Work Coordination for Grid Computing

Gregor von Laszewski"**Mike Hategan? Deepti Kodeboyina'
1Argonne National Laboratory, Mathematics and Computer Science Division
Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60440
2University of Chicago, Computation Institute,

Research Institutes Building #402, 5640 S. Ellis Ave., Chicago, IL. 60637-1433

Contents

1 Introduction

1.1 Why Workflows?
1.2 What is the Grid Approach?
1.3 Workflow

Grid Workflow Management Systems

2.1 Pre Web Services Phase
2.2 Pre-Grid Phase
2.3 Early Grid Phase L.
2.4 Grid Standards Phases
2.5 Web Services and Grid Phase
2.6 Grid and Web Upperware

Grid Coordination Paradigms

3.1 Grid Queues and Setso L Lo
3.2 Grid Pipes.
3.3 Grid Programming with Dependencies
3.4 Grid Components with Strongly Typed dependencies
3.5 Grid Dataflowo
3.6 Service-Oriented Grid Models
3.7 Parallel Programming Languages
3.8 The Visual Programming Pattern

*Corresponding author: gregor@mcs.anl.gov

4 Select Grid Workflow Systems
Condor DAGMan
Pegasus and Chimera
Unicore

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Triana

SCIRUN

Kepler

Taverna
Askalon

5 Java CoG Kit Workflow

5.1 Workflow solutions of the Java CoG Kit
5.2 Karajan Lo
5.2.1 Architecture
5.2.2 Languageo
5.2.3 Grid Integrationo
5.2.4 Karajan Service oL
5.2.5 Repository o

6 Conclusion

15
15
17
17
18
18
19
19
20

21
21
21
21
22
23
23
26

26

1 Introduction

Scientific computing has been one of the main drivers for the evolution of
computing technologies and frameworks. We see a trend that on the one
hand, motivates the development of new infrastructure to support the re-
quirements of the ever more complex scientific applications and on the other
hand the availability of new technology influences the design of scientific ap-
plications. Hence, they provide a motivation for growth in both domains.
In this paper we will focus on one of the models that has recently spawned
a great deal of interest in the research community: the coordination of work
as part of the scientific discovery process or in short, scientific workflows.
In particular, we will discuss scientific workflows that pertain to the Grid
environment.

Although Grid computing has become a valuable asset to various do-
mains for integrating distributed resources as part of virtual organizations,
many challenges still remain. One of the challenges in Grid computing that
needs to be addressed, is the coordination of tasks expressed as workflows.
This challenge is motivated by requirements posed by scientific and business
communities that demand an even higher level of abstraction than is pro-
vided by the current generation of Grid middleware. Such workflows enable
rapid prototyping and reuse of the Grid infrastructure in an easy fashion.
Focusing on scientific applications, workflows will help to coordinate not
only traditionally Grid related resource management, but will bridge the
gap between commodity tools and Grid middleware as pioneered by the
Java CoG Kit project.

An important factor that contributed to the success of Grids is the devel-
opment of sophisticated middleware based on standards. We have seen over
the last decade a shift from API-oriented middleware to service-oriented
middleware. However, the standards are still evolving and a higher level
workflow framework can protect the application user against the complexi-
ties related to this evolution. Sophisticated workflow frameworks can pro-
vide the necessary abstractions making the use of Grids possible, even for
scientists with little desire to learn the many intransient aspects of the Grid.

The chapter is organized as follows. First, we give a perspective on
why workflows are at present so important and provide a commonly used
definition. Next, we provide a simple definition for Grid workflows. We
identify what different mechanism exist to coordinate work within a Grid
followed by a short survey of a selected number of workflow-related tools
and systems that explicitly address Grid computing. Next, we focus in
more detail on the Java CoG Kit workflow solutions in order to highlight

some of its features that satisfy many scientific application requirements.
We conclude the chapter by identifying future research issues.

1.1 Why Workflows?

A number of flow patterns were developed over time that helped shaping
today’s infrastructure and are influencing future compute infrastructures
leading to knowledge networks. Figure 1 depicts some important flow pat-
terns and their complexities as applied to the evolving cyber infrastructure.

We observe that the development of software and hardware is a direct
result of the desire to solve complex problems. With the increased ability
to build hardware and the software to effectively use the hardware, more
complex problems can be addressed today. The availability of such infras-
tructure brings new opportunities that result in a change of collaborative
patterns. While in the past, single specialized computers may have been
accessed in sequential fashion, the Grid approach allows us to extend the
use model for resources provided on the Internet. Sharing limited resources
in a collaborative fashion is one of its goals. We see that this increased de-
mand for coordination expressed through flow patterns is accompanied by
an increased complexity of hardware. The motivation for scientific work-
flows is based on the need to organize thecompute flows that are part of the
sophisticated scientific problem solving process. Workflows will be a much
needed tool to manage the complexities of this new infrastructure available
to us.

Increased Knowledge

Complexity Peer

Of Flow Patterns
Virtual and
Quality and
Collaborative
Distributed and
Hierarchical

Dataand
Process

Pipe

/ Batch

Distributed
Single Mainframe VEIOr paralldl Meta Grid P2P
User Computer computer Computer

e
Flow Patterns

Hardware Computing Patterns

Figure 1: Increased complexity of flow patterns.

When taking a closer look at the evolutionary process we observe the
changes in use modality, resource access, and the necessary technologies

Table 1: Workflows are the next step in the theoretical and technological
evolution toward development of knowledge networks for e-Science.

Concepts Use modality Resource access Technologies

Sequential programs single exclusive Programming Languages, pipes

Parallel programs single exclusive Parallel programming languages, MPI, ...
Batch processes single shared LSF, PBS, Condor, ...

Parameter study single shared Nimrod, first gen. Grid, ...

Problem solvers multiple shared Portals, Gateways

‘Workflows multiple shared, distributed BPEL, process networks, Google
Knowledge network community community semantic Grids

developed to support the scientific problem solving process integrate the.
We depict this evolution in Table 1. Due to the ever increasing complexity
of the scientific problems, we see the need for large collaborative efforts to
be applied to a scientific quest performed by a group of researchers. Hence
"programming in the small” by a single researcher is no longer adequate.
Scientific progress of the most challenging problems is based on the concept
of “programming in the large” where a collaborative effort is involved. The
same is valid for the handling of resources as part of virtual organizations
which leads us to believe that such research needs the support of a grid-based
framework.

1.2 What is the Grid Approach?

Grid computing has been envisioned since the very early days of computer
science. We have found references to the vision of a computational Grid
infrastructure from as early as 1969 in [24]:

We will probably see the spread of computer utilities, which, like
present electric and telephone wutilities, will service individual
homes and offices across the country.

Influenced by research in parallel and distributed computing in the early
1990’s and using metacomputing as a stepping stone, the term Grid was
introduced in 1998. However its definition has evolved since than. The term
was first formalized in the book “The Grid: Blueprint for a New Computing
Infrastructure” [16] where a Grid is defined as

A computational Grid is a hardware and software infrastructure
that provides dependable, consistent, pervasive, and inexpensive
access to high-end computational capabilities.

However, von Laszewski projected earlier that year that we are in the
need of an extended infrastructure that includes a

shared computing infrastructure of hardware, software, and knowl-
edge resources.

Important to note is that one of the pillars of this infrastructure contains
also “humans” as part of the set of knowledge resources [46].

In 2000, Foster refined the earlier definition of Grids to include social and
policy issues, stating that Grid computing is concerned with “coordinated
resource sharing and problem solving in dynamic, multi-institutional vir-
tual organizations.” Here, the key concept enables resource-sharing among
a set of participating parties. This includes the recognition of a virtual or-
ganization that governs rules for sharing resources under quality of service
constraints, based on community standards.

However, this definition is still not expressive enough by emphasizing
that a human in this infrastructure can itself be a resource. In addition, we
saw that the term Grid was used interchangeably in the community to refer
to an idea and a physical instantiation of a hardware infrastructure. To dis-
tinguish better between these two usages of the term Grid, von Laszewski
has defined the term “Grid Approach” in 2000 [42, 49, 43]. The important
factor here is that Grid computing promotes an approach to conduct scien-
tific research and business collaborations that must not stop by focusing on
hardware and software, but that enables a vision for a shared infrastructure
including humans.

We define the terms (a) the Grid approach, or paradigm, that
represents a general concept and idea to promote a vision for so-
phisticated international scientific and business-oriented collab-
orations and (b) the physical instantiation of a production Grid
based on available resources and services to enable the vision for
sophisticated international scientific and business-oriented col-
laborations.

This distinction is important as the Grid approach includes the vision of
organizational facilities to support collaborations with the help of workflows.
Hence, workflows are an essential part of the Grid approach.

1.3 Workflow

Different definitions of workflow can be found in literature. The most com-
mon definition can be found in [51]. We quote

The computerized facilitation or automation of a business pro-
cess, in whole or part.

In order to execute such a workflow we are in the need of a workflow
management system. According to [51] it is defined as follows

A system that completely defines, manages and executes “work-
flows” through the execution whose order of execution is driven
by a computer representation of the workflow logic.

If we are in the business of doing science or working on the Grid, the same
definitions would apply to Grid workflows. Then the question that arises is
“ Is there anything different between business and scientific workflows?”

The answer to this question is not as straightforward as some other
researchers claim. In fact, some point out wrongly that only scientific work-
flows run for multiple days and require a great number of resources. How-
ever, even in [51] such scenarios have been envisioned to be part of business
workflows. We find that the real difference is in (a) integrating Grid mid-
dleware into the workflow management system, and (b) focusing on the
definition of workflow models that target use cases utilizing the Grid infras-
tructure.

2 Grid Workflow Management Systems

As is obvious from Section 1.1, the development of Grid workflow systems is
a natural progression based on a combination of interwoven factors between
available hardware, software, and the applications targeted. Each of these
categories is driving progress within the other categories. Recently we have
seen the emergence of the Web and Grid technologies that together provide
a path towards research activities in workflows. This progression can be
classified into a number of phases which have been described here.

2.1 Pre Web Services Phase

As part of this progress, the desire to automate processes has lead to the
development of early office automation software (seventies to mid eighties)
leading to business (mid eighties to today) and scientific workflow manage-
ment systems (late eighties till today). We share this view with [?] in which
a detailed historical perspective of this early development of workflow man-
agement systems is given and arranges the systems in chronological order.

2.2 Pre-Grid Phase

The Grid Phase originated from the definition of the metacomputer and al-
ready at that early stage a number of workflow systems were developed that
have had significant impact not only in the definition of scientific workflows,
but also in the definition of Grids and their underlying middleware. Such
systems include for example HenCE, a precursor the GECCO and Java CoG
Kit, Webflow, and SCIRun.

2.3 Early Grid Phase

Originally, only a few Grid-based systems that dealt with workflows were
available. The earliest of these systems was called GECCO and has now
evolved to the Java CoG Kit. Shortly after this, Condor-G wasintroduced
and Unicore has been designed. Systems such as SCIRun have been aug-
mented to include Grid scheduling facilities.

2.4 Grid Standards Phases

In the recent past, Grid computing has been through several phases in defin-
ing Grid standards. The latest phase is still ongoing and several standards
have been submitted to OASIS. During these phases, the definition of Grid
workflows based on the evolving standards was difficult and it was discov-
ered that higher level of abstractions can provide a convenient interface to
workflows. Such high level abstractions are defined for example by the Java
CoG kit not only on the workflow specification level, but also on the interface
and API level. Other systems such as Condor or Chimera have introduced
language level abstractions that make it technically possible to adapt to the
evolving standards as has been demonstrated through the last two years.

2.5 Web Services and Grid Phase

In the late 1990s, web services were standardized and this led to a renewed
interest in the development of standards for workflows and interoperable
web services involving coordination and choreography. In addition, with the
introduction of the Web Services Resource Framework and its associated
standards, the Grid community has come closer to the Web services com-
munity. A large amount of overlap between both communities exists and
several technologies contributed by both groups enhance each other. Due
to evolving standards not only in the Grid community, but also in the Web
services community it is still difficult to develop frameworks that will be

widely accepted and of lasting impact that combine the three technologies:
Grids, Web services and workflows. To illustrate the difficulty in developing
integrated approaches, let us focus on Figure 2 in which we have listed just
a small number of relevant standards in relationship to web services. We
observe that even in a matter of only three years a number of efforts have
begun, but that through merging the number has actually become smaller.
Today, efforts such as BPELAWS and WS-CDL have attained strong mo-
mentum. Due to the evolution of the Grid standards, efforts such as GSFL
[25] that were designed prior to BPEL and WS-CDL have been halted. We
expect that further efforts in the Grid community will be initiated in the
near future. This is evident from the creation of workflow-related research
groups in the Global Grid Forum and the active participation of companies
interested in making Web services-based workflow standards a success in the
forum.

Specification Introduced Deprecated by
| XLANG | |WSFL | | WSCL | | XPDL | XLANG Jun. 2001 BPEL4WS
WSCL Mar. 2002
WSCI Aug. 2002 WS-CDL
| BPEL4WS | | WSCI WSFL Aug. 2002 BPEL

~ XPDL Nov. 2002
BPML Nov. 2002

spetaws 11] |eeme | [wscor| BPEL4WS 1.0 Jul. 2002 BPEL4WS 1.1
BPELAWS 1.1 May 2003

BPEL4WS 2.0 (draft) Feb. 2005
BEPLAWS 2.0 WS-CDL (draft) May 2005

lg

Figure 2: Evolution of the standards with respect to key web-related tech-
nologies

2.6 Grid and Web Upperware

Although it will be necessary to develop standards and methodologies to
integrate current and future Grid middleware into a workflow strategy, it
is important to recognize that the development of middleware reaches an
increased level of sophistication through the development of advanced con-
cepts and services. Such concepts have actually been demonstrated already
by the previously mentioned systems such as the Java CoG Kit, Condor, and
others. These systems hide as much of the underlying Grid middleware as

possible in services and solutions are classified as Grid Upperware. Systems
such as the Java CoG Kit show that it is possible to develop upperware that
can utilize different implementations of the Grid middleware as part of the
workflow. This is of special importance as we need to consider that the un-
derlying resources may change during the course of a long running workflow.
More details regarding this problem have been discussed in a later section.

3 Grid Coordination Paradigms

This section describes a number of paradigms that are directed towards
coordination of work conducted on the Grid. They are targeted towards
job execution with the help of Grid resources. Many of these paradigms are
drawn from parallel and distributed programming concepts.

3.1 Grid Queues and Sets

Queues are well-known data structures that allow organization and execu-
tion of tasks in sequential order. Queues have a retrieval policy attached
with them that determines in which order the tasks are retrieved from the
queue in relationship to how they were put into it. In case no order is spec-
ified, we also refer to it as a set which in many cases has a random order for
retrieval. Batch queues are defined as queues that can run the tasks admin-
istered by them to completion without human interaction. Grid Queues are
augmented with specialized single sign-on authorization capabilities, mak-
ing it also possible to monitor the progress of a job in the queue directly
from the client. Often the term Grid metascheduler is used to refer to Grid
queues that defer tasks based on load or other resource information among
multiple Queues, one for each resource. Examples of queuing systems are
PBS [30], LSF [26], MAUI [27], MOAB [28], GridEngine [35].

3.2 Grid Pipes

A pipeline in computer science allows information to flow in one direction
similar to water flowing in a pipe. Often the notation a | b is used to
denote the flow of information between a and b. It is obvious that pipes
can be utilized easily to express elementary simple flow patterns. Various
performance enhancing implementations exists. One strategy is to blast all
information from a to b as quickly as possible and once the information is
available at b to start the process b. However, in order to increase parallelism
the pipe is most often implemented in such a fashion that process a and b

10

are started in parallel and that the output from a is directly written into
the input of b without waiting for the output to be completely written
to b. In a Grid, we must make use of advanced features for establishing
pipes. In the Globus Toolkit GT2 this feature is provided through the
GASS libraries. Other systems such as the Storage Resource Broker (SRB)
have such capabilities.

3.3 Grid Programming with Dependencies

One of the most popular programming paradigms for coordination of work
within Grids is the use of dependencies between entities. Such entities can
be Grid tasks, which are program instructions loaded into program memory
for accessing a Grid resource, or Grid processes which are running instances
of a Grid program, that include all variables values and state information.
Hence, a Grid process contains the memory that is associated with the
resource containing the task-specific data including operating system re-
sources, file descriptors, security attributes, and the states.For the purposes
of this chapter, a Grid task is defined as an abstract work item formulated
through a program, and a Grid Process, its instantiation on a Grid resource
through a concrete mapping.

Dependencies between tasks, such as, “task a has to be done before
task b” are very often depicted in a graphical form to identify the control or
dataflow between tasks. This is denoted with |a->b|and many systems exist
that make use of graphical tools for specifying dependencies between tasks.
The mapping onto Grid resources and the instantiation into Grid Processes
is done typically through a specialized resource mapper that minimizes the
cost of execution or the duration while considering other scheduling factors.
A Grid metascheduler is a simple form of such a Grid resource broker.

3.4 Grid Components with Strongly Typed dependencies

In contrast to simple dependencies between components, several systems ex-
ist that include strongly typed objects between components. In many cases,
such types are associated between input and output variables and there-
fore resemble a mixture between pipes and programming with dependencies.
Many traditional GUI toolkits that use this paradigm exist including but
not limited to AVS, IBM xplorer, and LabView. Grid systems that use this
metaphor are XCAT. The advantage of such a system is that for complex
component dependencies a typed system provides an elementary program
verification to check the dependencies.

11

3.5 Grid Dataflow

The term data flow is most often used in two contexts. First, it repre-
sents the classical dataflow system, that changes the values of variables and
objects while forcing their recalculation if other variables or objects they
depend on change. Second, it is also used in connection to dataflow net-
works that specifies concurrently executing processes while communicating
through channels to send data between each other. In the case of Grids a
dataflow system may become quite complex as the objects may belong to
different administrative domains and special care has to be put in place to
make sure the flow is not interrupted through possible network outages and
failures. Naturally the same is valid for Grid dataflow networks. Exam-
ples for such systems are VDL and the Java CoG Kit Karajan Workflow
Framework.

3.6 Service-Oriented Grid Models

Recently, service-oriented architectures have become the cornerstones of
Grid middleware development. Hence, it is appropriate to analyze how
work can be coordinated with such an architectural model. The centerpiece
of a service-oriented architecture is the interplay of three entities: a registry,
a provider, and a consumer. A provider registers with the registry a service
that can be consumed by the consumer. To do so the consumer, looks up in
the registry an appropriate service and binds to it so that others may not
consume the same service. While in the Web services world the services are
assumed to be stateless, Grid Services have state associated with them that
are typically represent the state of a Grid resource. Hence it is possible to
integrate the state as an important item as part of the consumer or client.
This naturally has advantages and disadvantages not all of which are not
relevant to this discussion. One of the advantages, is that a great deal of
standards specification work conducted within the Web and Grid commu-
nity is to design a Open Grid Services Architecture. The introduction of
such standards will ultimately help the complex creation of interoperable
Grid services. We must learn therefore the lessons from CORBA, DCOM,
and others in order to avoid the creation of yet another framework that
promises interoperability but cannot deliver it due to the incompatibility
issues of the actual implementations that do not entirely adhere to the stan-
dard. In order to be successful the standard must be complete, yet simple
to implement. Evolution of the standard itself must be considered during its
implementation within the community. To make sure we understand why

12

SOAs are good for grids and how they can be used for work coordination
we need to take a closer look at what some of the mechanisms to create and
connect to services. A service is typically described through a WSDL spec-
ification exposing possible methods with which we can interface to such a
service. This in itself is nothing new as we have done the same thing already
in object-oriented languages for decades. The definition of a Java interface
comes very close to what a WSDL document can represent. However, it
does not define the semantics nor does it tell the user in which order other
services need to be called.

Hence, we require orchestration and choreography. Orchestration defines
the service sequence as well as additional logic to process data. It is not re-
lated to the actual data representation. Choreography defines how an entity
interacts with another one. This may be done through message exchanges
in order to establish a conversation between the parties involved.

As can be seen, a service-oriented architecture is defined on such a low
level that we still require higher level abstractions and services providing
the actual functionality of coordinating the work for application users. Even
with the introduction of BPEL which allows us to define such interactions,
we still need more tools since no application scientist should ever have to
use XML to specify a program. XML is just an intermediate format that is
useful for the middleware designer, but not for the high-level Grid architect.
As such defining a task graph with dependencies as outlined in section will
be much more convenient and realistic than to define a complex BPEL
specification. Automatic tools must be created that make this possible.

3.7 Parallel Programming Languages

One convenient way to specify high level dependencies between entities is
to use a parallel programming language in which parallel constructs like | |
allow execution of two tasks in parallel. Having such a language, allows the
users to focus on the parallel aspects of the problem at hand. Instead of
focusing on writing complex WSDL or BPEL descriptions, tools must be
developed that hide this process entirely for the user of a Grid.

3.8 The Visual Programming Pattern

Often visual programming languages are used as an entry point to the com-
plex Grid infrastructure. However, we must be aware that not every se-
mantic relationship in a complex Grid program can be expressed through a

13

visual representation easily. Hidden or implicit dependencies can be formu-
lated more easily through programming language constructs.

Nevertheless, visual programming environments make the creation or
monitoring of complex Grid workflows easier to some extent. In Figure 3 we
depict a small number of dataflow patterns that are typically found in vi-
sual programming languages. While comparing them to their programming
language counterparts, some of them seem more unintuitive that the actual
program. We observed this while creating workflows with tools such as Ke-
pler [1]. Although they provide a nice user interface, the complexity involved
in assembling is often greater than what can be achieved with a scripting
or parallel programming language. Hence, some systems provide just a task
model such as the Java CoG Kit and allow display of the task dependencies
and their status through hierarchical viewers (see Figure F:graph).

a) Sequence a) Simple Data Flow

g) Multiple Choice e
O-= O ==
b) Parallel Split) = b) Data Multicast Data Split
®_>) h) Multiple Merge éa\/ulz‘fa—sv &g»
< k= - = E R)
) Synchronization < d) Load Balancing €) Independent Data Merge
5D i) Discriminator N O\IZ
o O @ﬁo O ==)
o) Exclusive Choice @20 ©

f) Dependent Data Merge g) XOR Data Merge

S
S B, My
) Noutof M
O @ O <O
€) Simple Merge w o
o &) Data Flow Patterns
D

). Syehronizing Merge s) Cancel Activity
o= S o
) Scope gl !

1) Cancel Case “ =5
Simple Flow and Structure Patterns ing and Patterns ®—>
p) Deferred Choice G 1) MI (Design) @ o G o
w KX ®_’) ® U Eror
&) &2 (5) Handing
o o m) MI (Runtime) — v) Compensation A\
— WO—E=REH =R DD
q) Interleaved
Parallel Routing comp comp
I o (-A) Cancellation and
SJ 1) M (o prior Error Handling Patterns
O —Ea—Q D
nstances needed " Multiple Workflow Instances
1) Milestone . ©) MI Synchronization)
——3i a Y e el e "
O HolL NS
“ QLI B

State-Based Patterns Multiple Instances Patterns

Figure 3: Patterns that are often used in visual dataflow programming lan-
guages.

14

Figure 4: The Java CoG Kit Workflow viewer enables to display and monitor
workflows.

4 Select Grid Workflow Systems

A number of research groups have worked on the creation of workflow sys-
tems for Grid and non-Grid environments. We will enumerate a subset
of these systems in order to highlight features that have been found use-
ful by the community. The systems outlined here are Condor DAGMan,
Globus, Pegasus and Chimera, Unicore, Triana and Kepler, SCIRUN, and
BPEL4WS. We will look at the Java CoG Kit workflow in more detail as
it projects an integrated approach to Grid workflow thus fulfilling require-
ments of many user domains. Several other workflow systems are listed in
Table[].
List is not entireley complete and consistent

4.1 Condor DAGMan

DAGMan (Directed Acyclic Graph Manager) [9] is a recent addition to the
Condor [10, 39] software. It is a meta-scheduler that extends the condor
scheduler by allowing dependencies between condor jobs. The representation
of dependencies is specified as part of a direct acyclic graph, where the nodes
represent programs and the edges, dependencies between the programs. This
abstraction is similar to the one introduced earlier in [48]. The DAG is
described in a simple text file in which each node represents a condor job that
takes a number of input files and produces a number of output files. Besides
specifying dependencies, DAGMan can support elementary error recovery
and reporting. In each node, a user can define a pre and a post script that

15

Table 2:

Name

List of Scientific Workflow Environments

Grid Library

Programming Paradigm

Condor DAGMan |8,
9]

Condor, can run on top of GT2

(Condor-G)

Directed Acyclic Graphs (DAGs)

DiscoveryNet [14, 19] Globus Toolkit Discovery Process Markup lan-
guage with Task objects

GRID superscalar GT2.x, GT4, Ninf-G, SSH/SCP Parallel Execution using
Taskgraphs

GridAnt [50, 3]

Grid tasks via CoG Kit

Targets and tasks based on Apache
ant

GriPhyN VDS Globus Toolkit(GT) uses DAGs produced by Pegasus
(Chimera) [6]
GridPort] uses GT3 via CoG Kit, CSF, Composition using core compo-

GridFTP

nents and services

GridNexus [18]

GT3

Internal DAG with JXPL

Grid Service Broker
[17]

GT2,Alchemi

parametric computing for compute
and data grids

ICENT [20] ICENI Grid based on JINI Component-based dataflow using
Execution Plans
I-Lab [21] Globus ToolKit GADL is based on Petri Nets
Karajan [22] GT2.4, GT3.02, SSH (future Mike: will have to describe
targets: Condor, GT4.0, Uni-
core)
Pegasus [31, 11] Condor Abstract Workflow (AW) submit-
ted to Condor’s DAGMan
Kepler[23, 33] parallel programming with na- actor-oriented model with MoML
tive libraries
P-GRADE [32] GT2, Condor P-GRADE Workflow Language
(DAG based)
SCIRun [34] SDSC SRB, CoG Specializes in dataflow visualization
Taverna [36, 29] via Talisman toolkit that allows Scufl language that is built to sup-
scriptable Web UI (not active) port scientific applications
Triana [37] WSFL-like task graphs , Part of ~GUI Tool to build UML model
GridLab
Teuta [38] GridLab UML Activity Diagrams mapped to
AGWL
Unicore [40] UniGrid GPE, GT, PBS, CCS, DAGs with communication via

SSH

AJOs (Abstract Job objects)

www-bpeldws [5] also I need to take a look at SEDNA, Cactus

16

http://www.cs.wisc.edu/condor/
http://www.extreme.indiana.edu/swf-survey/DiscoveryNet.html
http://www.bsc.es/grid/
http://www.extreme.indiana.edu/swf-survey/GridAnt.html
http://www.griphyn.org/
http://www.griphyn.org/
http://www.gridport.net
http://www.gridnexus.org/
http://www.gridbus.org/broker
http://www.alchemi.net/
http://www.extreme.indiana.edu/swf-survey/ICENI.html
http://www.extreme.indiana.edu/swf-survey/ILab.html
http://www.extreme.indiana.edu/swf-survey/Karajan.html
http://www.extreme.indiana.edu/swf-survey/Pegasus.html
http://www.extreme.indiana.edu/swf-survey/Kepler.html
http://www.extreme.indiana.edu/swf-survey/P-GRADE.html
http://software.sci.utah.edu/scirun.html
http://www.extreme.indiana.edu/swf-survey/Taverna.html
http://www.trianacode.org/
http://www.extreme.indiana.edu/swf-survey/Teuta.htm
http://unicore.sourceforge.net/

is to be run prior and post execution of the condor job respectively. Other
frameworks simply use a separate graph node to illustrate this separation.
DAGMan and Condor are implemented in C. A Grid Services interface based
on the GT4 standard is currently under development. It is not open source
and extensions to this framework are therefore not possible by the general
user community. The advantage of the system is the ease of specification of
DAGs as ASCII files, the integration with the well known Condor software.
The disadvantages are that no XML specification language was available, the
system is closed source, and that it is more difficult to integrate your own
customized schedulers and Grid mapping frameworks. No Graphical user
interface is provided. Condor is well suited to interface to Grid backends.

4.2 Pegasus and Chimera

Chimera [13] and Pegasus [12, 31] are systems that work hand in hand to
define a workflow model and to instantiate it within a Grid environment.
The workflow model is centered on the concept of virtual data which spec-
ifies data as part of a number of transforms. Hence, the input to chimera
can be expressed as partial workflow descriptions that specify input files on
which logical transformations are applied, leading to output files. Instead
of referring to an output file, the workflow designer can refer to the partial
workflow that creates this output file. This concept is useful if the opera-
tions to obtain the modified data are cheaper than maintaining a new copy
of the data. The specifications of the transformations are defined with the
help of a virtual data language.Chimera is associated with tools and meth-
ods to define the virtual data workflow models and Pegasus is responsible
for instantiating the workflows within a Grid environment. Pegasus sup-
ports the mapping of partial workflows into the Grid environment to allow
late binding of the resources in order to adapt to the changing Grid envi-
ronment during the workflow instantiation and execution. The advantage
is that transformations may be cheaper than the storing of the result of
transformations. The disadvantage is that the system to express such trans-
formations can become quite complex and that intermediary data may not
be available at a time it may be needed by other components.

4.3 Unicore

UNICORE (Uniform Interface to Computing Resources) [40, 41] is providing
a seamless, secure, and intuitive access to distributed resources. It deals
with job management including creation, submission, and monitoring, data

17

management, application support, and single sign-on. It integrates resources
as part of a meta computing environment. A graphical user interface is
available through which the user can specify the programs to be executed
on compute resources. As part of the UNICORE abstract job model, DAG-
based workflows can be specified. In addition it contains conditionals and
repetitive execution of job groups or tasks as part of the workflow model.
The advantage of the system is that it is easy to define workflows to generate
programs that work on remote machines. The disadvantage is that it is that
the integration with the newest Grid standards is still in progress.

4.4 Triana

Triana [37] presents itself as a problem solving environment integrating a vi-
sual interface with data analysis tools. Triana workflows are based on the no-
tion that every piece of work is part of a specific experiment and its execution
needs to be coordinated as part of a workflow. Experiments are generated
by a scientist which is supported by a Triana workflow management system
to handle the experiments as efficiently and effectively as possible. As other
workflow systems, Triana is based on a layered architecture that separates
the visualization and representation from the instantiation of the workflow.
Triana workflows are WSFL like representation of task graphs task graph
consist of three types of elements: tasks, control links and data links, where
a task represents an operation, a control link defines the sequence of tasks in
the model, and a data link describes the flow of data between tasks. Triana
is a arge software and contains a sophisticated visualization framework for
workflow graphs. The advantage of Triana is the visualization framework
which makes it possible to maintain moderately sized workflows in graphical
fashion. The disadvantage is that the use may not as targeted to the Grid
like other efforts such as Condor or Java CoG Kit.

4.5 SCIRUN

SCIRUN [34] is a scientific workbench that focuses on the presentation of
components and their integration as part of a graphical user interface sim-
ilar to AVS. It allows users to construct, manage, and debug scientific sim-
ulations in a variety of scientific disciplines. In SCIRUN, components are
defined that can be connected with each other through the description of
input and output relationships of the components. The assembly of such
components can be viewed as a workflow since SCIRUN allows for paral-
lel and conditional execution of tasks. SCIRUN has components integrated

18

that allow running of the computational intense tasks on the Grid. Besides
integration in Grids, distributed computing frameworks such as CORBA
are also supported. It includes a sophisticated GUI workflow modeler as
well as controls to modify a workflow while it is running. The advantage of
SCIRUN is its component model and the ability to generate sophisticated
visualization of scientific data. The disadvantage is that the user obtaines
the power of SCIRUN through its user interface.

4.6 Kepler

Kepler [23] is a scientific workflow system that was built on top of Ptolemy II
[33] developed at University of California Berkley. Kepler aims to stream-
line the process of workflow definition, monitoring and execution for sci-
entists with emphasis on application-specific modules to aid them. The
system is based on an actor-oriented modeling paradigm where actors cor-
respond to re-usable workflow components that may be generic or specific
to a particular domain. The system consists of several actors that pro-
vide access to remote data using web and grid services, serve as generic
scientific workflow tools that are useful over many disciplines, are used
to prototype workflows before execution, visualize the workflow and those
that provide user interaction and communication for collaborative usage.
The specification of the workflow is done using Keplers workflow mod-
eling language MoML(Modeling Markup Language). The system is de-
signed to be extensible with provisions for developers or end users to add
actors that are required for their domain specific needs. They have ad-
dressed problems of scalability by running the jobs in parallel over a clus-
ter and made provisions for long running workflows using detached exe-
cution of the workflow. The project currently is in collaboration with a
variety of application projects such as SEEK(Science Environment for Eco-
logical Knowledge), GEON(Infrastructure for geosciences), ROADNet(Real-
time Observatories, Applications, and Data management Network project),
SKIDL(SDSC Knowledge and Information Discovery Lab), distributed data
integration with NLADR(National Laboratory of Advanced Data Research)

4.7 Taverna

Taverna [36] is a workflow bench designed as part of a UK e-Science pilot
project: myGrid [29]. The focus of the project is on providing an environ-
ment to link together third party biology and bioinformatics applications
(both remote and local) that are familiar to the scientist, using a language

19

and tools designed for the scientist. The collaboration is directed towards
issuing federated queries over distributed queries and consolidating the re-
sults for further analysis. The workflow workbench is used to execute data-
intensive, in silico experiments in molecular biology. This enables the scien-
tific user to create and run workflows written in their Simpliflied conceptual
workflow language (Scufl) which presents a higher level view of workflows.
These are executed using the Freefluo workflow enactment engine. Users
can create workflows to store, retrieve and analyse data from varied data
sources. Processors in Taverna refer to either the data resources or the data
analysis tools. The advanced model explorer(AME) is used to load, edit
and save workflows and functions as the primary visualization tool. It dis-
plays the workflow, metadata associated with it, services available, status
of the workflow, renderers if possible, results browsing and saving of the re-
sults in different formats . Taverna’s features include: support for iteration,
browsing of results from the executed workflows, storage of provenance in-
formation, fault tolerance using failure handlers and reschedulers for failed
tasks with other replicated processors. Taverna collaborates with numerous
biology related services such as seqhound and BioMART that are biological
datawarehouses, BioMoby which provides solutions for accessing distributed
resources, BIOTeam Inquiry for grid in a box services.

4.8 Askalon

The Askalon [4, 15] projects’ goal is to to simplify the development and
optimization of applications that harness the power of Grid computing.
Askalon provides an environment for workflow composition, specification,
scheduling, resource management, performance monitoring and prediction.
The composition is done using a graphical modeler to create a UML-based
representation. The model can be transformed into an XML representation
also by the Model traverser that investigates the possibility to traverse a
path to every modeling element. The model checker is used to validate the
model. The AGWL(Abstract Grid Workflow Language) is a XML-based
language that is used to describe the workflow applications at a higher level
without having to specify low-level grid middleware details. The resource
manager, GridARM discovers resources and schedules jobs depending on
the resource availability and job requirements. The scheduler uses the spec-
ified workflow to map resources to it after converting the workflow into
simple DAGs(Directed Acyclic graphs). Performance analysis is done by in-
strumenting parameters such as communication efficiency, load imbalance,
synchronization and scalability. This data is used by a Performance predic-

20

tion service to predict execution times for workflows using past execution
data for training it. Thus, the project attempts through tools, services, and
methodologies to make Grid application development and optimization for
applications an everyday practice.

5 Java CoG Kit Workflow

5.1 Workflow solutions of the Java CoG Kit

The Java CoG Kit provides a number of solutions to address the coordination
of work within Grid applications. It includes the definition of simple APIs to
access the Grid (jglobus and Grid Abstractions) [45, 2], a parameter study
prototype [48], and a grid desktop prototype [44].

However, for this chapter we like to focus on the description of the Kara-
jan Workflow framework that is part of the Java CoG Kit.

5.2 Karajan

Karajan obtained its name in analogy to a conductor at the Berlin opera.
It symbolizes that the workflow framework is used to direct the grid tasks.
Although, we have already the ability to distribute the task of directing
amongst several services, this is however not reflected in the name.

5.2.1 Architecture

Figure 5 shows the high level architecture of Karajan. The structural lan-
guage specification defines the nature and interaction of the basic building
blocks of the language. The structural specification is syntax-less, allowing
interchangeable bindings to both XML and a native syntax which provides
certain convenience features not possible in XML (such as operators).

A set of libraries implement various functionality. The core libraries
(Kernel and System) define the fundamental elements of the system (par-
allelism, variable manipulation, conditional execution, etc.). Other libraries
interface with either the core libraries and/or various Java APIs in order to
implement additional functionality. The Task Library interfaces with the
Java CoG Kit Abstractions API which provides access to Grid middleware
libraries. The Java library allows generic access to Java classes and methods
directly from Karajan. The forms library, provided as an example, imple-
ments a XUL-like set of elements on top of Java Swing. The HTML library
allows Karajan workflows to generate HTML code.

21

Viewer/Monitor Checkpointing Subsystem Service XML
I I I —
Workflow

Language
Specification

111"

Karajan Workflow Engine

Core Task Java Forms HTML Syntax
Libraries Library Library Library Library
Java CoG Kit RS
Abstractions 9

Java Libraries

Figure 5: The Karajan Architecture

The execution engine uses a lightweight threading interpreter in order
to execute elements defined in the libraries and provide the glue between
elements that is specified by the language specification. The engine interacts
with the various sub-systems that provide additional low-level functionality,
such as the viewer, the checkpointing subsystem, and the service (although
the execution engine does not depend on, and can function without any of
the subsystems).

5.2.2 Language

The Karajan language is a declarative style parallel language. It tries to
favor structured parallelism, both in terms of control flow and data flow. The
basic unit in Karajan is the element. An element can take arguments and
it can return values. An element can also fail. Each element is responsible
for the way in which it evaluates its arguments. Although most elements
evaluate their arguments in sequence, some do not. Although most elements
evaluate their arguments before evaluating their definitions, some do not.
Moreover, through element composition, the strategy and evaluation or-
der of arguments can be changed. Arguments generally consist of unitary
data values. At a generic level no assumption is made on the number of val-

22

ues an element will return, or that return values will all be returned at the
same time. This allows the flexible manipulation of the concurrency aspects
of the workflow without compromising the data consistency. Furthermore,
it allows certain concurrency patterns to be expressed in a simple manner,
and applied to any of the available elements.

The Karajan language has a well defined and simple structure. It has
no keywords. Instead, elements in various libraries implement all necessary
functionality. The lack of keywords allows concurrency manipulation to be
applied equally to system provided elements as well as user defined elements.
Additionally, it allows the user to extend what otherwise would have been
part of the syntax.

The Karajan system library contains a number of elements which imple-
ment conditional execution, iterations (both sequential and parallel), loops,
error handling, some basic data types (list, map), and other features such
as a discriminator which are lacking from many other workflow systems.

To show some of the high level constructs of the language we refer to
figures 6 and 7. Here, a parallel element is used to transfer the standard
output and standard error files in parallel to the local host. While in 6 we
use our the XML syntax, we have also developed what we believe to be an
easier to use syntax. Figure 7 shows this syntax that we have termed “K”
and has the same structure as the XML syntax. More extensive examples
can be found at [7].

5.2.3 Grid Integration

The Grid integration in Karajan is provided by the task library. The task
library is built on top of the Java CoG Kit Abstractions API which provides
a middleware agnostic view of common task patterns: job submission, file
transfer and file operations.

This particular feature gives Karajan the possibility of describing late-
binding Grid tasks, for which the exact resources and choice of middleware
that is used for submission can be decided at run-time, based on up-to-date
availability information on an individual basis. It also enables interoper-
ability between different Grid services. A scheduler can be used in order to
provide the strategy of mapping tasks to resources.

5.2.4 Karajan Service

The Karajan Service can be used to expose the Karajan engine on remote
resources. An attempt at providing a pictorial representation of the inter-

23

<project>
<include file="cogkit.xml"/>
<task:execute executable="/bin/ls" arguments="-al"
stdout="stdout" stderr="stderr"
host="hot.mcs.anl.gov" provider="GT2"/>
<echo message="Job completed. Transferring stdout and stderr"/>

<parallel>
<task:transfer srchost="hot.mcs.anl.gov" srcfile="stdout"
desthost="localhost" provider="gridftp"/>
<task:transfer srchost="hot.mcs.anl.gov" srcfile="stderr"
desthost="localhost" provider="gridftp"/>
</parallel>
<echo message="Stdout and stderr transferred"/>
</project>

Figure 6: One way of expressing concurrency in Karajan is to use it in an
explicit declarative fashion through the sequential and parallel tags.

project (
include("cogkit.k")
task:execute("/bin/ls", arguments="-al", stdout="stdout",
stderr="stderr", host="hot.mcs.anl.gov", provider="GT2")
echo("Job completed. Transferring stdout and stderr")

parallel(
task:transfer(srchost="hot.mcs.anl.gov", srcfile="stdout",
desthost="localhost", provider="gridftp")
task:transfer(srchost="hot.mcs.anl.gov", srcfile="stderr",
desthost="localhost", provider="gridftp")
)

echo("Stdout and stderr transferred")

Figure 7: Through the K-language we have an equivalent description that
is less wordy and can be easier read.

24

4—._\
Persistent)}
Transport o Transport Karaian
Client K==) Channel Callbacks | Channel K==) Service J
N—] Engine
Adapter e Adapter
Polling)
Security Restrictions
brari
Grid —|
Map Tasl(Ilerary amm
Java CoG Kit
Abstractions | =="

Executable H SUDO Hg;mcal GT2 | GT4 |SSH | uun

Figure 8: The Karajan Service Architecture

action of the components that are relevant in using the service is shown in
Figure 8.

A client communicates with the service through a transport library. The
transport library features configurable communication channels, allowing it
to adapt to different usage scenarios. Persistent connections, callbacks and
polling can be used and even combined on a host or domain basis. There
are certain advantages and disadvantages to each strategy. For example,
persistent connections will be efficient and allow the client to work from
behind a firewall, but they will consume resources even if the connection
is idle. By contrast, callbacks are more resource-efficient, but they will not
work properly if the client is behind a firewall that does not allow incoming
connections. Lastly, polling can work if the client is behind a firewall, the
resource usage is slightly higher than that of callbacks, but it introduces a
latency that is dependent on the polling interval. The transport library can
use a single connection for multiple concurrent submissions.

Transport level security and authentication is provided by the use of GSI
connections. Simple authorization is provided by a grid-map file, commonly
used within the Globus Toolkit.

The use of the service places certain restrictions on what workflow el-
ements are available remotely. Since the service can be used by multiple

25

users concurrently, elements that could be used to gain privileges not nor-
mally available are not accessible. Such elements include direct file-system
access elements and elements in the Java library.

Local executables are accessible through a special provider that uses a
grid-map file and (on Unix-like systems) SUDO. Consequently arbitrary ex-
ecutables will be run under specific user accounts indicated by the mapping
in the grid-map file.

5.2.5 Repository

In order to manage components dynamically within the workflow, we also
provide a workflow component repository [47]. This service is used to store,
retrieve, and search for components that can be integrated into a Java CoG
Kit workflow. The repository service promotes reusability of components
that can either be maintained by an individual researcher, or by a shared
community of peers with similar interests.

6 Conclusion

In this chapter we have given a small overview about the coordination of
work within a Grid. We have identified different paradigms to support
it. Important to recognize is that at present Grid workflow is an active
area of research. It is also important to know that none of the existent
workflow frameworks provide all the answers. Systems such as the Java CoG
Kit, Kepler, and Taverna all provide their own strength and weaknesses.
It is important to recognize that at times workflow systems that strongly
support a visual representation may in many cases provide too complex of an
interface. We still need high level interfaces supported through programming
languages and message passing systems. BPEL in itself does not provide a
solution either as its specifications are rather complex. BPEL is also a
low level component and should not directly use by programmers. Higher
level tools are necessary in order to guide the users to design complex Grid
workflows.

Acknowledgement

This work was supported by the Mathematical, Information, and Compu-
tational Science Division subprogram of the Office of Advanced Scientific

26

Computing Research, Office of Science, U.S. Department of Energy, un-
der Contract W-31-109-Eng-38. DARPA, DOE, and NSF support Globus
Project research and development. The Java CoG Kit is supported by DOE,
NSF NMI, NSF DDDAS.

References

[1]

I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludéscher, and S. Mock.
Kepler: An Extensible System for Design and Execution of Scientific
Workflows. In 16th Intl. Conference on Scientific and Statistical
Database Management (SSDBM), page 423. IEEE Computer Society,
2004. Available from: http://csdl2.computer.org/persagen/
DLAbsToc. jsp?resourcePath=/d1l/proceedings/ssdbm/{\&}toc=
comp/proceedings/ssdbm/2004/2146/00/2146toc.xm1{\&}DOI=10.
1109/SSDM.2004.1311241#additionalInfo.

Kaizar Amin, Mihael Hategan, Gregor von Laszewski, and Nestor J.
Zaluzec. Abstracting the Grid. In Proceedings of the 12th Euromi-
cro Conference on Parallel, Distributed and Network-Based Process-
ing (PDP 2004), pages 250-257, La Coruna, Spain, 11-13 February
2004. Available from: http://www.mcs.anl.gov/~gregor/papers/
vonlaszewski--abstracting.pdf.

Kaizar Amin, Mihael Hategan, Gregor von Laszewski, Nestor J.
Zaluzec, Shawn Hampton, and Al Rossi. GridAnt: A Client-
Controllable Grid Workflow System. In 87th Hawai’t Inter-
national Conference on System Science, Island of Hawaii, Big
Island, 5-8 January 2004. see also GridAnt: White Pa-
per. Gregor von Laszewski, Kaizar Amin, Shawn Hampton, and
Sandeep Nijsure. Technical report, Argonne National Laboratory,
31 July 2002. http://www.mcs.anl.gov/ gregor/papers/vonLaszewski-
gridant.pdf. Available from: http://www.mcs.anl.gov/~gregor/
papers/vonLaszewski--gridant-hics.pdf.

Askalon Programming Environment for Grid Computing. Available
from: http://www.dps.uibk.ac.at/projects/askalon/.

BPEL4WS: Business Process Execution Language for Web Services
Version 1.0. Web Page. Available from: http://www-106.ibm.com/
developerworks/webservices/library/ws-bpel.

27

http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/ssdbm/{&}toc=comp/proceedings/ssdbm/2004/2146/00/2146toc.xml{&}DOI=10.1109/SSDM.2004.1311241#additionalInfo
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/ssdbm/{&}toc=comp/proceedings/ssdbm/2004/2146/00/2146toc.xml{&}DOI=10.1109/SSDM.2004.1311241#additionalInfo
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/ssdbm/{&}toc=comp/proceedings/ssdbm/2004/2146/00/2146toc.xml{&}DOI=10.1109/SSDM.2004.1311241#additionalInfo
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/ssdbm/{&}toc=comp/proceedings/ssdbm/2004/2146/00/2146toc.xml{&}DOI=10.1109/SSDM.2004.1311241#additionalInfo
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--abstracting.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--abstracting.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gridant-hics.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gridant-hics.pdf
http://www.dps.uibk.ac.at/projects/askalon/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel

[6]

[12]

[13]

[14]

[15]

The Chimera Virtual Data Systsm. Web Page. Available from: http:
//www.griphyn.org/chimera/.

Java CoG Kit Documentation. Available from: http://wiki.cogkit.
org/index.php/Java_CoG_Kit_Documentation.

Condor: High Throughput Computing. Web Page. Available from:
http://www.cs.wisc.edu/condor/.

DAGMan (Directed Acyclic Graph Manager). Web Page. Available
from: http://www.cs.wisc.edu/condor/dagman/.

Condor Version 6.4.7 Manual, 2003. Available from: http://www.cs.
wisc.edu/condor/manual/v6.4/2_11DAGMan Applications.html.

E. Deelman, J. Blythe, Y. Gil, and C. Kesselman. Pegasus: Planning for
Execution in Grids. Technical Report TR-2002-20, ISI, UCLA, Novem-
ber 2002. Available from: http://www.isi.edu/~deelman/pegasus.
htm.

Ewa Deelman, James Blythe, Yolanda Gil, and Carl Kesselman. Pe-
gasus: Planning for Execution in Grids, 2002. Available from: http:
//www.isi.edu/~deelman/Pegasus/pegasusi,20overview.pdf.

Ewa Deelman, James Blythe, Yolanda Gil, and Carl Kesselman. Grid
Resource Management, chapter Workflow Management in GriPhyN.
Kluwer, 2003. Available from: http://www.isi.edu/~deelman/
Pegasus/grm_chapter.pdf.

DiscoveryNet. Web Page, 2003. Available from: http://wuw.
discovery-on-the.net.

T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin,
M. Siddiqui, H.-L. Truong, A. Villazon, and M. Wieczorek. Askalon:
A grid application development and computing environment. In 6th
International Workshop on Grid Computing. IEEE Computer Society
Press, November 2005.

I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers, July 1998.

Grid Service Broker. Web Page. Available from: http://www.gridbus.
org/broker/.

28

http://www.griphyn.org/chimera/
http://www.griphyn.org/chimera/
http://wiki.cogkit.org/index.php/Java_CoG_Kit_Documentation
http://wiki.cogkit.org/index.php/Java_CoG_Kit_Documentation
http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/condor/dagman/
http://www.cs.wisc.edu/condor/manual/v6.4/2_11DAGMan_Applications.html
http://www.cs.wisc.edu/condor/manual/v6.4/2_11DAGMan_Applications.html
http://www.isi.edu/~deelman/pegasus.htm
http://www.isi.edu/~deelman/pegasus.htm
http://www.isi.edu/~deelman/Pegasus/pegasus%20overview.pdf
http://www.isi.edu/~deelman/Pegasus/pegasus%20overview.pdf
http://www.isi.edu/~deelman/Pegasus/grm_chapter.pdf
http://www.isi.edu/~deelman/Pegasus/grm_chapter.pdf
http://www.discovery-on-the.net
http://www.discovery-on-the.net
http://www.gridbus.org/broker/
http://www.gridbus.org/broker/

18]
[19]

[20]

[21]

[22]

[26]

[27]

[28]
[29]
[30]

[31]

GridNexus. Web Page. Available from: http://www.gridnexus.org/.

Pei Hao, Yuan-Yuan Li, Wei zhong He, and Yi-Xue Li. Studying the
molecular evolution of the sars-coronavirus on the the discoverynet en-
vironment, 2004. Available from: http://www.jsbi.org/journal/
GIW04/GIW04S08.pdf.

ICENI - Imperial College e-Science Networked Infrastructure. Web
Page. Available from: http://www.lesc.ic.ac.uk/iceni/.

I-lab. Web Page. Available from: http://www.fhrg.fhg.de/index_
en.html.

Java CoG Kit Karajan Guide. Web Page. Available from: http:
//www.cogkit.org/current/manual/workflow.pdf.

Kepler. Web Page. Available from: http://kepler.ecoinformatics.
org/.

Leonard Kleinrock. UCLA to Build The First Station in Nationwide
Computer Network. Press Release, 1969. Available from: http://www.
lk.cs.ucla.edu/LK/Bib/REPORT/press.html.

Sriram Krishnan, Patrick Wagstrom, and Gregor von Laszewski. GSFL:
A Workflow Framework for Grid Services. In Preprint ANL/MCS-P980-
0802, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, 1L
60439, U.S.A., 2002. Available from: http://www-unix.globus.org/
cog/papers/gsfl-paper.pdf.

Load Sharing Facility. Web Page, Platform Computing, Inc. Available
from: http://www.platform.com/.

MAUI Scheduler. Available from: http://mauischeduler.
sourceforge.net.

Moab Scheduler. Available from: http://supercluster.org/moab.
myGrid. Web Page. Available from: http://mygrid.man.ac.uk/.

Portable Batch System. Web Page, Veridian Systems. Available from:
http://www.openpbs.org/.

Pegasus. Web Page. Available from: http://pegasus.isi.edu/.

29

http://www.gridnexus.org/
http://www.jsbi.org/journal/GIW04/GIW04S08.pdf
http://www.jsbi.org/journal/GIW04/GIW04S08.pdf
http://www.lesc.ic.ac.uk/iceni/
http://www.fhrg.fhg.de/index_en.html
http://www.fhrg.fhg.de/index_en.html
http://www.cogkit.org/current/manual/workflow.pdf
http://www.cogkit.org/current/manual/workflow.pdf
http://kepler.ecoinformatics.org/
http://kepler.ecoinformatics.org/
http://www.lk.cs.ucla.edu/LK/Bib/REPORT/press.html
http://www.lk.cs.ucla.edu/LK/Bib/REPORT/press.html
http://www-unix.globus.org/cog/papers/gsfl-paper.pdf
http://www-unix.globus.org/cog/papers/gsfl-paper.pdf
http://www.platform.com/
http://mauischeduler.sourceforge.net
http://mauischeduler.sourceforge.net
http://supercluster.org/moab
http://mygrid.man.ac.uk/
http://www.openpbs.org/
http://pegasus.isi.edu/

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

P-Grade. Web Page. Available from: http://www.lpds.sztaki.hu/
pgrade/.

Ptolemy II. Web Page. Available from: http://ptolemy.eecs.
berkeley.edu/ptolemyII/.

SciRun. Web Page. Available from: http://software.sci.utah.edu/
scirun.html.

gridengine: Home. Available from: http://gridengine.sunsource.
net.

myGrid Taverna Workbench. Web Page. Available from: http://
www.mygrid.org.uk/index.php?module=pagemaster&PAGE user_op=
view_page&PAGE_id=44&MMN_position=53:51:52.

Ian Taylor, Shalil Majithia, Matthew Shields, and Ian Wang. Triana
workflow specification. Technical report, GridLab.

Teuta. Web Page. Available from: http://dps.uibk.ac.at/
projects/prophet/node4.html.

Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the
Grid. In Fran Berman, Geoffrey Fox, and Tony Hey, editors, Grid
Computing: Making the Global Infrastructure a Reality. John Wiley &
Sons Inc., December 2002. Available from: http://media.wiley.com/
product_data/excerpt/90/04708531/0470853190. pdf.

Unicore. Web Page. Available from: http://www.unicore.de/.

Unicore plus final report. Joint Project Report for the BMBF Project
UNICORE Plus, 2002. Available from: http://www.unicore.org/
documents/UNICOREPlus-Final-Report.pdf.

Gregor von Laszewski. Grid Computing: Enabling a Vision for Col-
laborative Research. In Juha Fagerholm, Juha Haataja, Jari Jarvinen,
Mikko Lyly, Peter Raback, and Ville Savolainen, editors, The Sixth
International Conference on Applied Parallel Computing, volume 2367
of Lecture Notes in Computer Science, pages 37-52, Espoo, Finland,
15-18 June 2002. Springer. (Invited Talk). Available from: http:
//www.mcs.anl.gov/~gregor/papers/vonLaszewski--para4.pdf.

Gregor von Laszewski and Kaizar Amin. Grid Middleware,
chapter Middleware for Communications, pages 109-130. Wiley,

30

http://www.lpds.sztaki.hu/pgrade/
http://www.lpds.sztaki.hu/pgrade/
http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://software.sci.utah.edu/scirun.html
http://software.sci.utah.edu/scirun.html
http://gridengine.sunsource.net
http://gridengine.sunsource.net
http://www.mygrid.org.uk/index.php?module=pagemaster&PAGE_user_op=view_page&PAGE_id=44&MMN_position=53:51:52
http://www.mygrid.org.uk/index.php?module=pagemaster&PAGE_user_op=view_page&PAGE_id=44&MMN_position=53:51:52
http://www.mygrid.org.uk/index.php?module=pagemaster&PAGE_user_op=view_page&PAGE_id=44&MMN_position=53:51:52
http://dps.uibk.ac.at/projects/prophet/node4.html
http://dps.uibk.ac.at/projects/prophet/node4.html
http://media.wiley.com/product_data/excerpt/90/04708531/0470853190.pdf
http://media.wiley.com/product_data/excerpt/90/04708531/0470853190.pdf
http://www.unicore.de/
http://www.unicore.org/documents/UNICOREPlus-Final-Report.pdf
http://www.unicore.org/documents/UNICOREPlus-Final-Report.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--para4.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--para4.pdf

[44]

[45]

[46]

2004. Available from: http://www.mcs.anl.gov/~gregor/papers/
vonlaszewski--grid-middleware.pdf.

Gregor von Laszewski, Matthew W. Bone, Ishrath Fatima, Mikhail
Sosonkin, Robert Winch, Nithya N. Vijayakumar, Pankaj Sa-
hasrabudhe, Kaizar Amin, Mihael Hateganl, Jonathan DiCarlo, and
David Angulo. Towards the Development of a Bioinformatics Grid
Desktop. Preprint ANL/MCS-ANL/MCS-P1189-0804, Mathematics
and Computer Science Division, Argonne National Laboratory, 9700
S. Cass Avenue, Argonne, IL 60439, U.S.A., August 2004. in partial
fulfillment of the REU 2004 Site on Grid Computing and Bioinformat-
ics. Available from: http://www.cogkit.org.

Gregor von Laszewski, lan Foster, Jarek Gawor, and Peter Lane. A Java
Commodity Grid Kit. Concurrency and Computation: Practice and
Experience, 13(8-9):643-662, 2001. Available from: http://www.mcs.
anl.gov/~gregor/papers/vonLaszewski--cog-cpe-final.pdf.

Gregor von Laszewski, lan Foster, George K. Thiruvathukal, and
Brian Toonen. A Computational Framework for Telemedicine.
Journal of Future Generation Computer Systems, 14:10-123,
1998. Available from: http://www.mcs.anl.gov/~gregor/papers/
vonlaszewski--telemed.pdf.

Gregor von Laszewski and Deepti Kodeboyina. A Reposi-
tory Service for Grid Workflow Components. In International
Conference on Autonomic and Autonomous Systems International
Conference on Networking and Services. TEEE, 23-28 October
2005. Available from: http://www.mcs.anl.gov/~gregor/papers/
vonLaszewski-workflow-repository.pdf.

Gregor von Laszewski, Tan Trieu, Phillip Zimny, and David Angulo.
The Java CoG Kit Experiment Manager. Technical report, Argonne
National Laboratory, June 2005. Available from: http://www.mcs.
anl.gov/~gregor/papers/vonLaszewski-exp.pdf.

Gregor von Laszewski and Patrick Wagstrom. Tools and Environments
for Parallel and Distributed Computing, chapter Gestalt of the Grid,
pages 149-187. Series on Parallel and Distributed Computing. Wiley,
2004. Available from: http://www.mcs.anl.gov/~gregor/papers/
vonLaszewski--gestalt.pdf.

31

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf
http://www.cogkit.org
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-cpe-final.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-cpe-final.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--telemed.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--telemed.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-workflow-repository.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-workflow-repository.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-exp.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-exp.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gestalt.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gestalt.pdf

[50] Gregor von Laszewski, Nestor Zaluzec, Mihael Hategan, Kaizar Amin,
Shawn Hampton, and Al Rossi. GridAnt: Client Side Workflow Man-
agement in Grids (with application to Position Resolved Diffraction). In
Midwest Software Engineering Conference, page 193, Chicago, June 5th
2003. DePaul University.

[51] The Workflow Reference Model. The Workflow Management Coalition,
January 1995. Available from: http://www.wfmc.org/standards/
docs/tc003v11l.pdf.

Copyright

The submitted manuscript has been created by the University of Chicago
as Operator of Argonne National Laboratory (“Argonne”) under Contract
No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to reproduce, pre-
pare derivative works, distribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Government.

32

http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.wfmc.org/standards/docs/tc003v11.pdf

	Introduction
	Why Workflows?
	What is the Grid Approach?
	Workflow

	Grid Workflow Management Systems
	Pre Web Services Phase
	Pre-Grid Phase
	Early Grid Phase
	Grid Standards Phases
	Web Services and Grid Phase
	Grid and Web Upperware

	Grid Coordination Paradigms
	Grid Queues and Sets
	Grid Pipes
	Grid Programming with Dependencies
	Grid Components with Strongly Typed dependencies
	Grid Dataflow
	Service-Oriented Grid Models
	Parallel Programming Languages
	The Visual Programming Pattern

	Select Grid Workflow Systems
	Condor DAGMan
	Pegasus and Chimera
	Unicore
	Triana
	SCIRUN
	Kepler
	Taverna
	Askalon

	Java CoG Kit Workflow
	Workflow solutions of the Java CoG Kit
	Karajan
	Architecture
	Language
	Grid Integration
	Karajan Service
	Repository

	Conclusion

