture, the same application can be executed on
a variety of platforms. Hence, to run the application on a GT2 service,
the user needs to merely mention a provider attribute as GT2. The
same application can be later executed on a GT3 service without any
modification to its implementation by simply changing the provider
attribute from GT2 to GT3. Cog-core contains the required function-
ality to map the abstract application requirements into backend specific
details controlled by the corresponding provider attribute.

In order to provide seamless interaction between Grid applications
and the QoS-aware Grid resources, we have augmented the function-
ality of cog-core to incorporate QoS-related parameters. Thus, all the
necessary logic and implementation overhead for QoS management is
embedded into the cog-core, thereby allowing the applications to enjoy
QoS features by simply changing the provider attribute to “QoS”. In
the rest of this section we describe the basic 2 constructs of the cog-core
library and its enhancement into the QoS domain.

− Task: Cog-core defines a Task as an atomic unit of execution. It
abstracts the generic Grid functionality including authentication,
remote job execution, file transfer request, and information query.
It has a unique identity, a security context, a specification, a service
contact, and a provider attribute.
The task identity helps in uniquely representing the task across
the Grid. The security context represents the abstract security
credentials of the task. Apparently, every backend Grid implemen-
tation will have its own notion of a security context. Hence, the
security context in cog-core offers a common construct that can
be extended by the different implementations to satisfy the corre-
sponding back-end requirement. The specification represents the
actual attributes or parameters required for the execution of the
Grid-centric task. The generalized specification can be extended

1 Formerly known as the GridSDK (Amin et al.)
2 for a detailed understanding of cog-core the reader is directed to (Amin et al.)

final-jogc.tex; 25/04/2004; 12:01; p.14

Analysis and Provision of QoS for Distributed Grid Applications 15

for common Grid tasks such as remote job execution, file trans-
fer, and information query. The service contact associated with a
task symbolizes the Grid resource (service) required to execute it.
As mentioned earlier, the provider attribute specifies the desired
backend Grid implementation for the Task.

− Handlers: The Task Handler provides a simple interface to handle
interaction with a generic Grid task. It categorizes the tasks and
provides the appropriate functionality for it based on the provider
attribute of the submitted task. Cog-core contains a separate han-
dler for every backend functionality it supports. These handlers
then map the generic Grid parameters of the Task into the backend
implementation specific Grid functionality.

In order to augment the cog-core functionality into the QoS domain
we provide a QoS handler that encapsulates the QoS-related implemen-
tation and logic. The QoS task handler manages the QoS negotiation,
re-negotiation, task execution, and data redirection between the end
application and the QoS-aware Grid resource (QGS).

4.3. Negotiation of QoS Levels

The QoS negotiation process aims to reach some agreement between
the client and the service provider on either the reservation schedule, or
the parameters involved in providing a given service. It is not necessary
for such negotiation to take place everytime – especially if the service
provider can meet the request made by a client immediately. However,
if the constraints identified in the service request by a client cannot
be met (such as the desired time of service, the active period of the
service and resource characteristics needed for the service, etc – the
‘QoS levels’), it is necessary for the service provider and client to
agree on some mutually agreeable constraints. It is these levels that
are negotiated during this process.

The QoS negotiation is, therefore, essentially a matchmaking pro-
cess between the client’s desired QoS constraints, and the service provider’s
resource capacity, to ensure the request does not exceed such resource
capacity. A client may request constant QoS levels during the lifetime
of a service session. For example, a data transfer service is negotiated
to transfer a data set from point A to B at 100 Mbps – but during
the transfer session, it may be possible that the requested bandwidth
cannot be sustained. The client may request a decrease of the requested
bandwidth while the transfer service is active – or the service provider
must find additional capacity to sustain the QoS demands of the client
if an agreement has been reached. It is therefore possible for a client

final-jogc.tex; 25/04/2004; 12:01; p.15

16 R. Al-Ali et al.

to realise that the initial 100Mbps cannot be achieved, and request
for a lower bandwidth – leading to a re-negotiation. If the client’s
re-negotiation request has lower QoS levels than the original request,
then the new request is guaranteed, but if the re-negotiation request
increases the QoS level, the service provider has to run an admission
control check, treating the request as a new QoS negotiation, subject
to approval or rejection (based on the other services it is managing at
the time).

The QoS negotiation process involves two aspects: 1) service ne-
gotiation and 2) QoS negotiation. Decoupling service and QoS negotia-
tions improves system availability and flexibility; as system availability
is concerned with the number of requests admitted, while system flexi-
bility is concerned with adapting to different client requests during an
active QoS session. Further discussion on QoS adaptation can be found
in our previous work (Al-Ali, Hafid et , Rana et al.).

The proposed QoS negotiation model necessitates that the client
undertake a service negotiation phase, with the QoS negotiation phase
being optional for negotiating resource characteristics and quality lev-
els. Two mechanisms are envisaged to obtain resource characteristics
and the required qualities for the negotiated service, where the client:

− explicitly supplies resource characteristics and qualities required,
or

− relies on the service profile stored in the QoS registry (ShaikAli et
al.).

In the latter case, the system generates the service profile from either
the service provider, a third-party reputation service, statistics based
on the feedback provided by a client, or uses prediction models, (such
as (Jarvis et al.)). Quality levels within the service profile are dynam-
ically updated and stored in the QoS registry. The service profile is
for use by the QoS manager where a client either specifically requests
services with the default profile, or does not have details on the resource
quality required. In such cases, a service profile contains a set of quality
levels suggested for the negotiated service.

4.3.1. QoS Negotiation Protocol
The negotiation protocol specifies the syntax and semantics of the
message exchange between the entities involved in the negotiation pro-
cess, aimed at reaching mutual agreement between the entities in-
volved. These entities include the client, the QoS service and the service
provider. It is important to note that the QoS service is the central
entity with the role of coordinating the negotiation process between

final-jogc.tex; 25/04/2004; 12:01; p.16

Analysis and Provision of QoS for Distributed Grid Applications 17

client and provider. It is further assumed that the provider delegates
the QoS service to act on its behalf, and, therefore, there is no direct
interaction between the client and the provider during negotiation.

The QoS service supports a number of operations for use by the
client, with the interaction between the client and QoS service based
on XML message exchange. In this discussion the operations related to
the negotiation process are presented in the sequence Query, Reserve,
Update and Cancel.

− Query: the QoS service maintains information about resources
available for use by clients (in a registry service). The Query oper-
ation is used to interrogate the registry to find a service that has
particular QoS attributes. If a suitable service is found, the QoS
service will hold the resource(s) for a limited period (a temporary
reservation) and returns a query handle. The resource(s) are held
until the client confirms the reservation or the temporary reserva-
tion time elapses. If the query operation cannot find the required
service (i.e. all QoS attributes in the query do not match), it tries
to find a service that matches on most of the attributes. There
may be one or more services which match this description. The
QoS service now returns a new service offer as a counter-proposal.
Figure 2 is an XML schema definition for the Query operation
syntax.

− Reserve: after a successful Query operation, and, while the re-
sources are held on a temporary basis, the Reserve operation is
used to confirm the queried resources. Subsequently, the QoS ser-
vice will reserve the resources for the specified period and returns
an agreement handle to be used during service invocation. Figure
3 is an XML schema definition for the Reserve operation syntax.

− Update: the Update operation is used for re-negotiation purposes.
If a client wishes to modify the constraints on particular QoS
attributes (during an active session), then the client would use
this operation. When relaxing QoS constraints the operation is
guaranteed, however if QoS constraints are modified in such a way
that additional resources are required, the re-negotiation request is
treated as a new request (meaning an admission control procedure
will be applied to ensure the requested resources do not exceed
the capacity), and the request is, therefore, subject to approval or
rejection – equivalent to a Query operation followed by a Reserve
operation. Figure 4 is an XML schema definition for the Update
operation syntax.

final-jogc.tex; 25/04/2004; 12:01; p.17

18 R. Al-Ali et al.

Figure 2. XML Schema for Query Operation

− Cancel: the Cancel operation cancels an agreement handle made
by a Reserve operation, i.e. cancel reservation, which may only
be used before the service session starts. If the service session has
started, there is a different operation, not part of the negotiation
process, which may be used to release resources. Figure 5 is an
XML schema definition for the Cancel operation syntax.

The four operations of Query, Reserve, Update and Cancel are the
fundamental elements of the negotiation model and define the protocol
for the negotiation. When the QoS service receives a Query operation it
performs an admission control procedure, to check whether the assigned
resources plus the requested resources do not exceed the provider’s
maximum resource capacity. If the admission control passes, it returns
a query handle, or reference, to be used for a subsequent Reserve oper-
ation. The Reserve operation does the actual resource reservation and
returns an agreement handle. The client may cancel a previously-made
agreement handle, for a session not yet started, by a Cancel operation.
The client can re-negotiate a QoS session through an Update operation.
These operations are suitable and sufficient for a flexible negotiation
process in a distributed system model. Figure 6 is a sequence diagram
for the QoS negotiation protocol.

final-jogc.tex; 25/04/2004; 12:01; p.18

Analysis and Provision of QoS for Distributed Grid Applications 19

Figure 3. XML Schema for Reserve Operation

4.4. Application Integration

In this section we walk through a sample scenario for an application
to execute a QoS-enabled remote job. The application developer needs
to specify the QoS parameters that must be considered during QoS
negotiation. These parameters include start time, end time, resource
type, and specifications. Once the Task object has been specified, the
QoS Handler is delegated on behalf of the client or application to
negotiate QoS requests. In this case the QoS Handler is seen as the
client from the QGS point of view. This is a useful approach especially
when the application requires more than one Grid resource. All that the
application needs is to instantiate the required number of QoS Handler
objects, submit the Task object to the handlers, and let the handlers
negotiate QoS requests with the QGS to return an agreement.

Once the QoS parameters are successfully negotiated, the applica-
tion then formulates the actual Grid Task that needs to be executed
and submits it to the QoS handler along with the negotiation token
(agreement). Furthermore, for QoS-enabled job submission through
the interactive mode, the QoS handler listens for notifications of job
status, with the notification implemented by the QGS as an OGSA
notification.

final-jogc.tex; 25/04/2004; 12:01; p.19

20 R. Al-Ali et al.

Figure 4. XML Schema for Update Operation

The following code snippet shows a Java code fragment demon-
strating how an application can generate a QoS negotiation request
and QoS job submission to a QoS handler respectively.

/*** QoS: Prepare Negotiation Task ***/
private void prepareQosNegotiationTask() {

// create a QoS service, and setup QoS attributes
Task task =

new QosTaskImpl(‘‘myTask’’, QoS.NEGOTIATION);
this.task.setAttribute(‘‘startTime’’, startTime);
this.task.setAttribute(‘‘endTime’’, endTime);
this.task.setAttribute(‘‘allocStrategy’’,strategy);
this.task.setAttribute(‘‘cpu_capacity’’, cpuCapacity);

// create a Globus version of the security context
SecurityContextImpl securityContext =

new GlobusSecurityContextImpl();
// selects the default credentials
securityContext.setCredential(null);
// associate the security context with the task
task.setSecurityContext(securityContext);

final-jogc.tex; 25/04/2004; 12:01; p.20

Analysis and Provision of QoS for Distributed Grid Applications 21

Figure 5. XML Schema for Cancel Operation

// create a contact for the Grid resource
Contact contact = new Contact(‘‘myGridNode’’);

// create a service contact
ServiceContact service =

new ServiceContactImpl(qosServiceURL);
// associate the service contact with the contact
contact.setServiceContact(‘‘QGSurl’’,service);

// associate the contact with the task
task.setContact(contact);

}

/*** QoS: Prepare Job Submission Task ***/
private void prepareQosJobSubmissionTask() {

// create a QoS JobSumbission Task
Task task =

new TaskImpl(‘‘myTask’’, QoS.JOBSUBMISSION);
this.task.setAttribute(‘‘agreementToken’’, token);

final-jogc.tex; 25/04/2004; 12:01; p.21

22 R. Al-Ali et al.

Figure 6. Sequence Diagram for the QoS Negotiation Protocol

// create a remote job specification
JobSpecification spec = new JobSpecificationImpl();

// set all the job related parameters
spec.setExecutable(‘‘/bin/myExecutable’’);
spec.setRedirected(false);
spec.setStdOutput(‘‘QosOutput’’);

//associate the specification with the task
task.setSpecification(spec);

// create a Globus version of the security context
SecurityContextImpl securityContext =

new GlobusSecurityContextImpl();
securityContext.setCredential(null);
task.setSecurityContext(securityContext);

Contact contact = new Contact(‘‘myQoScontact’’);

ServiceContact service =
new ServiceContactImpl(qosServiceURL);

final-jogc.tex; 25/04/2004; 12:01; p.22

Analysis and Provision of QoS for Distributed Grid Applications 23

contact.setServiceContact(‘‘QGSurl’’,service);
task.setContact(contact);

}

/*** QoS: Task Submission to QoS Handler ***/ private void
QosTaskSubmission(Task task) {

TaskHandler handler = new QoSTaskHandlerImpl();
// submit the task to the handler
handler.submit(task);

}

Abstracting the QoS services and interacting with the QGS by
creating a task (i.e., QoS function) and submitting it to a QoS handler
is of benefit when dealing with multiple distributed Grid resources.
This approach makes the design and specification of abstract QoS-based
brokers easier.

5. Application Case Study: Nanoscale Structures

To validate our QoS approach, we used our reference implementa-
tion of G-QoSm to manage a nanoscale structures application. This
application involves a new experimental technique, position-resolved
diffraction, being developed as part of Argonne National Laboratory’s
advanced analytical electron microscope program (Zaluzec). With this
technique, a focused electron probe is sequentially scanned across a
two-dimensional field of view of a thin specimen. At each point on the
specimen a two-dimensional electron diffraction pattern is acquired and
stored.

Analysis of the spatial variation in the electron diffraction pattern
of each measured point allows the researcher to study subtle changes re-
sulting from microstructural differences, such as ferro- and electromag-
netic domain formation and motion, at unprecedented spatial scales. As
much as one terabyte of data can be taken during such an experiment.
The analysis of this data requires a resource-rich Grid infrastructure
to accommodate real-time constraints. Results need to be archived,
remote compute resources need to be reserved and made available dur-
ing an experiment, and the data needs to be moved to the compute
resources where they will be analyzed. Moreover, results need to be
gathered and presented in a form that is meaningful to the scientist.

The need for a flexible infrastructure is demonstrated through a
simple flow diagram depicted in Figure 7. The elementary logic of the
instrument control can be expressed as a sequence of processes that

final-jogc.tex; 25/04/2004; 12:01; p.23

24 R. Al-Ali et al.

Figure 7. Asynchronous processes define a workflow steered by the scientist to
support the problem-solving process with the help of abstract Grid tasks.

depend on each other: (a) Data acquisition: gathers time-delayed im-
ages from the electron microscope, (b) Backup: backs up the incoming
data, (c) Data analysis: performs analysis on the time delayed images,
and (d) Result display: gathers the results from the data analysis, in
a form easy to interpret, to enable further judgments for steering the
experiment.

The nanostructures application presents one of many scientific use
patterns that occur in high-end instrument scenarios. The pattern in-
cludes a high volume of interaction during an experiment that must
be dealt with in an adaptive and flexible way. Unexpected and unpre-
dicted experiment conditions must be considered, and the instrument
operator’s interface to the Grid must be as simple as possible while at
the same time provide the needed flexibility to interactively modify the
experiment setup.

The Java CoG-Core Kit provides a convenient abstraction for for-
mulating these tasks while reusing the patterns for file transfer, job
execution, and job management. At the same time it hides much of the
complexity, which the Grid application developer may not want to see.
Graphical components for the Java CoG Kit are currently under devel-
opment to achieve this, and it is expected that these will be integrated

final-jogc.tex; 25/04/2004; 12:01; p.24

Analysis and Provision of QoS for Distributed Grid Applications 25

via a problem-solving environment that targets the use of a scientific
instrument. Through this interface, the scientist will be able to interact
easily with the experiment resources and decide when, what, and where
data gathered during the course of the experiment is backed up. Image
filters and monitors, plugged dynamically into the workflow for image
analysis, help to validate the correctness and usefulness of the running
experiment. Since the sample in the instrument may require specialized
and individual filters, the experiment operator must be given a method-
ology that allows their easy creation and adaptation. Because of the
focus on the experiment itself, the use of the Grid should be through
abstractions as much as possible. Based on the application description,
we derive the following requirements for QoS: (a) network requirements
to transfer the time-delayed images from the electron microscope as
part of the data acquisition process, (b) disk storage to cache quickly
incoming data during the acquisition process and the availability of
large storage for a backup process, (c) computation power to process the
scientific calculations on the time-delayed images in real time, as new
images become available in the data analysis process, and (d) collect
results produced by the data analysis process and transfer them to a
display, where the scientist can interpret outcomes and further steer
the experiment. Experiments undertaken on the QoS attributes are
primarily targetted for category (c) and (d) in Section 7.

6. Case Scenarios and Requirements

In this section, we use case scenarios to illustrate how the QoSm frame-
work can also benefit scientists in other disciplines.

− Collaborative Real-Time Experiments: A group of scientists lo-
cated in different domains are collaborating on a nanostructures
experiment. Each scientist participates in the experiment by pro-
viding local data augmentation and then transferring that data
to a high-performance computing resource for collaborative data
analysis. The scientists at corresponding domains establish a guar-
anteed network bandwidth to conduct data transfer; similarly, the
scientists at the data analysis location establish resource guaran-
tees, not only for the data transfer but also for computing power
with adequate resources to perform the data analysis and produce
results in a specific time, when all scientist are online to interact
with or steer the experiment.

− Ad Hoc Real-Time Experiments Needing Computing Power: Sev-
eral scientists decide to conduct an experiment to verify certain

final-jogc.tex; 25/04/2004; 12:01; p.25

26 R. Al-Ali et al.

findings. The decision is made on an ad hoc basis, that is, without
prior arrangement. The experiment must be conducted in a Grid
infrastructure, with enough computing resources to perform the
desired experiment in a reasonable time and fulfill the scientists
ad hoc requirements. Here, the scientists require some commitment
from the Grid middleware that the resources needed for the exper-
iment are indeed available at this time. The scientists therefore
submit a QoS negotiation request to a QoS manager. The QoS
manager gives such a commitment if the resources are available
at the specific time; if the resources are not available, the QoS
manager proposes a new available time, which the scientist may
accept or reject.

− Experiments with Deadline Constraints: A team of scientists has a
deadline for delivering experiment results. The scientists therefore
contact the QoS manager in advance to negotiate a QoS agreement
to guarantee resource availability during the experiment.

These three scenarios have the following common elements: (a)
The need for Grid resources with particular capabilities (b) The
need for resources to be available for a predefined period of time
(c) The need for an agreement to indicate the commitment level
of resource availability

With these elements in mind, we have engineered the G-QoSm
framework to fulfill resource requests with QoS specifications, per-
form advance reservations of resources, generate QoS agreements,
and execute services based on prenegotiated QoS agreements. In
the rest of the paper, we focus on the third elementthe commitment
level of resource availabilityas we discuss the implementation of
G-QoSm and provide initial experience results.

7. Implementation and Results

Our test-bed resources included two Linux-based computers: one with
a 1.8 GHz Pentium processor and 256 MB of memory, for the service
consumer; the other a 1.2 GHz Pentium processor and 512 MB of
memory, for the service provider. All machines were connected through
a fast Local Area Network (LAN) using Ethernet. Deployed on these
machines were the Globus Toolkit version 3 OGSI service container,
the Globus Toolkit version 2, and the Java CoG Kit. We experimented
with the nanostructure application using two different approaches: 1)

final-jogc.tex; 25/04/2004; 12:01; p.26

Analysis and Provision of QoS for Distributed Grid Applications 27

with a QoS handler through the Java CoG Kit, and 2) with a GT2
handler through the Java CoG Kit.

7.1. Time-Domain Example

In this section we show results for a nanostructures image analysis
task, based on a sample electron diffraction using up to 900 input
images. We used a time-domain strategy for resource allocation, with
the entire computer node reserved for the application; multiple jobs
were submitted to the reserved node, but only one was executed, i.e.
the job which had previously made a reservation.

We conducted two sets of runs: 1) job submission based on QoS,
and 2) standard job submission based on GT2 GRAM. Each set con-
sisted of eight runs to analyze 25 images, 50 images, 75 images and 90
images. For the first run, job submission is based on QoS properties,
the four sets of images were processed in two modes; i) parallel, i.e.
submitting the entire set of images to the Grid node for processing
at the same time, and ii) sequential, i.e. submitting one image at a
time to the Grid node for processing. Similarly for the second run, job
submission makes use of GT2 GRAM – in this instance we also used
the parallel and sequential modes. Figures 8, 9, 10, and 11 show the
performance results, with number of images and time taken to process
that number of images for each run.

Experiment results displayed in Figures 8 and 9 make use of the
QoS approach, and show that the time taken to process the images,
in both parallel and sequential modes, is less than in the GT2 ap-
proach. This result is expected as the reservation mechanism employed
in this time-domain strategy is to reserve the entire processing power
of the Grid node for the QoS-based application, and this prevents other
processes from using the processing power while the reservation holds.

Experiment results displayed in Figures 10 and 11 show the use of
the GT2 approach, indicating that the time taken to process images, in
both parallel and sequential modes, is more than in the QoS approach.
The reason is that multiple processing loads were applied to simulate
a shared multi-user environment. This background workload generator
is used to sort a list of random numbers – upto 10,000 (the actual size
of the number of elements in the array is also picked randomly) – using
a variety of different sorting algorithms. We also specify a random wait
period between each invocation of the random number generator – to
simulate the creation of new jobs at unpredictable times. Executing
this process adds a variable workload to the existing jobs that are
being managed by a CPU. As the GT2 technology does not employ

final-jogc.tex; 25/04/2004; 12:01; p.27

28 R. Al-Ali et al.

Figure 8. QoS-Based Execution – Parallel

a reservation mechanism, other processes could use processing power
while the job submitted was being processed.

Figures 12 and 13 are, respectively, results for executing the nanos-
tructure application in GT2 (Best Effort Service) and with QoS (Guar-
anteed Service), and show the processing time taken to analyze each
image.

Figure 12 consists of GT2 (Best Effort) results, indicating that
processing time per image generally takes from 10 to 30 seconds. This 20
second variation in the image processing time is quite significant, as this
makes the processing pattern unpredictable, and, therefore, unreliable.

Figure 13, using our proposed QoS (Guaranteed) approach, has an
execution time per image, ranging from 10 to 12 seconds, except for
image number ‘36’, which took approximately 15 seconds. The same
image took approximately 37 seconds in Figure 12, based on the GT2
(Best Effort) mechanism, which indicates that image ’36’ has more
processing requirements than the other images. The variation in image
processing time with the use of QoS constraints is quite small, which
makes the processing pattern consistent and, hence, reliable. From the
above results we observe that application processing using the proposed
QoS approach provides the following advantages:

final-jogc.tex; 25/04/2004; 12:01; p.28

Analysis and Provision of QoS for Distributed Grid Applications 29

Figure 9. QoS-based Execution – Sequential

− The processing of the images has a better performance.

− The time variation in processing each image is about 2 seconds,
compared to the GT2 approach of 20 seconds using the same set of
images. This difference is quite significant, and the proposed QoS
approach is thus more predictable and reliable.

7.2. Resource-Domain Example

In this section we show results when the G-QoSm framework was used
to allocate CPU resources with a QoS specification using a resource-
domain allocation strategy. With this strategy, a slot of CPU time is
reserved, and the client application can submit jobs to be executed un-
der fractional reservation constraints. The process is implemented using
the Java CoG Kit API to create a task object, and then submitting the
created task to the QoS Handler to negotiate the required resources or
services. Upon success, a Service Level Agreement is returned for use
when claiming a reserved resource in the future.

To evaluate the behavior of the proposed system under heavy
load, and observe the effectiveness of the job-submission with QoS
constraints, we run two experiments as follows: i) two processes run

final-jogc.tex; 25/04/2004; 12:01; p.29

30 R. Al-Ali et al.

Figure 10. Best Effort Execution using GT2 – Parallel

in best-effort mode, i.e. without CPU resources reservation, and ii) a
process run in guaranteed mode, i.e. with CPU resource reservation for
60% from time 25s to time 65s. The guaranteed process is run for a
specified time frame, while the competing processes (best-effort) were
running.

To further study the behavior of our system, and to observe the
execution pattern of the guaranteed process, we ran the guaranteed
process for a specified time frame, while the competing processes were
running. Performance data was taken shortly before the guaranteed
process starts, then periodically, until shortly after it completes. Figure
14 plots the execution pattern:

− From time 10s to 25s, two computation-intensive processes are
competing for 100% use of the CPU.

− At time 25s the guaranteed process, with a guaranteed CPU usage
of 60%, started and lasted until time 65s, due to the previously
made reservation.

− From time 65s the two computation-intensive processes are com-
peting again for 100% use of the CPU.

final-jogc.tex; 25/04/2004; 12:01; p.30

Analysis and Provision of QoS for Distributed Grid Applications 31

Figure 11. Best Effort Execution using GT2 – Sequential

Figure 12. The Application using GT2 – Best Effort Service

As a result, it is clear that during the active session of the guaranteed
process, it maintained the guaranteed CPU usage of 60%, with the
rest of the CPU shared between the other processes. At time 65s,
when the guaranteed process completed, the two computation-intensive
processes, started to compete for 100% usage.

final-jogc.tex; 25/04/2004; 12:01; p.31

32 R. Al-Ali et al.

Figure 13. The Application using QoS – Guaranteed Service

Figure 14. Execution of ’Guaranteed’ and Competing Processes

7.3. QoS Overhead and System Limitation

To further study the proposed system, we conducted two experiments to
establish: 1) QoS overhead imposed on job submission, and 2) System
limitation in terms of maximum number of requests the system can
manage before it fails to respond adequately (essentially to test the
scalability). We can specify the limitations of the present system as
follows:

final-jogc.tex; 25/04/2004; 12:01; p.32

Analysis and Provision of QoS for Distributed Grid Applications 33

1. QoS Overhead: The most apparent overhead the QoS imposes on
conventional job-submission is the introduction of the QoS negotia-
tion and advance/immediate resource reservation. This overhead is
realized when the client/application submits a request to the QoS
service for resource reservation, with QoS constraints and subse-
quent resource allocation. The QoS service undertakes resources
discovery and reservation and presents the user with a Service Level
Agreement (SLA) for use when claiming the service. To measure
the overhead imposed in this process of negotiating the SLA, we
monitored a client generating, at various times, 1,000 requests for
the QoS service. The time taken was recorded – from the client
initiating the request to the QoS service, until the request was
acknowledged. We observed that the time taken to acknowledge
QoS requests ranges from a best-case of 50 ms to a worst-case of
200 ms. The acknowledgement time depends on how busy the QoS
service is, and on the network connecting the consumer and the
provider. 50 to 200 ms is not a significant period compared to the
actual time the QoS session is reserved for – usually of the order of
minutes or even hours, and this overhead is, thus, negligible.

Table1: Requests Acknowledged and Time Taken

Requests Period(minutes)

3,857 4:01

3,594 5:34

3,606 6:40

3,596 8:23

3,603 9:22

2. System Limitation: Grid middleware should be scalable, especially
Grid systems that deal with a large number of users and resources.
A test was therefore conducted to find out how scalable our pro-
posed system is, in terms of maintaining QoS requests. A large
number of requests were issued from clients, at different times over
the network to the QoS service. It was observed that the QoS
service cannot accept more requests after some 3,600 request, when
denial of service takes place. Table 1 shows the number of requests
accepted and time taken. The system was analyzed to identify the
cause of this limitation, which was found to be that the prototype

final-jogc.tex; 25/04/2004; 12:01; p.33

34 R. Al-Ali et al.

system employed a reservation table, which contains related infor-
mation about the reservations, agreements and SLAs. This table
was built and stored in primary memory, and when denial of service
occurred the memory was found to be 80% full – this figure was
obtained by running the top Unix utility to determine free memory.
The denial of service could also have arisen due to the process table
becoming full as more requests were sent to the server. To overcome
this constraint, we will build the reservation table in a disk file,
to accommodate a higher number of requests. Swapping overhead
to retrieve data from this file, however, may render this approach
unusable as the number of requests increase.

8. Conclusion and Future Work

We discuss the importance of QoS to support Grid computing applica-
tions. QoS criteria in Grid computing are viewed from three perspec-
tives: networking, computation, and storage media. We also outline
general requirements for QoS management in the context of service
Grids.

A Grid QoS resource management architecture, called G-QoSm, is
described. This architecture overcomes some of the limitations of earlier
efforts in the Grid community, such as GARA. The development of G-
QoSm benefits from our experience in designing the Java CoG Kit,
which uses convenient abstractions to integrate QoS capabilities and is
easily ported to the Globus Toolkit version 2 and 3.

A G-QoSm prototype is used within a nanomaterial structures
application, and is used as an illustrative example. Our architecture
currently includes a set of components that abstract the use of QoS for
the non-programmer. We emphasize that these components are critical
if the Grid is to gain widespread acceptance in real applications. The
current set of components must be augmented and their utility demon-
strated to convince and encourage new users to utilize Grid computing
resources.

We intend to continue our research in Grid resource management
in accordance with the Global Grid Forum Grid Resource Agreement
and Allocation Protocol working group – especially recent work to-
wards the WS-agreement standard. We believe, however, that a re-
source agreement and allocation protocol is just a small fraction of the
work necessary to enable full use of QoS properties in Grids. Investiga-
tion into related areas, such as real-time resource allocation strategies
and capacity planning remain important research areas to support

final-jogc.tex; 25/04/2004; 12:01; p.34

Analysis and Provision of QoS for Distributed Grid Applications 35

collaborative applications – such as those that require computational
steering support.

Acknowledgment

This work was supported by the Mathematical, Information, and Com-
putational Science Division subprogram of the Office of Advanced Sci-
entific Computing Research, Office of Science, U.S. Department of
Energy, under Contract W-31-109-Eng-38. DARPA, DOE, and NSF
support Globus Alliance research and development. The Java CoG Kit
Project is supported by DOE SciDAC and NSF Alliance.

References

R. Al-Ali, K. Amin, G. von Laszeswski, O. Rana, and D. Walker. An OGSA-
Based Quality of Service Framework. In Proceedings of the Second International
Workshop on Grid and Cooperative Computing (GCC2003), Shanghai, China,
2003.

R. Al-Ali, A. Hafid, O. Rana, and D. Walker. An Approach for QoS Adaptation in
Service-Oriented Grids. Concurrency and Computation: Practice and Experience
Journal, 16(5):401–412, 2004.

R. Al-Ali, O. Rana, D. Walker, S. Jha, and S. Sohail. G-QoSM: Grid Service
Discovery using QoS Properties. Computing and Informatics Journal, Special
Issue on Grid Computing, 21(4):363–382, 2002.

K. Amin, M. Hategan, G. von Laszeswski, and N. Zaluzec. Abstracting the Grid.
In Proceedings of the 12-th Euromicro Conference on Parallel, Distributed and
Network based Processing (PDP 2004), A Coruna, Spain, 2004.

J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley, A. Arpaci, and H. Remzi.
Flexibility, Manageability, and Performance in a Grid Storage Appliance. In
Proceedings of the Eleventh IEEE Symposium on High Performance Distributed
Computing, Edinburgh, Scotland, 2002.

G. Bochmann and A. Hafid. Some Principles for Quality of Service Management.
Technical report, Universite de Montreal, 1996.

L. Burchard, M. Hovestadt, O. Kao, A. Keller, and B. Linnert. The Virtual Resource
Manager: An Architecture for SLA-aware Resource Management. In Proceedings
of IEEE CCGrid 2004, Chicago, US, 2004 (to appear)

H. Chu and K Nahrstedt. A CPU Service Classes for Multimedia Applications. In
IEEE Multimedia Systems ’99, 1999.

K. Czajkowski and A. Dan and J. Rofrano and S. Tuecke and and M. Xu Agreement-
based Grid Service Management (OGSI-Agreement). Global Grid Forum,
GRAAP-WG Author Contribution Draft, June 2003.

K. Czajkowski and S. Fitzgerald and I. Foster and C. Kesselman Grid Information
Services for Distributed Resource Sharing. Proceedings of the Tenth IEEE Inter-
national Symposium on High-Performance Distributed Computing (HPDC-10),
2001.

final-jogc.tex; 25/04/2004; 12:01; p.35

36 R. Al-Ali et al.

K. Czajkowski and I. Foster and C. Kesselman and V. Sander and S. Tuecke SNAP:
A Protocol for Negotiating Service Level Agreements and Coordinating Resource
Management in Distributed Systems. Proceedings of the 8th Workshop on Job
Scheduling Strategies for Parallel Processing, 2002.

I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A distributed
resource management architecture that supports advance reservation and co-
allocation. In Proceedings of the International Workshop on Quality of Service,
pages 27–36, 1999.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid:An
Open Grid Services Architecture for Distributed Systems Integration. Technical
report, Argonne National Laboratory, January 2002.

I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal of Supercomputing Applications,
15(3), 2002.

V. Deora, J. Shao, W. A. Gray, and N. J. Fiddian. A Quality of Service Manage-
ment Framework Based on User Expectations. First International Conference
on Service Oriented Computing (ICSOC), Trento, Italy, December 2003.

The Globus Alliance. Web Page http://www.globus.org/.
M. Karsten, N. Berier, L. Wolf, and R. Steinmetz. A policy-based service spec-

ification for resource reservation in advance. In International Conference on
Computer Communications (ICCC’99), 1999.

K. Keahey and K. Motawi The Taming of the Grid: Virtual Application Service.
Argonne National Laboratory Technical Memorandum No. 262, May 2003.

J. MacLaren. Advance reservations: State of the Art. GGF GRAAP-WG,
See Web Site at: http://www.fz-juelich.de/zam/RD/coop/ggf/graap/graap-
wg.html, Last visited: August 2003.

A. Oguz, A. T. Campbell, M. E. Kounavis, and R. F. Liao. The Mobiware
Toolkit: Programmable Support for Adaptive Mobile Networking. IEEE Pes-
ronal Communications Magazine, Special Issue on Adapting to Network and
Client Variability, 5(4), 1998.

A. Roy. End-to-End Quality of Service for High-End Applications. PhD thesis, The
University of Chicago, August 2001.

Gregor von Laszewski, Mei-Hui Su, Joseph A. Insley, Ian Foster, John Bresnahan,
Carl Kesselman, Marcus Thiebaux, Mark L. Rivers, Steve Wang, Brian Tieman,
and Ian McNulty. Real-Time Analysis, Visualization, and Steering of Micro-
tomography Experiments at Photon Sources. In Ninth SIAM Conference on
Parallel Processing for Scientific Computing, San Antonio, TX, 22-24 March
1999.

A. Sahai and S. Graupner and V. Machiraju and A. Moorsel. (Specifying and
Monitoring G)uarantees in Commercial Grids through SLA. Proceedings of the
3rd IEEE/ACM CCGrid2003, 2003.

Shaleeza Sohail, Khoi Ba Pham, Richmond Nguyen and Sanjay Jha. Bandwidth
Broker Implementation- Circa-Complete and Integrable. Proceedings of 7th

International Symposium on Digital Signal Processing and Communication
Systems, Coolangata, Australia, 2003

A. ShaikhAli and O. Rana and R. Al-Ali and D. Walker UDDIe: An Extended Reg-
istry for Web Services. Proceedings of Workshop on Service Oriented Computing:
Models, Architectures and Applications, 2003.

G. von Laszewski and I. Foster and J. Gawor and P. Lane A Java Commodity Grid
Kit. Concurrency and Computation: Practice and Experience, 13(8-9), 2001.

final-jogc.tex; 25/04/2004; 12:01; p.36

Analysis and Provision of QoS for Distributed Grid Applications 37

G. von Laszewski and P. Wagstrom. Tools andEnvironments for Parallel and Dis-
tributed Computing. Series on Parallel and Distributed Computing. Wiley, 2004,
ch. Gestalt of the Grid, pp. 149187.

S Jarvis, D Spooner, H Keung, J Dyson, L Zhao and G Nudd. Performance-based
Middleware Services for Grid Computing. Proceedings of the 12th IEEE Inter-
national Symposium on High-Performance Distributed Computing (HPDC-10),
2003.

N. Zaluzec. Argonne National Laboratory TPM/AAEM Collaboratory. See Web
Site at: http://tpm.amc.anl.gov/.

final-jogc.tex; 25/04/2004; 12:01; p.37

final-jogc.tex; 25/04/2004; 12:01; p.38

