
Towards Automatically Generated Hybrid Multi-Cloud AI Services
Gregor von Laszewski, Anthony Orlowski, Richard Otten, Adam Chai∗, Reilly Markowitz∗, Sunny Gandhi∗, and Caleb Wilson, Indiana University
∗UROC Students

Introduction. Data scientists need to develop
reusable AI services that can be shared with their col-
leagues. Typically they lack the expertise to provide
such services due to the steep learning curve. We de-
veloped a sophisticated but easy to use framework that
takes a regular Python function (which data scientists
know how to do) and converts it automatically into a
secure REST service which adheres to OpenAPI spec-
ifications that can be reused in the ecosystem of cloud
services. We used this framework to create several AI-
based REST services to showcase the approach’s valid-
ity.
Architecture. We based our architecture on
cloudmesh, an open-source hybrid multicloud toolkit.
We integrated a new component that provides data
scientists with the ability to automatically generate
these services (see Fig. 1). One of the most impor-
tant aspects of generating REST services is language
independence. For this reason, we use the OpenAPI
Specification. This specification defines a standard,
and language-agnostic interface to REST APIs. Al-
though the concept of REST is easy to understand, a
significant amount of expertise is needed to apply it,
which domain scientists may not be interested in but
would be keen on reusing without needing to know the
details.

IaaS Access

Generalized AI Service Generator

Cl
ie

nt

Re
gi

st
ry

REST Service
Generator

SL
UR

M

SS
H

HPC

Do
ck

er

Ku
be

rn
et

es

Containers

AW
S

Az
ur

e

Go
og

le

O
ra

cl
e

O
pe

nS
ta

ck

Virtual Machine AccessBare

Deployment

OpenAPI Server 
Code Container

Function

Fig 1. Layered architecture of the cloudmesh Ope-
nAPI framework.

Hence, our framework allows scientists to focus on
their scientific tasks exposed to well-known program-

ming using functions and classes as input to the gener-
ator. These functions can have AI services embedded
in them. Fig. 3 showcases our automated AI service
workflow.

Download Data

Train

Upload

Predict

Cloudmesh OpenAPI

Cloud Hosted Virtual Machine

1

2

3

4

Remote Client

request response

Fig 2. High-level overview of the benchmark test se-
quence.

google aws azure
0

10

20

30

40

50

60

70
T

im
e 

(s
)

AI Service Workflow Runtime

Download Data Train Upload Predict

Fig 3. Comparison of the performance of Eigenface
SVM algorithm on various clouds auto-generated from
cloudmesh-openapi.

Benchmark. We developed examples based on the
reuse of Scikit-learn artificial intelligent algorithms
demonstrations. These examples are then run on dif-
ferent cloud services to create comparative performance
benchmarks. We conducted the benchmarks on AWS,
Azure, and Google. Additional examples conducted on
IoT devices and personal computers are discussed in
[1]. We also compared the overhead of using the REST
services [1].

Conclusion. In our benchmarks, we see that the
cloud providers, when using similar resources and im-
ages, perform similarly (see Fig. 3). For small enough
examples we find that IoT devices (such as Raspberry
PI’s) perform very well [1]. Due to this good perfor-
mance, the PI’s are very cost-effective for the examples
we chose. Future, work will include more compute-
intensive tasks and additional benchmarks.

However, our most significant gain from this project
is the reduction in manpower and entry barrier it takes
to create and deploy our AI services. Due to the gen-
eralized approach when using python functions devel-
opers and data scientists can naturally integrate more
complex tasks as well as tasks that leverage cloud-
specific AI services that are uniquely offered by par-
ticular providers. GAS Generator is an open-source
project, and we appreciate contributions to the project.

Acknowledgment. We would like to thank Lamara
DeChelle Warren for initiating the contact of the UROC
students so they can be part of this effort. We would
also like to thank B. Kegerreis, J. Beckford, J. Kandi-
malla, P. Shaw, I. Mishra, F. Wang, and A. Goldfarb
for developing the service generator this work is lever-
aging. Finally, we would like to thank the NIST NBDIF
working group for their input.

References. [1] Using GAS for Speedy Genera-
tion of Hybrid Multi-Cloud AutoGenerated AI Ser-
vices G. von Laszewski, A. Orlowski, R. H. Ot-
ten, R. Markowitz, S. Gandhi, A. Chai, C. Wil-
son, and G. C. Fox, W. L. Chang https://github.
com/laszewski/laszewski.github.io/raw/master/
papers/vonLaszewski-openapi.pdf

Contact.
URL: https://laszewski.github.io
Email: laszewski@gmail.com

1

https://github.com/laszewski/laszewski.github.io/raw/master/papers/vonLaszewski-openapi.pdf
https://github.com/laszewski/laszewski.github.io/raw/master/papers/vonLaszewski-openapi.pdf
https://github.com/laszewski/laszewski.github.io/raw/master/papers/vonLaszewski-openapi.pdf
https://laszewski.github.io

	Introduction.
	Architecture.
	Benchmark.
	Conclusion.
	Acknowledgment.
	References.
	Contact.

