
GridTorrent Framework: A High-performance Data
Transfer and Data Sharing Framework for Scientific

Computing
Ali Kaplan

Community Grids Lab,
Indiana University

Suite 224, 501 N. Morton St.
Bloomington, IN 47404

+1 (812) 856-0751
alikapla@indiana.edu

Geoffrey C. Fox
Community Grids Lab,

Indiana University
Suite 224, 501 N. Morton St.

Bloomington, IN 47404
+1 (812) 856-7977
gcf@indiana.edu

Gregor von Laszewski
Center for Advancing the Study of

Cyberinfrastructure,
Rochester Institute of Technology

102 Lomb Memorial Drive, Bld. 74-1079
Rochester, NY 14623

+1 (585) 475-2479
gregor@rit.edu

ABSTRACT
Large amount of data that is often stored in many thousands of
files is created as part of today’s geographically distributed
scientific computation and collaboration environments. Managing
and transferring large volumes of data sets present a significant
challenge and are often a bottleneck in the scientific computing
community. In this paper, we introduce an architecture to manage
data distributions in a collaborative fashion through a GridTorrent
Framework (GTF) whose data transfer mechanism inspired by
Bittorrent. We present performance experiment data that
compares our framework to parallel TCP (PTCP) and Bittorrent.
Experimental results conducted suggest that using GridTorrent for
large data set has significant advantages over parallel TCP in
LAN and WAN type of computer networks.

Keywords
Grid, data transfer, collaboration, Bittorrent

1. INTRODUCTION
Today’s computational science is in many cases based on data-
intensive applications. New scientific devices and large-scale
observatories generate massive volumes of data sets. The Internet
and computational Grid [10, 12] make the data accessible to
anyone anywhere by mechanisms of replication, creation, and
recreation of more data [13]. Prime examples of domain specific
scientific disciplines with these characteristics include high-
energy physics and bioinformatics. To illustrate, every year, the
Large Hadron Collider (LHC) experiment at CERN generates
petabytes of data that is required to be distributed world-wide.
Scientists geographically dispersed are interested in analyzing
these data sets. Consequently, there is a growing need for efficient
techniques to disseminate the data through a simple framework
integrated into the collaboration environment for the scattered
users.

A number of related activities exist in this area of efficient data
transfer. GridFTP [11] is the one of the most common data
transfer services supported by the Grid community and a key
feature of Data Grids [14]. However, due to petascale information,
datacenters go beyond the concept of supercomputers with just
CPU farms. They must more often include IO and networking
arrays [15]. Consequently, a new data transfer technique that has
the ability to utilize the available system resources effectively and
efficiently is urgently required for many state-of-the-art scientific

computations, particularly those needing to integrate Grid
resources.

In spite of the fact that peer-to-peer (P2P) systems have the
potential of cost sharing and balancing of network resources, there
is a lot of research being conducted in this area to investigate
advantages and disadvantages of P2P systems [7, 16, 17, 18].
However, many of those studies [16, 17, 18] have shown that
scientific community could benefit by exploiting P2P, even
though it does not fulfill all the requirements of data transfer for
the scientific computing environment, such as security, content
access control, and collaborative environment. In addition,
Bittorrent has outperformed GridFTP in network areas where only
limited bandwidth is available [18].

In this paper, we investigate if a P2P system, i.e. GridTorrent,
could be used for the dissemination of large amount of data
generated in scientific applications while comparing data transfer
performance of our GridTorrent Framework with that of parallel
TCP. The distinguishing factors for our GridTorrent are the
integration of security features and the conversion of its tracker to
Web Service Tracker (WS-Tracker) (See Section 3.1.3 for more
details about the tracker).

The remainder of this paper is organized as follows. In the next
section, we present the architecture of parallel TCP followed by
Section 3 the GridTorrent Framework architecture. Section 4
presents performance benchmarks conducted in two different
types of networks (LAN and WAN) and analyze their results.
Finally, we conclude and indicate opportunities for future research
in section 5.

2. MULTIPLE STREAM TRANSFER
MECHANISM
It is a well-known fact that TCP’s window based congestion
control mechanism prevents [1] full-scale usage of high
bandwidth-delay product. Hence, transferring large data set across
high-performance networks is suffering from limitations of the
current TCP implementation [1, 2] as it prevents the use of
maximum bandwidth. A solution at the application level is
provided by parallel TCP implementations [2, 3]. In the next
section, we are going to present briefly the architecture of our
Java-based implemented PTCP [4, 5] data transfer mechanism.

2.1 PTCP Architecture
A Parallel TCP stream consists of three basic steps; splitting of
data into sub packets at the sender side, sending these sub packets
over the network by using multiple streams in parallel, and
coalescing of received sub packets at the receiver side. Using
multiple parallel TCP streams gives high throughput by
aggregating each socket bandwidth, although the default socket
buffer size is not set to value of the bandwidth-delay product.

Figure 1: A parallel TCP socket architecture.

Figure 1 depicts the architecture of the Java-based PTCP
framework. PTCPSocket derived from Java.net.Socket can handle
multiple sockets’ input and output streams. It is comprised of
packet splitter, packet merger, senders, receivers, and TCP
sockets, and has two type of channels; communication and data
channels. All control information and negotiations are sent over
the communication channel which stays open till the end of entire
data transfer, and actual data are sent over the data channels. For
instance, the decision of how many parallel streams are used is
determined by the sender and is communicated with the receiver
before initiating the actual data transfer through the
communication channel.

After the setting the number of parallel streams, the packet splitter
divides user’s data into smaller sub packets. These sub packets are
then passed on by the senders to the receivers while writing out
these packets into data channels utilizing TCP sockets. The
number of senders and receivers has to be same as the number of
parallel streams. Receivers read packets from the data channels
and pass them to the upper layer packet merger at the receiver’s
side. Merging smaller sub packets into one packet is conducted by
the packet merger. It combines the incoming packets by checking
their packet number assigned by the packet splitter. There is no
need to check data integrity at the packet merger layer again, since
TCP uses a checksum computed over the whole packet to verify
that the protocol header and the data in each received packet have
not been corrupted.

3. GRIDTORRENT DATA
TRANSFERRING AND SHARING
FRAMEWORK
Parallel TCP could address the low performance data transfer [4,
5, 6] problem caused by TCP’s window based congestion control
mechanism, enabling aggregation of data transfer throughput by
using multiple data stream sockets from the same source to same
destination. However, when there are numerous requests for a
single data source, that source becomes a bottleneck. To alleviate
this problem, peer-to-peer data distribution strategies can be
exploited effectively. There are three broad categories of
techniques [7] to optimize large data distribution at application
level: data staging, data partitioning, and exploiting orthogonal
bandwidth in peer-to peer data dissemination.

We chose the Bittorrent [8] protocol because it supports data
partitioning and orthogonal bandwidth exploitation features [7, 8].
It uses tit-for-tat [8] scheme to enforce participation and fair
sharing. Hence, implementing a data transfer framework based on
Bittorrent enables having multiple streams to multiple destinations
instead of having multiple streams from one source to many
destinations. This approach alleviates the bandwidth bottleneck
nodes and load balancing in the overall system.

However, there are several requirements set by the scientific
community that do not yet met by Bittorrent and address
distributing and managing scientific community data.

The first reason is the nature of data. The data in Bittorrent
community is generally obtained from other people’s works, like
music or movie file, whereas every scientific data is generated in
scientific community. Therefore, scientific data are more sensitive
than data used in Bittorrent community. The second reason is base
on the users’ characteristics. In regular Bittorrent community,
there is no competition between users. There is one type of user, a
passive user, and any user can access any data as long as he or she
gets the torrent file. However, in the scientific community, due to
expertise or research agenda and competition between institutions,
only authorized users are permitted to access to pre-determined
data sets with some access rights. While the passive user type in
Bittorrent, the users in scientific community area very active and
some of them cooperate on some files as a group. This creates
diverse users’ and groups’ profile in scientific community. Third
reason is based on the importance of data and its access. Since, the
current Bittorrent design itself does not provide a search facility to
find files by name; a user must find the initial torrent file by other
means, such as a web search. On the other hand, searching,
finding, and accessing to desired data are of paramount
importance in scientific community, hence a reliable search
service must be offered to scientific users. Therefore, even though
there is a need for integration of Bittorrent and content and
collaboration framework with a search facility to use Bittorrent in
scientific community, our main objective is to compare parallel
TCP’s experiment results with GridTorrent’s to verify that using
GridTorrent for scientific data transfer could offer acceptable data
transfer rate besides its efficient system’s resource usage. Hence,
in the next sections, we are going to describe its architecture and
components in brief. Also note that, since parallel TCP does not
have security feature, in GridTorrent tests, to avoid biased test
results, we did not involve any processes with regard to security,
either.

3.1 GridTorrent Framework Architecture
GridTorrent Framework (GTF) has three major components: the
GridTorrent Framework Client (GTFC), the WS-Tracker, and the
Collaboration and Content Manager (CCM).

Figure 2 presents the basic architecture of interactions between
GridTorrent components. Users are the people who interact with
the system through CCM. GTFC is software that runs on users’
computers and communicates with GTF by exchanging SOAP
messages with WS-Tracker.

The process is started by users (human being) by registering to
Collaboration and Content Manager. Then, they publish their
content to by selecting different access level of it. Afterwards, this
information will be delivered to users’ GridTorrent client via WS-
Tracker. After receiving task list, i.e. mentioned information and
delivered by WS-Tracker, firstly, GridTorrent Client starts to
building .torrent file. Secondly, it announces it to WS-Tracker.
Finally, it waits other peers to deliver content of shared file.

Figure 2: Interactions between GridTorrent Framework

components.

3.1.1 Collaboration and Content Manager
As the name indicates, the Collaboration and Content Manager
(CCM) has two subcomponents; content manager and
collaboration manager.

The Content Manager allows users to publish or share their files
with selected access control rights. Three types of access level are
supported; public, group, and user level access. Each content file
must be assigned an access level. A content in public access level
is accessible publically to all users. A content with group access
level permits users to share their contents with selected group
members. A group membership process is started either by the
group owner or by the user making a request for a desired group.
In both cases, group membership is activated after acceptance of

both sides. However, since resignation of a group membership
does not require both sides’ endorsements, it is a one-sided
activity. Either the group owner or the user can revoke it. In user
level access, content owners can choose individual users by name
either from a list of all known users or a self-maintained Buddy

list. Users can search for content through Content Subscriber
component.

The Collaboration Manager permits users to build a virtual
sharing environment by managing working groups or friend list.
Collaboration tools are composed of Group and Buddy
Management subcomponents as illustrated in Figure 3.

 Figure 3: Components of Collaboration and Content

Manager.

3.1.2 GridTorrent Framework Client
The GridTorrent Framework Client is responsible for initiating
actual data publishing, data sharing with other GTF clients and
ensuring secure environment for the aforementioned activities.
Figure 4 illustrates the architecture of GTF client.

Security Manager

PTCP
Socket

Java
Socket

Task Manager

WS-Tracker
Client

Torrent Data Sharing Algorithm

Figure 4: GridTorrent Framework Client Architecture.

The GridTorrent Framework client is composed of five main
components: Bittorrent data sharing algorithm, task manager, WS-
Tracker client, sockets, and security manager. Bittorrent data
sharing algorithm uses Bittorrent algorithm to exchanges data
between other GTF clients in peer-to-peer manner. Task manager
make sure the tasks in the user’s task list entered to system by
using Collaboration and Content manager and received from WS-
Tracker will be performed. WS-Tracker client behaves as a
communication layer between task manager and WS-Tracker.
Sockets module is responsible for sending and receiving actual

data from other peers. Security manager handles issues related to
security, for instance exchanging certificates, encrypting and
decrypting of messages.

3.1.3 WS-Tracker
WS-Tracker is a server which assists in the communication
between peers using the Bittorrent protocol. Even though, WS-
Tracker seem similar to Bittorrent tracker in this aspect, there are
quite differences between them in regard to WS-Tracker’s
functionalities. In Bittorrent, tracker only delivers list of available
seeders and peers of a requested files, and collects statistics of
uploading and downloading processes. After the initial
communication, peer can continue without a tracker. However, in
GridTorrent Framework, it acts as a maestro between real users
and their GridTorrent clients and other GridTorrent clients. Task
lists generated by users are delivered to GridTorrent clients
through WS-Tracker. Additionally, access control list of each
shared file is supplied to GridTorrent clients by WS-Tracker

4. EXPERIMENTAL RESULTS
In this section, we will discuss how well our GridTorrent
Framework’s data transfer mechanism architecture is performing.

To observe influence of the underlying networks over its
performances,; we have set three scenarios and conducted their
tests in LAN and WAN type of computer networks. Table 1
shows technical features of machines used in different locations.

In each scenario, to compare PTCP’s and GridTorrent’s
performances, we used both PTCP and GridTorrent test cases. We
chose 300 MB for file size because the study [7] has shown that
only more than 5% are larger than 1 GB and the mean file size
generated in scientific computation community is larger than
300MB.

To measure the practical maximum available bandwidth capacity
of the underlying network, we used Iperf, a tool to measure
maximum TCP bandwidth, allowing the tuning of various
parameters and UDP characteristics. Iperf reports bandwidth,
delay jitter, datagram loss. To assess the maximum TCP
bandwidth, we tried several TCP window size along with the
parallel stream number. In LAN and WAN tests, TCP window
size was set to maximum value allowed by the underlying
operating system. Note that since the operating systems are not
same on test machines, TCP window size used for LAN and
WAN are not the same.

Table 1: Server and client machines’ descriptions and their locations

Name Specifications Network Institution Location

A
Intel(R) Quad-Core Xeon(TM) 4x2.33GHz
CPU with 8GB of RAM on Red Hat
Enterprise Linux 4.0

Broadcom NetXtreme II
BCM5708 1000Base-T

Indiana University Bloomington, IN

B
Sun Fire V880 8x1.2GHz UltraSPARC III
processors with 16GB of RAM on Solaris 9.
It has 6x72GB 10K rpm internal HD

Gigabit Ethernet and
10/100-BaseT Ethernet

Indiana University Indianapolis, IN

C
Dual Pentium III 731MHz CPU with 512MB
of RAM on GNU/Linux 2.6.20-1.2316.fc5

Gigabit Ethernet and
10/100-BaseT Ethernet

Florida State University Tallahassee, FL

4.1 LAN Test
It was performed between two Indiana University’s machines
nearly 50 miles apart. Theoretical available bandwidth capacity is
the maximum data transfer rate which the underlying network
interface card allows. Measured available bandwidth capacity is
assessed by using Iperf with the following parameters.

Theoretical Available Bandwidth: 1000 Mbps

Measured Available Bandwidth: 857 Mbps

Server side: Iperf -s -w 256k

Client side: Iperf -c <hostname> -w 512k -P 50

4.1.1 Scenario I
The purpose of this scenario is to observe the performances of
PTCP and GridTorrent in local area network. Therefore, server
and client machines are in local area network. For the
performance test of PTCP, we used one client and one server. The
number of parallel TCP streams between server and client has
risen from one to sixteen in increment of one stream in each step.
Figure 5 demonstrates the connections diagram of PTCP test case.

B A
B : Client

A: Server

 : PTCP Socket

Figure 5: Client and server configuration for PTCP test case.
Server is located at Bloomington, IN, whereas client is at

Indianapolis, IN.
The connections topology between GridTorent client and seeders
are displayed in Figure 6. In GridTorrent test case, one Java
socket has been used between each seeders and the peer. Test has
been initiated into one seeder and the number of seeders was
increased by one in each step, up to sixteen.

B

A

A

A

...

A

A

A

A

B : Client

A: Server

 : Java Socket

Figure 6: GridTorrent test case configuration for LAN test.

Regular Java sockets are used for data transfer.

4.1.2 Scenario I: LAN Test Result
In LAN test, there is no significant improvement in bandwidth
usage while using multiple parallel streams [4, 5] because of
today's very fast LAN connection. Furthermore, transmission time
is smaller than overhead time in LAN; thus, any overhead process
substantiality deteriorates data transfer rate, since the
experimental data transfer (80-100 Mbps) rate is much lower the
theoretical (1000Mbps) and the measured data transfer rate
(857Mbps). As it is seen from Figure 7, the deterioration does not
have identifiable pattern when the number of parallel streams is
increased. The network instability, also, might cause that random
fluctuation.

Figure 7: Bandwidth for different stream numbers with a

fixed file size. (IU-IU settings)

4.2 Continental WAN Test
This test was performed between Indiana University at
Bloomington and Florida State University at Tallahassee, and two
scenarios were tested.

Theoretical Available Bandwidth: 1000 Mbps

Measured Available Bandwidth: 30.2 Mbps
Instead of 512kB buffer size used in LAN test; we set TCP
window buffer size to 256kB because of underlying network
characteristic. We used Iperf with the following options to
measure the maximum available bandwidth capacity of the
underlying network,

For server side: Iperf -s -w 256k

For client side: Iperf -c <hostname> -w 256k -P 50

4.2.1 Scenario II: GridTorrent Framework Client
with One Socket
This scenario is very similar to scenario I, except the location of
client located at Florida State University at Tallahassee, FL. In
scenario, one client and one server have been used for PTCP
performance test, and the number of parallel TCP stream was
increased from one to sixteen streams in increment of one stream.
Figure 8 illustrates the connections diagram of PTCP test case.

C A
C : Client

A: Server

 : PTCP Socket

Figure 8: Client and server layout for PTCP test case. Parallel
TCP streams were used for data transfer. Server is located at

Bloomington, IN, whereas client is at Tallahassee, FL.

Figure 9: GridTorrent test case topology for wide area

network test. Regular Java sockets are used for data transfer.

4.2.2 Scenario II: Test Result
The gains in terms of accomplished data transfer rate are
substantial, when the multiple parallel streams used in long-
distance to transfer data. Test results were agreed with the above
premise. As seen in Figure 10, bandwidth usage is vastly
improved in both GTF and PTCP.

PTCP’s bandwidth utilization rate has risen steadily until fifteen
streams. It has its peak value of 118 Mbps. Just after the fifteenth
stream, its data transfer rate starts falling.

 GTF has displayed the same characteristic; instead of fifteenth
stream, its bandwidth usage rate begins to decline right after
thirteenth streams. GridTorrent was performing better than PTCP
when the number of parallel streams is less than five. Between the
fifth and thirteenth streams, it demonstrates that it has slightly
better data transfer rate than PTCP’s. Another interesting outcome
is that the maximum achieved data transfer rate we measured is
almost four times higher than Iperf’s result because Iperf is used
as a standard network bandwidth measurement tool among
computer users. Another advantage of GTF is feature of load
balancing. Whereas the whole data is sent from a single source in
PTCP setup, approximately is sent from a single
seeder in GTF setup. This feature will help to relieve the
bottleneck problem of a single source under a great many requests
of data transfer.

Figure 10: Bandwidth for different stream numbers with a

fixed file size. (IU-FSU settings). GridTorrent uses one socket
in each connection for every source.

4.2.3 Scenario III: GridTorrent Framework Client
with Four Sockets
Besides Java socket, other data transfer protocols can be exploited
in GridTorrent client. In order to investigate the performance of
the combination of multiple parallel TCP streams and Bittorrent
algorithm in wide area network, in this scenario, instead of one
Java socket, as it is seen in Figure 12, four parallel TCP sockets
were used between peer and seeders, and number of seeders has
commenced from one and increased from one to 16. The
increment in number of seeders in each step was one.

Figure 11: Client and server layout for PTCP test case. PTCP
streams are used for data transfer.

Figure 12: GridTorrent test case topology for WAN test. Four
parallel TCP sockets are used for data transfer.

4.2.4 Scenario III: Test Result
Parallel TCP test topology in Figure 11 was same and conducted
exactly as in previous scenario. So far the test results have been
very encouraging. Using parallel TCP with Bittorrent algorithm
demonstrates much better bandwidth usage than standalone
GridTorrent and PTCP. The maximum attained bandwidth is
around 145 Mbps which is %23 higher than PTCP’s result (118
Mbps). Figure 13 presents considerable increase in data transfer
rate when multiple parallel streams are used in GridTorrent. This
result is important, because there is no performance gain anymore
after the 15th streams in parallel streams of PTCP; in fact, it
deteriorates the data transfer rate. However, we could increase the
number of parallel streams in GTF up to 40 while without having
any decrease in the data transfer rate.

Figure 13: Bandwidth of different stream numbers for a fixed

file size. (IU-FSU settings). GridTorrent client uses four
parallel TCP sockets in each connection for every source.

We also set number of parallel stream and seeders to different
values to obtain the maximum achievable bandwidth. 160 Mbps is
the maximum accomplished bandwidth by using five parallel
multiple streams with eight seeders.

4.3 Overhead
Both parallel TCP and GridTorrent have overhead due to nature of
multiple parallel connections. Since data splitting and coalescing
take place for the entire data transfer, they are the common
overhead processes in both PTCP and GridTorrent. In addition to
that, GridTorrent has to fragment files into chuck when the
interested file is created. It is a one-time process, in contrast to
data splitting and merging processes.

PTCP’s communication channel overhead time can be compared
to GridTorrent WS-Tracker client’s overhead time varying
between 300 and 600 milliseconds. Another overhead of
GridTorrent is that control messages exchanged between peers to
ensure Bittorrent protocol rules strictly enforced to all
participating peers. Our testing results demonstrated that the total
size of overhead messages is between 148KB to 169 KB. This
overhead can be ignored when it is compared to file size of 300
MB.

5. Conclusion and Future Work
The objective of GridTorrent Framework is to provide an
application level data transferring and sharing framework for data
intensive applications over high performance networks such as
scientific computing. Due to its P2P nature and Bittorrent
protocol, it provides a data transfer technique, which has ability to
efficiently utilize the available system resources, such as network
bandwidth, IO and CPU. Additionally, the experiment results
have shown the performance of GTF is better or not worse than
that of parallel TCP. This outcome is important since parallel
streaming is used in many scientific computing data transfer tools
such as GridFTP. Using Java socket and parallel TCP indicates
that GTF can exploit other high performance data transfer
protocols like GridFTP or UDT in traditional low BDP
environments at the same time.

GridTorrent Framework has been implemented and released as an
open source project. In our future work, the integration of GTF
with other high performance low level data transfer protocol
mentioned above, and their performance over different network
structure will be investigated.

6. REFERENCES
[1] Katabi, D., Hardley, M., and Rohrs, C. 2002. Internet

Congestion Control for Future High Bandwidth-Delay
Product Environments. Presented at ACM SIGCOMM
Conference (Pittsburgh, PA, USA, August 2002).

[2] Floyd, S., Handley, M., Padhye, J., and Widmer, J. 2000.
Equation-Based Congestion Control for Unicast
Applications. In ACM SIGCOMM (Stockholm, Sweden,
August 28- September 1, 2000). pp. 43-56.

[3] Zhang, Y, Yan, E., and Dao, S. K. 1998. A Measurement of
TCP over Long-Delay Network. In Proceedings of the Sixth
International Conference on Telecommunication Systems,
Modeling and Analysis (March 1998). pp. 498-504.

[4] Lim, S., Fox, G., Kaplan, A., Pallickara, S. and Pierce, M.
2005. GridFTP and Parallel TCP Support in
NaradaBrokering. In Proceedings ICA3PP of 6th

International Conference on Algorithms and Architectures
for Parallel Processing (Melbourne Australia, October 2 - 5,
2005). Springer-Verlag Lecture Notes in Computer Science,
Volume 3719, pp. 93-102.

[5] Burnap, P., Bulut, H., Pallickara, S., Fox, G., Walker, D., A.
Kaplan, B. Yildiz, and Nacar, M. A. 2005. Worldwide
Messaging Support for High Performance Real-time
Collaboration. Presented at Proceedings of the UK e-Science
All Hands Meeting (Nottingham, UK, September, 2005).

[6] Sivakumar, H., Bailey, S., and Grossman, R. L. 2000.
PSockets: The Case for Application-level Network Striping
for Data Intensive Applications using High Speed Wide Area
Networks. Presented at Proceedings of IEEE
Supercomputing (Dallas, Texas, USA, November 04 -10,
2000)

[7] Kiswany, S.A., Ripeanu, Iamnitchi, M., A., Vazhkudai, S.
2007. Are Peer-to-Peer Data Dissemination Techniques
Viable in Today’s Data Intensive Scientific Collaborations?
In Proceedings of the 13th International Euro-Par
Conference: European Conference on Parallel and
Distributed Computing (Rennes, France, August 2007)

[8] Cohen, B. 2007 BitTorrent
http://www.bittorrent.org/index.html

[9] Iamnitchi, A., Doraimani, S., and Garzoglio, G. 2006.
Filecules in High-Energy Physics: Characteristics and Impact
on Resource Management. In 15th IEEE International
Symposium on High Performance Distributed
Computing (Paris, France, June 2006). pp. 69-80.

[10] Foster, I., Kesselman, C., and Tuecke, S. 2001.The Anatomy
of the Grid: Enabling Scalable Virtual Organizations.
International Journal of High Performance Computing
Applications. Volume 15, No. 3, pp. 200-222.

[11] Allcock, W., Bester, J., Bresnahan, J., Chervenak,
Kesselman, A. L., C., S. Meder , V. Nefedova , Quesnel, D.,
Tuecke, S., and Foster, I. 2001. Secure, Efficient Data
Transport and Replica Management for High-Performance
Data-Intensive Computing. In Proceedings of the Eighteenth
IEEE Symposium on Mass Storage Systems and
Technologies (April 2001). p. 13.

[12] Foster, I. and Kesselman, C. 1999. The Grid: Blueprint for a
new Computing Infrastructure. Morgan Kaufmann Publishers
Inc., San Francisco, CA.

[13] Graham, S.L. Snir, M., Patterson, C.A. (eds). 2004. Getting
Up To Speed: The Future of Supercomputing. NAE Press,
ISBN 0-309-09502-6.

[14] The Globus Project, 2007. http://www.globus.org/
[15] Bell, G., Gray, J., and Szalay, A. 2006. Petascale

Computational Systems. Computer, IEEE, Volume 39, Issue
1, pp. 110-112, January 2006, ISSN 0018-9162.

[16] Wei, B., Fedak, G., and Cappello, F. 2005. Collaborative
Data Distribution with BitTorrent for Computational Desktop
Grids. In Proceedings of the 4th International Symposium on
Parallel and Distributed Computing (Lille, France, July 4 - 6,
2005). pp. 250 - 257.

[17] Wei, B., Fedak, G., and Cappello, F. 2005. Scheduling
Independent Tasks Sharing Large Data Distributed with
BitTorrent. In Proceedings of the 6th IEEE/ACM

International Workshop on Grid Computing (Seattle,
Washington, USA, November 13 - 14, 2005). p. 8.

[18] Zissimos, A., Doka, K., Chazapis, A., and Koziris, N. 2007.
GridTorrent: Optimizing data transfers in the Grid with
collaborative sharing. Presented at 11th Panhellenic
Conference on Informatics (Patras, Greece, May 2007).
PCI2007.

